Quantum Mechanics
 Part III. Quantum Bootstrap*

Harmonic Oscillator

- Position and Momentum

- Discrete v.s. Continuous

Continuous observables are observables (Hermitian operators) whose eigenvalues can take continuous real values.

- Examples: position x of a quantum particle.

$$
\begin{equation*}
\hat{x}|x\rangle=x|x\rangle . \tag{1}
\end{equation*}
$$

where

- \hat{x} denotes the position operator (a Hermitian operator corresponding to the position observable of the particle)
- $x \in \mathbb{R}$ is the position eigenvalue.
- $|x\rangle$ the corresponding position eigenstate (the quantum state that describe the particle at the position x).
- The Hilbert space dimension is infinite. It is always helpful to think about the continuous eigen spectrum as the limit of an infinitely dense discrete spectrum.
Many notions of states and operators generalize to the continuous limit. The key is to replace every summation by integration.

	discrete	\rightarrow	continuous
orthonormal basis	$\langle i \mid j\rangle=\delta_{i j}$	\rightarrow	$\left\langle x \mid x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right)$
resolution of identity	$\sum_{i}\|i\rangle\langle i\|=1$	\rightarrow	$\int d x\|x\rangle\langle x\|=1$
state decomposition	$\|v\rangle=\sum_{i} v_{i}\|i\rangle$	\rightarrow	$\|\psi\rangle=\int d x \psi(x)\|x\rangle$
	$v_{i}=\langle i \mid v\rangle$		$\psi(x)=\langle x \mid \psi\rangle$
state normalization	$\sum_{i}\left\|v_{i}\right\|^{2}=1$	\rightarrow	$\int d x\|\psi(x)\|^{2}=1$
scalar product	$\langle u \mid v\rangle=\sum_{i}\langle u \mid i\rangle\langle i \mid v\rangle$	$\rightarrow\langle\phi \mid \psi\rangle=\int d x\langle\phi \mid x\rangle\langle x \mid \psi\rangle$	
	$=\sum_{i} u_{i}^{*} v_{i}$	$=\int d x \phi(x)^{*} \psi(x)$	

- Dirac delta function - the continuous limit of the Kronecker delta symbol. It is defined by the following property under integration

$$
\begin{equation*}
\forall f: \int d x \delta(x) f(x)=f(0) . \tag{2}
\end{equation*}
$$

- Position Operator

All position eigenstates $|x\rangle$ form a set of orthonormal basis, called the position basis. The position operator can be represented as

$$
\begin{equation*}
\hat{x}=\int d x|x\rangle x\langle x| . \tag{3}
\end{equation*}
$$

- The position operator is diagonal in its own eigen basis.

Effect of the position operator on the wave function:

- Suppose the particle is in a state $|\psi\rangle$

$$
\begin{equation*}
|\psi\rangle=\int d x \psi(x)|x\rangle \tag{4}
\end{equation*}
$$

described by the wave function $\psi(x)$.

- Applying the position operator,

$$
\begin{equation*}
\hat{x}|\psi\rangle=\int d x(x \psi(x))|x\rangle . \tag{5}
\end{equation*}
$$

So the position operator point-wise multiplies the wave function $\psi(x)$ with the position eigenvalue x, i.e. $\hat{x}: \psi(x) \rightarrow x \psi(x)$. For this reason, the position operator is often denoted as

$$
\begin{equation*}
\hat{x} \simeq x . \tag{6}
\end{equation*}
$$

- Translation

Translation operator is an operator that translate the particle from one position to another.

$$
\begin{equation*}
\hat{T}(a)|x\rangle=|x+a\rangle . \tag{7}
\end{equation*}
$$

- Suppose the particle was in the $|x\rangle$ state (at position x).
- After applying the translation operator, the particle is in a new state $|x+a\rangle$ (at position $x+a$).
- Therefore $\hat{T}(a)$ translates the particle by displacement a.

In terms of the position basis, the translation operator can be represented as

$$
\begin{equation*}
\hat{T}(a)=\int d x|x+a\rangle\langle x| . \tag{8}
\end{equation*}
$$

- Translation operator implements a basis transformation (from $|x\rangle$ to $|x+a\rangle$). Every basis transformation is unitary. So the translation operator is unitary.

By definition,

$$
\begin{equation*}
\hat{T}(a)^{\dagger}=\int d x|x\rangle\langle x+a| . \tag{9}
\end{equation*}
$$

We can show that

$$
\begin{aligned}
& \hat{T}(a)^{\dagger} \hat{T}(a)=\int d x^{\prime}\left|x^{\prime}\right\rangle\left\langle x^{\prime}+a\right| \int d x|x+a\rangle\langle x| \\
& =\int d x^{\prime} \int d x\left|x^{\prime}\right\rangle\left\langle x^{\prime}+a \mid x+a\right\rangle\langle x| \\
& =\int d x^{\prime} \int d x\left|x^{\prime}\right\rangle \delta\left(x^{\prime}+a-x-a\right)\langle x| \\
& =\int d x^{\prime} \int d x\left|x^{\prime}\right\rangle \delta\left(x^{\prime}-x\right)\langle x| \\
& =\int d x|x\rangle\langle x| \\
& =1 .
\end{aligned}
$$

Similarly, $\hat{T}(a) \hat{T}(a)^{\dagger}=1$. So $\hat{T}(a)$ is unitary.

- Momentum Operator

The momentum operator \hat{p} is defined to be the Hermitian generator of the unitary operator that translates the position.

$$
\begin{equation*}
\hat{T}(a)=\exp \left(-\frac{i \hat{p} a}{\hbar}\right) . \tag{11}
\end{equation*}
$$

Conversely,

$$
\begin{align*}
\hat{p} & =\left.i \hbar \partial_{a} \hat{T}(a)\right|_{a=0} \\
& =i \hbar \lim _{a \rightarrow 0} \frac{\hat{T}(a)-\hat{T}(0)}{a}, \tag{12}
\end{align*}
$$

where zero-translation (do-nothing) operator $\hat{T}(0) \equiv 1$ is always equivalent to the identity operator.
Effect of the momentum operator on the wave function:

- Suppose the particle is in a state $|\psi\rangle$

$$
\begin{equation*}
|\psi\rangle=\int d x \psi(x)|x\rangle \tag{13}
\end{equation*}
$$

described by the wave function $\psi(x)$.

- Under translation,

$$
\begin{align*}
& \hat{T}(a)|\psi\rangle=\int d x \psi(x)|x+a\rangle \\
& =\int d x \psi(x-a)|x\rangle . \tag{14}
\end{align*}
$$

- Applying the momentum operator,

$$
\begin{align*}
& \hat{p}|\psi\rangle=i \hbar \lim _{a \rightarrow 0} \frac{\hat{T}(a)|\psi\rangle-\hat{T}(0)|\psi\rangle}{a} \\
& =i \hbar \int d x\left(\lim _{a \rightarrow 0} \frac{\psi(x-a)-\psi(x)}{a}\right)|x\rangle \tag{15}\\
& =\int d x\left(-i \hbar \partial_{x} \psi(x)\right)|x\rangle .
\end{align*}
$$

The momentum operator maps a wave function $\psi(x)$ to its derivative $\partial_{x} \psi(x)$ (with additional prefactor $-i \hbar$), i.e. $\hat{p}: \psi(x) \rightarrow-i \hbar \partial_{x} \psi(x)$. Therefore, the momentum operator is often written as

$$
\begin{equation*}
\hat{p} \bumpeq-i \hbar \partial_{x}, \tag{16}
\end{equation*}
$$

when acting on a wave function $\psi(x)$. More precisely, its representation in the position basis is given by

$$
\begin{equation*}
\hat{p}=-i \hbar \int d x d x^{\prime}|x\rangle \partial_{x} \delta\left(x-x^{\prime}\right)\left\langle x^{\prime}\right| . \tag{17}
\end{equation*}
$$

Exc
2
Show that Eq. (17) is consistent with Eq. (16) when acting on a state $|\psi\rangle$.

- Commutation Relation

The position and momentum operators satisfy the commutation relation

$$
\begin{equation*}
[\hat{x}, \hat{p}]=i \hbar \tag{19}
\end{equation*}
$$

The simplest way to show this is to check the action of these operators on a wave function $\psi(x)$. Recall that

$$
\begin{equation*}
\hat{x} \bumpeq x, \hat{p} \bumpeq-i \hbar \partial_{x}, \tag{20}
\end{equation*}
$$

the commutator acts as

$$
\begin{align*}
& {[\hat{x}, \hat{p}]|\psi\rangle \simeq\left[x,-i \hbar \partial_{x}\right] \psi(x)} \\
& =-i \hbar\left(x \partial_{x}-\partial_{x} x\right) \psi(x) \\
& =i \hbar \psi(x) \tag{21}\\
& \simeq i \hbar|\psi\rangle .
\end{align*}
$$

This verifies the commutation relation.

- Operator Algebra

- Hamiltonian

Hamiltonian \hat{H} for the 1D harmonic oscillator

$$
\begin{equation*}
\hat{H}=\frac{1}{2 m} \hat{p}^{2}+\frac{1}{2} m \omega^{2} \hat{x}^{2} . \tag{22}
\end{equation*}
$$

where the position \hat{x} and momentum \hat{p} operators are defined by their commutation relation

$$
\begin{equation*}
[\hat{x}, \hat{p}]=i \hbar . \tag{23}
\end{equation*}
$$

m - mass of the oscillator, ω - oscillation frequency.
Let us rescale the operators \hat{p} and \hat{x}

$$
\begin{equation*}
\hat{p} \rightarrow \hat{p} \sqrt{\hbar m \omega}, \hat{x} \rightarrow \hat{x} \sqrt{\frac{\hbar}{m \omega}}, \tag{24}
\end{equation*}
$$

then the Hamiltonian looks simpler

$$
\begin{equation*}
\hat{H}=\frac{1}{2} \hbar \omega\left(\hat{p}^{2}+\hat{x}^{2}\right) . \tag{25}
\end{equation*}
$$

- Energy scale set by $\hbar \omega$.
- New operators \hat{x} and \hat{p} are dimensionless.
- Commutation relation for the rescaled operators

$$
\begin{equation*}
[\hat{x}, \hat{p}]=i 1 . \tag{26}
\end{equation*}
$$

- Annihilation and Creation Operators

Define the annihilation \hat{a} and creation \hat{a}^{\dagger} operators (the names will become evident shortly),

$$
\begin{equation*}
\hat{a}=\frac{1}{\sqrt{2}}(\hat{x}+i \hat{p}), \hat{a}^{\dagger}=\frac{1}{\sqrt{2}}(\hat{x}-i \hat{p}) \tag{27}
\end{equation*}
$$

- \hat{a} and \hat{a}^{\dagger} are Hermitian conjugate to each other.
- Analogy: complex numbers $z=x+i y, z^{*}=x-i y \Rightarrow$ position $\hat{x} \sim$ real part of \hat{a}, momentum $\hat{p} \sim$ imaginary part of \hat{a}.

Commutation relation

$$
\begin{equation*}
\left[\hat{a}, \hat{a}^{\dagger}\right]=1, \tag{28}
\end{equation*}
$$

meaning that

$$
\begin{equation*}
\hat{a} \hat{a}^{\dagger}=\hat{a}^{\dagger} \hat{a}+1 . \tag{29}
\end{equation*}
$$

Keep applying Eq. (29), it can be proven that (for $l, m=0,1,2, \ldots$)

$$
\begin{equation*}
\hat{a}^{l}\left(\hat{a}^{\dagger}\right)^{m}=\sum_{k=0}^{\min (m, l)} \frac{m!l!}{(m-k)!(l-k)!k!}\left(\hat{a}^{\dagger}\right)^{m-k} \hat{a}^{l-k} \tag{30}
\end{equation*}
$$

Exc
 3
 Prove Eq. (30).

- Number Operator

Define the number operator as

$$
\begin{equation*}
\hat{n}=\hat{a}^{\dagger} \hat{a} \tag{37}
\end{equation*}
$$

In terms of the position and momentum operators

$$
\begin{equation*}
\hat{n}=\frac{1}{2}\left(\hat{p}^{2}+\hat{x}^{2}\right)-\frac{1}{2} . \tag{38}
\end{equation*}
$$

Exc	Verify Eq. (38) using Eq. (27).
$\mathbf{4}$	

Compare with Eq. (25), the number operator and the Hamiltonian are related by

$$
\begin{equation*}
\hat{H}=\hbar \omega\left(\hat{n}+\frac{1}{2}\right) . \tag{40}
\end{equation*}
$$

The goal is to find the eigenvalues and eigenstates of the Hamiltonian \hat{H}. However, given the relation Eq. (40), we can find the eigenvalues n and eigenstates $|n\rangle$ of the number operator \hat{n} instead

$$
\begin{equation*}
\hat{n}|n\rangle=n|n\rangle, \tag{41}
\end{equation*}
$$

then $|n\rangle$ are also eigenstates of \hat{H} with shifted and rescaled eigenvalues

$$
\begin{equation*}
\hat{H}|n\rangle=\hbar \omega\left(n+\frac{1}{2}\right)|n\rangle, \tag{42}
\end{equation*}
$$

which means the energy eigenvalues are

$$
\begin{equation*}
E_{n}=\hbar \omega\left(n+\frac{1}{2}\right) . \tag{43}
\end{equation*}
$$

- Quantum Bootstrap

- General Principles

Quantum bootstrap is an approach to solve the eigen problem of a given Hermitian operator.

Consider a Hermitian operator \hat{n} (say the number operator)

$$
\begin{equation*}
\hat{n}|n\rangle=n|n\rangle . \tag{44}
\end{equation*}
$$

For any operator \hat{O}, the following consistency conditions must hold:

- Eigen condition

$$
\begin{equation*}
\forall n:\langle n|[\hat{n}, \hat{O}]|n\rangle=0 . \tag{45}
\end{equation*}
$$

This can be seen from

$$
\begin{equation*}
\langle n| \hat{n} \hat{O}|n\rangle=\langle n| \hat{O} \hat{n}|n\rangle=n\langle n| \hat{O}|n\rangle . \tag{46}
\end{equation*}
$$

- Positivity constraint

$$
\begin{equation*}
\forall n:\langle n| \hat{O}^{\dagger} \hat{O}|n\rangle \geq 0, \tag{47}
\end{equation*}
$$

as the squared norm of the state vector $\hat{O}|n\rangle$ must always be non-negative.

- Level Quantization

Consider a generic operator (for $m, l=0,1,2, \ldots$)

$$
\begin{equation*}
\hat{O}_{m, l}:=\left(\hat{a}^{\dagger}\right)^{m} \hat{a}^{l} . \tag{48}
\end{equation*}
$$

- This covers the several operators as special cases,

$$
\begin{align*}
& \hat{O}_{0,0}=1, \\
& \hat{O}_{0,1}=\hat{a}, \\
& \hat{O}_{1,0}=\hat{a}^{\dagger}, \tag{49}\\
& \hat{O}_{1,1}=\hat{a}^{\dagger} \hat{a}=\hat{n} .
\end{align*}
$$

- The indices m, l interchange under Hermitian conjugate

$$
\begin{equation*}
\hat{O}_{m, l}^{\dagger}=\hat{O}_{l, m} . \tag{50}
\end{equation*}
$$

- Operator product expansion: product of two operators can be expanded into linear combination of operators.

$$
\begin{equation*}
\hat{O}_{k, l} \hat{O}_{m, n}=\sum_{p=0}^{\min (m, l)} \frac{m!l!}{(m-p)!(l-p)!p!} \hat{O}_{k+m-p, l+n-p} . \tag{51}
\end{equation*}
$$

Exc

5
Prove Eq. (51) using Eq. (30).
In particular, if one of the operator is $\hat{O}_{1,1}=\hat{n}$, Eq. (51) reduces to

$$
\begin{align*}
& \hat{n} \hat{O}_{m, l}=\hat{O}_{m+1, l+1}+m \hat{O}_{m, l}, \\
& \hat{O}_{m, l} \hat{n}=\hat{O}_{m+1, l+1}+l \hat{O}_{m, l} . \tag{53}
\end{align*}
$$

Therefore, we have the following commutator

$$
\begin{equation*}
\left[\hat{n}, \hat{O}_{m, l}\right]=\hat{n} \hat{O}_{m, l}-\hat{O}_{m, l} \hat{n}=(m-l) \hat{O}_{m, l}, \tag{54}
\end{equation*}
$$

then the eigen condition Eq. (45) becomes

$$
\begin{equation*}
\langle n|\left[\hat{n}, \hat{O}_{m, l}\right]|n\rangle=(m-l)\langle n| \hat{O}_{m, l}|n\rangle=0 . \tag{55}
\end{equation*}
$$

- If $m \neq l$ (i.e. $m-l \neq 0$), for Eq. (55) to hold, we must have

$$
\begin{equation*}
\langle n| \hat{O}_{m, l}|n\rangle=0(\text { for } m \neq l) . \tag{56}
\end{equation*}
$$

- If $m=l$, Eq. (55) is automatically satisfied. In this case, the expectation value $\langle n| \hat{O}_{m, m}|n\rangle$ can take any real number, which we denote as $W_{m \mid n}$,

$$
\begin{equation*}
W_{m \mid n}:=\langle n| \hat{O}_{m, m}|n\rangle \in \mathbb{R} . \tag{57}
\end{equation*}
$$

To determine $W_{m \mid n}$, we notice that

$$
\begin{align*}
& \langle n| \hat{O}_{m, m} \hat{n}|n\rangle=n\langle n| \hat{O}_{m, m}|n\rangle=n W_{m \mid n}, \\
& \langle n| \hat{O}_{m, m} \hat{n}|n\rangle=\langle n| \hat{O}_{m+1, m+1}|n\rangle+m\langle n| \hat{O}_{m, m}|n\rangle \tag{58}\\
& =W_{m+1 \mid n}+m W_{m \mid n} .
\end{align*}
$$

This leads to a recurrent equation

$$
\begin{equation*}
W_{m+1 \mid n}=(n-m) W_{m \mid n} . \tag{59}
\end{equation*}
$$

Given the initial condition at $m=0$ (the normalization of eigenstates)

$$
\begin{equation*}
W_{0 \mid n}=\langle n \mid n\rangle=1, \tag{60}
\end{equation*}
$$

the solution of Eq. (59) is

$$
\begin{equation*}
W_{m \mid n}=\prod_{l=0}^{m-1}(n-l) . \tag{61}
\end{equation*}
$$

Finally, we examine the positivity constraint Eq. (47) with $\hat{O}_{0, m}=\hat{a}^{m}$,

$$
\begin{equation*}
\langle n| \hat{O}_{0, m}^{\dagger} \hat{O}_{0, m}|n\rangle=\langle n|\left(\hat{a}^{\dagger}\right)^{m} \hat{a}^{m}|n\rangle=\langle n| \hat{O}_{m, m}|n\rangle=W_{m \mid n} \geq 0 . \tag{62}
\end{equation*}
$$

To ensure $W_{m \mid n} \geq 0$, according to Eq. (61), we must have

$$
\begin{equation*}
\forall n, m: \prod_{l=0}^{m-1}(n-l) \geq 0 \tag{63}
\end{equation*}
$$

This corresponds to a series of inequalities

$$
\begin{aligned}
& n \geq 0, \\
& n(n-1) \geq 0, \\
& n(n-1)(n-2) \geq 0, \\
& n(n-1)(n-2)(n-3) \geq 0,
\end{aligned}
$$

To satisfy all these inequalities, n can only be natural numbers

$$
\begin{equation*}
n=0,1,2, \ldots \in \mathbb{N} . \tag{65}
\end{equation*}
$$

- The eigenvalues $n=0,1,2, \ldots$ are discrete! For this reason, the operator \hat{n} is called the number operator, which counts the number of elementary excitations, called phonons (the quanta of sound). The phonon is an example of emergent boson in quantum systems.
- The $n=0$ state, denoted as $|0\rangle$, is also called the vacuum state, as it describes a state with no excitations. It is also the ground state of the Hamiltonian \hat{H}.
- The eigenstates $|n\rangle$ has the following expectation value

$$
\langle n| \hat{O}_{m, l}|n\rangle=\langle n|\left(\hat{a}^{\dagger}\right)^{m} \hat{a}^{l}|n\rangle= \begin{cases}0 & \text { if } m \neq l, \tag{66}\\ n!/ m! & \text { if } m=l\end{cases}
$$

- Number Basis Representation

The commutation relation Eq. (54) implies that on any eigenstate $|n\rangle$,

$$
\begin{equation*}
\hat{n} \hat{O}_{m, l}|n\rangle=(n+m-l) \hat{O}_{m, l}|n\rangle \tag{67}
\end{equation*}
$$

meaning that the state $\hat{O}_{m, l}|n\rangle$ must be an eigenstate of \hat{n} with eigenvalue $n+m-l$. Therefore, it should be identified with the $|n+m-l\rangle$ state,

$$
\begin{equation*}
\hat{O}_{m, l}|n\rangle \propto|n+m-l\rangle . \tag{68}
\end{equation*}
$$

In particular,

- for $\hat{O}_{0,1}=\hat{a}$,

$$
\begin{equation*}
\hat{a}|n\rangle \propto|n-1\rangle ; \tag{69}
\end{equation*}
$$

- for $\hat{O}_{1,0}=\hat{a}^{\dagger}$,

$$
\begin{equation*}
\hat{a}^{\dagger}|n\rangle \propto|n+1\rangle . \tag{70}
\end{equation*}
$$

To determine the proportionality constant, we can compute the squared norms

$$
\begin{align*}
& \langle n| \hat{a}^{\dagger} \hat{a}|n\rangle=\langle n| \hat{n}|n\rangle=n, \\
& \langle n| \hat{a} \hat{a}^{\dagger}|n\rangle=\langle n|\left(\hat{a}^{\dagger} \hat{a}+1\right)|n\rangle=\langle n|(\hat{n}+1)|n\rangle=n+1 . \tag{71}
\end{align*}
$$

Assuming the number basis states $|n\rangle$ are normalized, we must have

$$
\begin{align*}
& \hat{a}|n\rangle=\sqrt{n}|n-1\rangle \\
& \hat{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle \tag{72}
\end{align*}
$$

- Summary

- Annihilation and creation operators

$$
\left\{\begin{array}{l}
\hat{a}=\frac{1}{\sqrt{2}}(\hat{x}+i \hat{p}) \tag{73}\\
\hat{a}^{\dagger}=\frac{1}{\sqrt{2}}(\hat{x}-i \hat{p})
\end{array},\left\{\begin{array}{l}
\hat{x}=\frac{1}{\sqrt{2}}\left(\hat{a}+\hat{a}^{\dagger}\right) \\
\hat{p}=\frac{1}{\sqrt{2} i}\left(\hat{a}-\hat{a}^{\dagger}\right) .
\end{array}\right.\right.
$$

They satisfies the commutation relation

$$
\begin{equation*}
[\hat{x}, \hat{p}]=i 1 \Leftrightarrow\left[\hat{a}, \hat{a}^{\dagger}\right]=1 . \tag{74}
\end{equation*}
$$

- Number operator

$$
\begin{equation*}
\hat{n}=\hat{a}^{\dagger} \hat{a} \tag{75}
\end{equation*}
$$

It defines a discrete spectrum $\hat{n}|n\rangle=n|n\rangle$ for $n \in \mathbb{N}$. Such that

$$
\begin{align*}
& \hat{a}|n\rangle=\sqrt{n}|n-1\rangle, \\
& \hat{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle . \tag{76}
\end{align*}
$$

- Hamiltonian

$$
\begin{equation*}
\hat{H}=\frac{1}{2} \hbar \omega\left(\hat{p}^{2}+\hat{x}^{2}\right)=\hbar \omega\left(\hat{n}+\frac{1}{2}\right) . \tag{77}
\end{equation*}
$$

- Eigen energies

$$
\begin{equation*}
E_{n}=\hbar \omega\left(n+\frac{1}{2}\right) . \tag{78}
\end{equation*}
$$

- Every eigenstate $|n\rangle$ can be raised from the ground state by

$$
\begin{equation*}
|n\rangle=\frac{1}{\sqrt{n!}}\left(\hat{a}^{\dagger}\right)^{n}|0\rangle \tag{79}
\end{equation*}
$$

Angular Momentum

- Operator Algebra

- Definition

The angular momentum of a quantum system (in 3D space) is described by a set of three Hermitian operators $\hat{J}_{1}, \hat{J}_{2}, \hat{J}_{3}$, jointly written as $\hat{\boldsymbol{J}}=\left(\hat{J}_{1}, \hat{J}_{2}, \hat{J}_{3}\right)$, satisfying the following commutation relation

$$
\begin{equation*}
\left[\hat{J}_{a}, \hat{J}_{b}\right]=i \epsilon_{a b c} \hat{J}_{c} \tag{80}
\end{equation*}
$$

- $\epsilon_{a b c}$ is the Levi-Civita symbol: the sign of the $a b c$ permutation.
- Equivalently, in vector form, $\hat{\boldsymbol{J}} \times \hat{\boldsymbol{J}}=i \hat{\boldsymbol{J}}$.

Examples:

- Orbital angular momentum of a particle.

$$
\begin{equation*}
\hat{L}=\hat{x} \times \hat{p} \tag{81}
\end{equation*}
$$

- $\hat{\boldsymbol{x}}=\left(\hat{x}_{1}, \hat{x}_{2}, \hat{x}_{3}\right)$ and $\hat{\boldsymbol{p}}=\left(\hat{p}_{1}, \hat{p}_{2}, \hat{p}_{3}\right)$ are position and momentum operators in 3D space.
- In component form, $\hat{L}_{a}=\epsilon_{a b c} \hat{x}_{b} \hat{p}_{c}$.
- From $\left[\hat{x}_{a}, \hat{p}_{b}\right]=i \delta_{a b}$ (set $\hbar=1$ for simplicity), one can verify that

$$
\begin{equation*}
\left[\hat{L}_{a}, \hat{L}_{b}\right]=i \epsilon_{a b c} \hat{L}_{c} . \tag{82}
\end{equation*}
$$

- Spin angular momentum of a qubit.

$$
\begin{equation*}
\hat{S}=\frac{1}{2} \hat{\sigma} \tag{83}
\end{equation*}
$$

- $\hat{\boldsymbol{\sigma}}=\left(\hat{\sigma}^{x}, \hat{\sigma}^{y}, \hat{\sigma}^{z}\right)$ are the Pauli matrices.
- The commutation relation of Pauli matrices implies

$$
\begin{equation*}
\left[\hat{S}_{a}, \hat{S}_{b}\right]=i \epsilon_{a b c} \hat{S}_{c} . \tag{84}
\end{equation*}
$$

We will discuss the general property of angular momentum operators without specifying whether it is orbital or spin.

- Casimir Operator

A Casimir operator is a operator that commutes with all components of $\hat{\boldsymbol{J}}$. It turns out
that there is only one such operator: the squared angular momentum $\hat{\boldsymbol{J}}^{2}=\hat{\boldsymbol{J}} \cdot \hat{\boldsymbol{J}}$,

$$
\begin{equation*}
\hat{\boldsymbol{J}}^{2}=\hat{J}_{1}^{2}+\hat{J}_{2}^{2}+\hat{J}_{3}^{2} \tag{85}
\end{equation*}
$$

- $\hat{\boldsymbol{J}}^{2}$ is Hermitian.
- By Eq. (80), one can verify that (for $a=1,2,3$)

$$
\begin{equation*}
\left[\hat{J}^{2}, \hat{J}_{a}\right]=0 \tag{86}
\end{equation*}
$$

Exc
 6
 Prove Eq. (86).

- Raising and Lowering Operators

Define the raising \hat{J}_{+}and lowering \hat{J}_{-}operators

$$
\begin{equation*}
\hat{J}_{ \pm}=\hat{J}_{1} \pm i \hat{J}_{2} . \tag{87}
\end{equation*}
$$

- In analogy to $e^{ \pm i \theta}=\cos \theta \pm i \sin \theta$.
- $\hat{J}_{ \pm}$are not Hermitian. Under Hermitian conjugate: $\hat{J}_{ \pm}^{\dagger}=\hat{J}_{\mp}$.

By definition Eq. (87), one can prove the following relations (for $l=0,1,2, \ldots$)

$$
\begin{align*}
& \hat{J}_{3} \hat{J}_{ \pm}^{l}=\hat{J}_{ \pm}^{l}\left(\hat{J}_{3} \pm l\right) \tag{88}\\
& \hat{J}_{\mp}^{l+1} \hat{J}_{ \pm}^{l+1}=\hat{J}_{\mp}^{l} \hat{J}_{ \pm}^{l}\left(\hat{\boldsymbol{J}}^{2}-\left(\hat{J}_{3} \pm l\right)\left(\hat{J}_{3} \pm(l+1)\right)\right) . \tag{89}
\end{align*}
$$

- Quantum Bootstrap

- Problem Setup

$\hat{\boldsymbol{J}}^{2}$ and \hat{J}_{3} commute \Rightarrow they share the same set of eigenstates, which can be labeled by two independent quantum numbers, called j and $m \Rightarrow$ as a common eigenstate, $|j, m\rangle$ must satisfy the eigen equation for both operators

$$
\begin{align*}
& \hat{\boldsymbol{J}}^{2}|j, m\rangle=\lambda_{j}|j, m\rangle, \tag{90}\\
& \hat{J}_{3}|j, m\rangle=\lambda_{m}|j, m\rangle,
\end{align*}
$$

- λ_{j} is the the eigenvalue of $\hat{\boldsymbol{J}}^{2}$ of the $|j, m\rangle$ state,
- λ_{m} is the the eigenvalue of \hat{J}_{3} of the $|j, m\rangle$ state.

The possible values of λ_{j}, λ_{m} can be determined by the quantum bootstrap method.

- General Principles

Any operator \hat{O} must satisfy the following consistency conditions.

- Eigen condition

$$
\begin{align*}
& \langle j, m| f\left(\hat{J}^{2}, \hat{J}_{3}\right) \hat{O}|j, m\rangle \\
& =\langle j, m| \hat{O} f\left(\hat{J}^{2}, \hat{J}_{3}\right)|j, m\rangle \tag{91}\\
& =f\left(\lambda_{j}, \lambda_{m}\right)\langle j, m| \hat{O}|j, m\rangle
\end{align*}
$$

for any function f. In particular, it implies

$$
\begin{equation*}
\langle j, m|\left[\hat{\boldsymbol{J}}^{2}, \hat{O}\right]|j, m\rangle=\langle j, m|\left[\hat{J}_{3}, \hat{O}\right]|j, m\rangle=0 . \tag{92}
\end{equation*}
$$

- Positivity constraint

$$
\begin{equation*}
\langle j, m| \hat{O}^{\dagger} \hat{O}|j, m\rangle \geq 0 \tag{93}
\end{equation*}
$$

- Angular Momentum Quantization

The goal is to estimate the expectation value of $\hat{J}_{\mp}^{l} \hat{J}_{ \pm}^{l}$ on the common eigen state $|j, m\rangle$ for general l and l^{\prime}, i.e. $\langle j, m| \hat{J}_{\mp}^{l} \hat{J}_{ \pm}^{l}|j, m\rangle$, satisfying all the consistency conditions.
Using Eq. (88), it can be shown that

$$
\begin{equation*}
\left[\hat{J}_{3}, \hat{J}_{\mp}^{l} \hat{J}_{ \pm}^{l^{\prime}}\right]=\mp\left(l-l^{\prime}\right) \hat{J}_{\mp}^{l} \hat{J}_{ \pm}^{l^{\prime}}, \tag{94}
\end{equation*}
$$

Exc	Prove Eq. (94) using Eq. (88).
$\mathbf{9}$	

which implies

$$
\begin{equation*}
\langle j, m|\left[\hat{J}_{3}, \hat{J}_{\mp}^{l} \hat{J}_{ \pm}^{l}\right]|j, m\rangle=\mp\left(l-l^{\prime}\right)\langle j, m| \hat{J}_{\mp}^{l} \hat{J}_{ \pm}^{l}|j, m\rangle . \tag{96}
\end{equation*}
$$

On the other hand, apply Eq. (92) with $\hat{O}=\hat{J}_{\mp}^{l} \hat{J}_{ \pm}^{l}$,

$$
\begin{equation*}
\left(l-l^{\prime}\right)\langle j, m| \hat{J}_{\mp}^{l} \hat{J}_{ \pm}^{l}|j, m\rangle=0 . \tag{97}
\end{equation*}
$$

- If $l \neq l^{\prime}$, we must have $\langle j, m| \hat{J}_{\mp}^{l} \hat{J}_{ \pm}^{l}|j, m\rangle=0$.
- If $l=l^{\prime}$, Eq. (97) is automatically satisfied, and there is no restriction on $\langle j, m| \hat{J}_{\mp}^{l} \hat{J}_{ \pm}^{l}|j, m\rangle$. Its value remains to be determined, and can be defined as

$$
\begin{equation*}
A_{j, m}^{ \pm l}:=\langle j, m| \hat{J}_{\mp}^{l} \hat{J}_{ \pm}^{l}|j, m\rangle . \tag{98}
\end{equation*}
$$

To determine $A_{j, m}^{ \pm, l}$, start with Eq. (89) and use the eigen condition Eq. (91) \Rightarrow recurrent equation:

$$
\begin{equation*}
A_{j, m}^{ \pm, l+1}=\left(\lambda_{j}-\left(\lambda_{m} \pm l\right)\left(\lambda_{m} \pm(l+1)\right)\right) A_{j, m}^{ \pm, l} \tag{99}
\end{equation*}
$$

Exc
10
Derive Eq. (99) using Eq. (89).
Given that $A_{j, m}^{ \pm, 0}=\langle j, m \mid j, m\rangle=1$, the solution of Eq. (99) is

$$
\begin{equation*}
A_{j, m}^{ \pm, l}=\prod_{k=0}^{l-1}\left(\lambda_{j}-\left(\lambda_{m} \pm k\right)\left(\lambda_{m} \pm(k+1)\right)\right) . \tag{100}
\end{equation*}
$$

Finally, the positivity constraint Eq. (93) for $\hat{O}=\hat{J}_{ \pm}^{l}$ requires

$$
\begin{equation*}
A_{j, m}^{ \pm l}=\langle j, m| \hat{J}_{\mp}^{l} \hat{J}_{ \pm}^{l}|j, m\rangle \geq 0, \tag{101}
\end{equation*}
$$

which gives a series of inequalities (for $l=1,2, \ldots$)

$$
\begin{equation*}
\prod_{k=0}^{l-1}\left(\lambda_{j}-\left(\lambda_{m} \pm k\right)\left(\lambda_{m} \pm(k+1)\right)\right) \geq 0 . \tag{102}
\end{equation*}
$$

If the inequalities are solved for $l=1,2, \ldots, l_{\max }$ (up to a maximal l), the feasible region for λ_{m} and λ_{j} looks like:

Solutions are discrete! \Rightarrow angular momentum quantization. They are described by

$$
\begin{array}{ll}
\lambda_{j}=j(j+1) & \text { for } j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \tag{103}\\
\lambda_{m}=m & \text { for } m=-j,-j+1, \ldots, j-1, j
\end{array}
$$

- For orbital angular momentum j takes integer values.

For spin angular momentum j can also be half-integers.

- The eigen equations in Eq. (90) become

$$
\begin{align*}
& \hat{J}^{2}|j, m\rangle=j(j+1)|j, m\rangle, \tag{104}\\
& \hat{J}_{3}|j, m\rangle=m|j, m\rangle .
\end{align*}
$$

- The expectation value reads

$$
\langle j, m| \hat{J}_{\mp}^{l} \hat{J}_{ \pm}^{l^{\prime}}|j, m\rangle=\left\{\begin{array}{ll}
0 & \text { if } l \neq l^{\prime} \tag{115}\\
\prod_{k=0}^{l-1}(j(j+1)-(m \pm k)(m \pm(k+1))) & \text { if } l=l^{\prime}
\end{array} .\right.
$$

- Operator Representation

From Eq. (88) with $l=1, \hat{J}_{3} \hat{J}_{ \pm}=\hat{J}_{ \pm}\left(\hat{J}_{3} \pm 1\right)$ we have
$\hat{J}_{3} \hat{J}_{ \pm}|j, m\rangle=\hat{J}_{ \pm}\left(\hat{J}_{3} \pm 1\right)|j, m\rangle$
$=(m \pm 1) \hat{J}_{ \pm}|j, m\rangle$
\Rightarrow the state $\hat{J}_{ \pm}|j, m\rangle$ (as long as it is not zero) is also an eigenstate of \hat{J}_{3} but with the eigenvalue $(m \pm 1) \Rightarrow \hat{J}_{ \pm}|j, m\rangle$ is just the $|j, m \pm 1\rangle$ state (up to overall coefficient)

$$
\begin{equation*}
\hat{J}_{ \pm}|j, m\rangle=c_{j, m}^{ \pm}|j, m \pm 1\rangle . \tag{107}
\end{equation*}
$$

To determine the coefficient $c_{j, m}^{ \pm}$, use Eq. (105) with $l=l^{\prime}=1$

$$
\begin{equation*}
\langle j, m| \hat{J}_{\mp} \hat{J}_{ \pm}|j, m\rangle=j(j+1)-m(m \pm 1) . \tag{108}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
\langle j, m| \hat{J}_{\mp} \hat{J}_{ \pm}|j, m\rangle=\left(c_{j, m}^{ \pm}\right)^{2}\langle j, m \pm 1 \mid j, m \pm 1\rangle=\left(c_{j, m}^{ \pm}\right)^{2} . \tag{109}
\end{equation*}
$$

Combining Eq. (108) and Eq. (109), $c_{j, m}^{ \pm}$can be solved

$$
\begin{equation*}
c_{j, m}^{ \pm}=\sqrt{j(j+1)-m(m \pm 1)} . \tag{110}
\end{equation*}
$$

In conclusion, we have obtained the following representations for angular momentum operators (from Eq. (104) and Eq. (107))

$$
\begin{align*}
& \hat{J}^{2}|j, m\rangle=j(j+1)|j, m\rangle, \\
& \hat{J}_{3}|j, m\rangle=m|j, m\rangle, \tag{111}\\
& \hat{J}_{ \pm}|j, m\rangle=\sqrt{j(j+1)-m(m \pm 1)}|j, m \pm 1\rangle .
\end{align*}
$$

Induction implies that all basis states can be

- either raised from the lowest weight state,

$$
\begin{equation*}
|j, m\rangle=\left(\frac{(j-m)!}{(2 j)!(j+m)!}\right)^{1 / 2} \hat{J}_{+}^{j+m}|j,-j\rangle, \tag{112}
\end{equation*}
$$

- or lowered from the highest weight state,

$$
\begin{equation*}
|j, m\rangle=\left(\frac{(j+m)!}{(2 j)!(j-m)!}\right)^{1 / 2} \hat{J}_{-}^{j-m}|j, j\rangle . \tag{113}
\end{equation*}
$$

This is just like the Harmonic oscillator.
To make the analogy more precise, take the large- j limit,

$$
\begin{align*}
& \frac{\hat{J}_{+}}{\sqrt{2 j}}|j,-j+n\rangle=\sqrt{n+1}|j,-j+n+1\rangle+O\left(j^{-1 / 2}\right), \\
& \frac{\hat{J}_{-}}{\sqrt{2 j}}|j,-j+n\rangle=\sqrt{n}|j,-j+n-1\rangle+O\left(j^{-1 / 2}\right) \tag{114}
\end{align*}
$$

Under the following correspondence

$$
\begin{align*}
& |j,-j+n\rangle \rightarrow|n\rangle, \\
& (2 j)^{-1 / 2} \hat{J}_{-} \rightarrow a,(2 j)^{-1 / 2} \hat{J}_{+} \rightarrow a^{\dagger} \tag{115}
\end{align*}
$$

the boson creation/annihilation algebra Eq. (72) can be reproduced approximately (to the leading order). In this sense, spin excitations can also be treated as bosons, called magnons.

- Summary

Angular momentum operator $\hat{\boldsymbol{J}}=\left(\hat{J}_{1}, \hat{J}_{2}, \hat{J}_{3}\right)$ is defined by the commutation relation

$$
\begin{equation*}
\hat{\boldsymbol{J}} \times \hat{\boldsymbol{J}}=i \hat{\boldsymbol{J}} \tag{116}
\end{equation*}
$$

Based on $\hat{\boldsymbol{J}}$, we can define

- The total angular momentum operator

$$
\begin{equation*}
\hat{\boldsymbol{J}}^{2}=\hat{J}_{1}^{2}+\hat{J}_{2}^{2}+\hat{J}_{3}^{2} \tag{117}
\end{equation*}
$$

- The raising and lowering operators

$$
\begin{equation*}
\hat{J}_{ \pm}=\hat{J}_{1} \pm i \hat{J}_{2} \tag{118}
\end{equation*}
$$

They acts on the common eigen basis $|j, m\rangle$ as

$$
\begin{align*}
& \hat{J}^{2}|j, m\rangle=j(j+1)|j, m\rangle, \\
& \hat{J}_{3}|j, m\rangle=m|j, m\rangle \tag{119}\\
& \hat{J}_{ \pm}|j, m\rangle=\sqrt{j(j+1)-m(m \pm 1)}|j, m \pm 1\rangle
\end{align*}
$$

where

$$
\begin{align*}
& j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \tag{120}\\
& m=-j,-j+1, \ldots, j-1, j
\end{align*}
$$

