PHYS 212A

Graduate Quantum Mechanics I

Schedule of Classes

  • Lecture: Tue, Thu 12:30-13:50, Mayer Hall-A 2702

  • Discussion session: Thu 14:00-14:50, Mayer Hall-A 2702

  • Final: Dec. 9, 2022 (TBA)

  • Instructor: Yi-Zhuang You (尤亦庄) (sounds like EACH-ONE, YOU) (He/Him/His)

  • Teaching Assistants

  • Course grade: homework 60%, quizzes 20%, final 20%.

Textbooks

The lecture will follow these books:

[1] Arjun Berera and Luigi Del Debbio, Quantum Mechanics. Cambridge University Press, New York (2021).

[2] Leonard Susskind and Art Friedman, Quantum Mechanics (the Theoretical Minimum). Basic Books, New York. (2014).

Some other books for reference:

[3] R. Shankar, Principles of Quantum Mechanics. Plenum Press, New York. (1994)

[4] J. J. Sakurai, Modern Quantum Mechanics. Addison-Wesley Publishing Company. (1994)

Other References

To learn more about tensor networks, see:

[4] Jacob C. Bridgeman, Christopher T. Chubb. Hand-waving and Interpretive Dance: An Introductory Course on Tensor Networks arXiv:1603.03039

Lecture Notes

Part 1. State and Operator (Mathematica) (PDF)

  • Quantum States
    • Ket and Bra
    • Basis
  • Quantum Operators
    • Operator and Matrix
    • Operator Algebra
    • Projection Operators
  • Measurement
    • Hermitian Operators
    • Observables
    • Sequential Measurements
    • Repeated Measurements
  • Dynamics
    • Unitary Operators
    • Time Evolution

Part 2. Quantum Entanglement (Mathematica) (PDF)

  • Information Theory
    • Classical Information
    • Quantum Information
  • Quantum Entanglement

Part 3. Quantum Bootstrap (Mathematica) (PDF)

  • Harmonic Oscillator
    • Position and Momentum
    • Operator Algebra
    • Quantum Bootstrap
  • Angular Momentum
    • Operator Algebra
    • Quantum Bootstrap

Exercises (Mathematica) (PDF)
Exercises are not required. For homework, see lecture note.