
Quantum Mechanics
Part I. State and Operator

Quantum States

◼ Ket and Bra

◼ State as a Vector

Quantum mechanics is a physics theory that describes the behavior of quantum systems 
(microscopic particles, strings, qubits ...).

What does physics theory do in general?

 Describe the state of the system: a set of variables encoding the relevant information of the 
system.

 Predict (i) the observables (measurement outcomes) and (ii) their dynamics (time 
evolution).

Physics theory is about encoding the physical reality in the form of information and generating 
predictions about the reality based on such information.

State variables are inferred from observations.

 State variables may not have “physical meaning”.

 Choice of state variables may not be unique. (There can be more than one way to describe a 
system.)

Example: how to describe the following images?

 Image file: brightness of each pixel. - describe a state by all possible observables.

 Human: digits 0, 1, 2, …, 9. - describe a state by a name.



 Machine learning: feature vectors in the latent space. - describe a state by a vector in a vector 
space. [This is the most close to what we do in quantum mechanics.]
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In quantum mechanics, every state of a quantum system is described by a complex vector 
(an array of complex numbers).

 The vector components are the state variables, and they may not need to have physical mean-
ings. [They are also called probability amplitudes or wave amplitudes, but I don’t 
explain what is “waving” here.]

 This particular (vector-based) approach of describing quantum states is not the only way.  
There are other ways to formulate quantum mechanics, just to name a few: density matrix 
formulation (matrix-based), classical shadow formulation (probability-based) [1], quantum 

bootstrap (observable-based) [2].

 However, the vector description is a simple and efficient way to describe a (pure) state of a 
quantum system. So we will start from state vectors.

 Information encoded in a quantum state is called quantum information. It provides the 
foundation for quantum computation/communication.
Hsin-Yuan Huang, Richard Kueng, John Preskill. arXiv:2002.08953.[1]
Xizhi Han, Sean A. Hartnoll, Jorrit Kruthoff. arXiv:2004.10212.[2]
Example: a (quantum) traffic light system.

One-hot Encoding: A traffic light system has three distinct states: red, yellow and green. In 
quantum mechanics, they can be described by three orthogonal one-hot vectors: 
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 Distinct states. Two  states are distinct, if they can be be distinguished by the different 
observation values of an observable.

 Quantum superposition. What is peculiar about quantum states is that quantum 

mechanics allows us to write down linear combinations of states, which has no classical 
correspondence.
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Mathematically this is ok, but physically what does it mean?

 Well, the norm square of the superposition coefficients has the statistical interpretation 
of probability.

state coeffient probability
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The traffic light has 1/6 of the probability to be observed in red, and 1/6 in to be in 
yellow, and 2/3 to be in green.

 But what about the relative sign or phase of the superposition coefficients? - The complex 
nature of the state vector component is a feature that enables quantum interference . 

To better understand the meaning of the state vector, we need to understand how quantum 

mechanics predicts observables from the state. This is the only way decode the quantum informa-
tion back to the physical reality .

◼ Ket Vector

Postulate 1 (States): States of a quantum system are described as (rays of) vectors in 
the associated Hilbert space.

In Dirac’s notation, a quantum state will be denoted by a ket (or ket state, ket vector) v〉,
which is an element in a complex vector space ℋ 

v〉 ∈ ℋ . (3)

 Vector space. The defining property of a vector space is that linear combinations of vectors 
are still in the vector space
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∀ u〉, v〉 ∈ ℋ ; α, β ∈  :

α u〉+ β v〉 ∈ ℋ .
(4)

 The fact that ℋ is a complex vector space is reflected in the fact that α and β are complex 
numbers.

 This can be generalized to many vectors: any linear combinations of vectors is still a vector

∀ {un〉} ⊂ ℋ ; {αn} ⊂  :



n

αn un〉 ∈ ℋ . (5)

Superposition Principle: any linear combination of quantum states of a given quantum 

system is still a valid quantum state of the same system.

 Vector representation: Each ket can be represented as a column vector 

v〉 ≏
v1
v2
⋮

. (6)

 Note: “≏” implies the vector representation is basis dependent and the values of vector 
components may change if we view the same state in a different basis.

If v〉 ≏
v1
v2
, w〉 ≏

w1
w2

, what is the vector representation of the state v〉+ w〉 and 

λ v〉 (λ ∈  is a complex scalar).

Exc
1

 To write down the vector representation, we must specified a set of (orthonormal) basis 
vectors in the vector space ℋ , and represent them as one-hot unit vectors:

1〉 ≏
1
0
⋮

, 2〉 ≏
0
1
⋮

, …. (9)

 Such that v〉 can be expressed as a linear combination of basis vectors

v〉 = v1 1〉+ v2 2〉+…

=

i

vi i〉. (10)

 The ith vector component vi is the linear combination coefficient in front of the ith basis 
vector i〉.

Example: a qubit system.

A qubit (or quantum-bit) is a quantum system that has two distinct states.

 The two distinct states are 0〉 and 1〉.
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 We can choose 0〉 and 1〉 to be the basis vectors (like choosing a coordinate  system) and 
write:

0〉 ≏
1
0
, 1〉 ≏

0
1 (11)

 The vector representation  of a quantum state is also called a state vector.

 By saying that a qubit is a two-state system, its state vector has two components .

 A generic quantum state of a qubit is a complex linear superposition  of the basis states

ψ〉 = ψ0 0〉+ ψ1 1〉 ≏
ψ0

ψ1
. (12)

 ψ0, ψ1 ∈  are complex numbers. They parameterize the state ψ〉.

 Conversely,  every two-component complex vector describes a qubit state.

 Statistical interpretation: ψ02 and ψ12 are respectively the probabilities to observe the 
qubit in the 0 and the 1 states.

Define the following qubit states: 
+〉 =

1
2
(0〉+ 1〉), 

-〉 =
1
2
(0〉- 1〉), 

〉 =
1
2
(0〉+  1〉). 

Express the state 〉 as a quantum superposition of states +〉 and -〉 (i.e. find the 
linear combination coefficients).

HW
1

◼ Bra Vector (I)

In Dirac’s notation, a bra 〈u is a dual vector of a ket u〉. The name comes from the fact 
that they combine into a bracket, which represents a scalar product [to be introduced later].

 If u〉 is a linear combination of v〉 and w〉

u〉 = α v〉+ β w〉, (13)

then its dual is

〈u = α* 〈v+ β* 〈w. (14)

Under duality: (i) ket is flipped to bra (and vice versa), (ii) every scalar coefficient gets com-
plex conjugated .

 Vector representation: Each bra can be represented as a row vector. If the ket vector 
(column vector) is
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v〉 ≏
v1
v2
⋮

, (15)

then the bra vector (dual row vector) is simply the conjugate transpose of the ket vector

〈v ≏ ( v1
* v2

* ⋯ ). (16)

 Every basis vector i〉 also has a dual basis vector 〈i, the are represented as

〈1 ≏ ( 1 0 ⋯ ),

〈2 ≏ ( 0 1 ⋯ ),

⋯.
(17)

 The dual basis vectors form a set of basis for the bra vector. In terms of basis vectors,

〈v = v1
* 〈1+ v2* 〈2+…

=

i

vi
* 〈i. (18)

 The ith vector component vi* is the linear combination coefficient in front of the ith dual 
basis vector 〈i.

◼ Scalar Product

Scalar product (or inner product) is a function that takes two vectors, u〉 and v〉, and 
returns a complex number, denoted as 〈u v〉.

〈· ·〉 : ℋ ×ℋ → 

u〉, v〉 ↦ 〈u v〉 (19)

It must satisfy the following defining properties:

 Complex conjugation

∀ u〉, v〉 ∈ ℋ , 〈u v〉 = 〈v u〉* (20)

Note: 〈u v〉 ≠ 〈v u〉 in general, unless 〈u v〉 ∈ .

 Linearity of the ket vector

∀ u〉, v〉, w〉 ∈ ℋ ; α, β ∈  :

〈u(α v〉+ β w〉) = α 〈u v〉+ β 〈u w〉.
(21)

 (Anti)linearity of the bra vector: using Eq. (20), Eq. (21), one can show

(α* 〈v+ β* 〈w) u〉 = α* 〈v u〉+ β* 〈w u〉. (22)

Note: we follow the convention in Eq. (14) to denote the linear combination of bra vectors, 
which is different from the textbook notation (2.23).
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Show that Eq. (22) is implied by Eq. (20) and Eq. (21).Exc
2

 Scalar product of any vector v〉 with itself is real and positive definite, 

〈v v〉 ≥ 0. (24)

More specifically,

〈v v〉
= 0 if v〉 = 0
> 0 otherwise

. (25)

 This implies the Cauchy-Schwarz  inequality

〈u v〉2 ≤ 〈u u〉 〈v v〉. (26)

Prove Eq. (26).Exc
3

In the vector representation (assuming an orthonormal basis), take two states

v〉 ≏
v1
v2
⋮

, w〉 ≏
w1
w2
⋮

, (32)

the scalar product can be taken as

〈v w〉 ≏ ( v1
* v2

* ⋯ )

w1
w2
⋮

= v1
* w1 + v2

* w2 +…

=

i

vi
* wi.

(33)

Verify that Eq. (33) is consistent with the defining properties of the scalar product in 
Eq. (20), Eq. (21), Eq. (22).

Exc
4

Hilbert space: a vector space equipped with a scalar product.

 Every quantum system is associated with a Hilbert space. Its different quantum states are 
different vectors in the same Hilbert space.

◼ Bra Vector (II)

Linear functional Φ on a vector space ℋ is a linear map that associates each vector in ℋ 

with a complex number.

Φ : ℋ → 

v〉 ↦ Φ(v〉) = z (37)

Linearity requires Φ to satisfy
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∀ v〉, w〉 ∈ ℋ ; α, β ∈  :

Φ(α v〉+ β w〉) = α Φ(v〉) + β Φ(w〉)
(38)

Example: “take the first component” functional

Let Φ1 be a function that maps any vector v〉 to its first component v1

Φ1(v〉) = v1. (39)

 This is a linear functional on the vector space.

Φ1(α v〉+ β w〉) = α v1 + β w1 = α Φ1(v〉) + β Φ1(w〉). (40)

 Denote the first basis vector as 1〉, Φ1 can be written as the scalar product:

Φ1(v〉) = 〈1 v〉. (41)

In general, every ket vector u〉 defines a corresponding linear functional through the scalar 
product:

Φu〉(v〉) = 〈u v〉. (42)

 Conversely,  in mathematics, this corresponding linear functional is treated as the definition of 
the dual bra vector 〈u = Φu〉 of the original ket vector u〉.

 Riesz theorem: any bounded linear functional acting on a Hilbert space ℋ can be repre-
sented as a scalar product of the form in Eq. (42).

 Dual vector space. The space of such functionals (bra vectors) is  called the dual vector 
space of ℋ , denoted as ℋ*. The dual vector space ℋ* is the space of bra vectors.

◼ Norm and Orthogonality

◼ Norm

Squared norm of a vector v〉 is the scalar product  of the vector with itself, denoted as

v2 = 〈v v〉. (43)

Taking off the square, v = 〈v v〉  is the norm of v〉.

Normalized state: a state v〉 is normalized ⇔ Its norm is one, i.e.

v2 = 〈v v〉 = 1. (44)

 Example: Consider a qubit state

v〉 ≏
v0
v1
, (45)

the normalization condition means
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〈v v〉 = v0
* v0 + v1

* v1 = 1. (46)

 In general, the normalization condition means

〈v v〉 =
i

〈i v〉2 =
i

vi2 = 1. (47)

According to the statistical interpretation of quantum state, vi2 is the probability to observe 
the system in the ith basis state. The normalization condition is simply a requirement that 
the probabilities must sum up to unity.

 Normalization of a state: if a state v〉 was not normalized, it can be normalized by

v〉 →
v〉

v
=

1

〈v v〉
v〉, (48)

unless v is zero or infinity.  

Normalize the vector v〉 ≏
1
2 

.Exc
5

◼ Orthogonality

Orthogonal states: two states u〉 and v〉 are orthogonal to each other ⇔ their scalar 
product is zero, i.e.

〈u v〉 = 0. (51)

 For example, the qubit states 0〉 and 1〉 (see Eq. (11)) are orthogonal, as

〈0 1〉 = ( 1 0 )
0
1

= 0. (52)

0〉 and 1〉 are orthogonal for a good reason: they are distinct states of a qubit, i.e. if the 
qubit is in state 0, it is definitely not in state 1, vice versa.

Orthogonal subspaces: two subspaces ℋ1 and ℋ2 in ℋ are orthogonal if

∀ u〉 ∈ ℋ1, v〉 ∈ ℋ2 : 〈u v〉 = 0. (53)

 Complementary subspace: ℋ1,⟂ is the complementary subspace of ℋ1, if ℋ1 and ℋ1,⟂ are 
orthogonal and ℋ1⊕ℋ1,⟂ = ℋ . 

 For each v〉 ∈ ℋ , there is a unique decomposition:

v〉 = v∥〉+ v⟂〉, (54)

such that v∥〉 ∈ ℋ1 and v⟂〉 ∈ ℋ1,⟂.

 v∥〉 is the projection of v〉 in ℋ1.
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Consider a Hilbert space ℋ spanned by three vectors 

x〉 ≏
1
0
0
, y〉 ≏

0
1
0
, z〉 ≏

0
0
1
. 

(i) Let ℋ∥ = span {x〉, y〉} and ℋ⟂ = span {z〉}. Show that ℋ∥ and ℋ⟂ are orthogonal 
subspaces.
(ii) For v〉 = vx x〉+ vy y〉+ vz z〉, find the unique decomposition v〉 = v∥〉+ v⟂〉, such 
that v∥〉 ∈ ℋ∥ and v⟂〉 ∈ ℋ⟂.

Exc
6

◼ Ray and Phase Ambiguity

If v〉 and v′〉 are related by a scalar multiplication (for λ ∈ )

v′〉 = λ v〉, (63)

they describe the identical physical state of the quantum system. A picture in the real vector 
space would be like: (the vectors on a ray are all equivalent)

1〉

2〉

v〉
v〉

v〉

Precisely speaking, quantum states are described by rays of vectors in the Hilbert space, i.e. 
only the “direction” of state vector matters.

 The square norm of the state vector does not affect the physical property of the quantum 

system, because it represent the total probability of observation outcomes, which can always 
be taken to 1.

 To fix the norm ambiguity,  we will always require a state vector to be normalized, i.e. 
〈v v〉 = 1.

 The overall phase of the state vector also does not matter, as it turns out that all physical 
properties about the quantum system is always unchanged under v〉 →  φ v〉.

 But there is no canonical way to fix the phase ambiguity.  We must ensure that any predic-
tion about the quantum system must not rely on the overall phase on the formulation level. 

◼ Fidelity

The fidelity F(u, v) between two quantum states u〉 and v〉 quantifies the similarity (over-
lap) between two states. It is given by the squared absolute value of their scalar product (assum-
ing the normalization of state vectors)
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F(u, v) = 〈u v〉2. (64)

 Fidelity is symmetric: F (u, v) = F(v, u).

 Fidelity takes values in the range of

0 ≤ F(u, v) ≤ 1. (65)

This follows from the Cauchy-Schwarz  inequality of scalar product Eq. (26) that 
〈u v〉2 ≤ 〈u u〉 〈v v〉.

 Statistical interpretation: If a quantum system is known to be in a state v〉, observing the 
system again may find the system in another state u〉 with probability

p(u v) = 〈u v〉2. (66)

 Detailed balance: the probability to observe one state on another is the same as the 
other way round

p(u v) = p(v u) = F(u, v) = 〈u v〉2. (67)

 Identical states. Two  states u〉 and v〉 are identical iff the fidelity between them is one 
(fully overlap)

〈u v〉2 = 1. (68)

 This is only achievable when

u〉 =  φ v〉, (69)

i.e. the two states are the same up to phase ambiguity.

 Reality must be confirmable by repeated observations: if a quantum system is known to be 
in a state v〉, observing the system again will certainly confirm the state v〉 (with proba-
bility 1).

 Distinct states. Two  states u〉 and v〉 are distinct iff the fidelity between them is zero (no 
overlap)

〈u v〉2 = 0. (70)

 Orthogonal states ⇔ distinct realities.

 Distinct realities are distinguishable by repeated observations: if a quantum system is 
known to be in a state v〉, observing the system again will certainly not find the system in 
another orthogonal state u〉. 

 Overlapping states. In general, two different states u〉 and v〉 may have partial overlap 

(they don’t need to be orthogonal), i.e. their fidelity falls between zero and one

0 < 〈u v〉2 < 1. (71)
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 Realities can overlap: if two quantum states are more similar to (more overlapped with) 
each other, the probability to confuse them is higher.

3〉 ≏ , 5〉 ≏ .

Therefore, there is generally some probability to observe one state given another state, if 
the two states has some similarity.

◼ Basis

◼ General Basis

A set of vectors {ei〉 : i = 1, 2 ...} are said to be linearly independent, if



i

ci ei〉 = 0⇔ ∀ i : ci = 0, (72)

i.e. none of the vectors in the set can be written as a linear combination of the others.

Basis: a basis ℬ of a vector space ℋ is a set of linearly independent vectors 
ℬ = {ei〉 : i = 1, 2 ...} that span the full space of ℋ , denoted as

ℋ = span ℬ, (73)

i.e. any vector in ℋ can be expanded as a linear combination of the basis vectors

∀ v〉 ∈ ℋ , ∃ {vi} ⊂  : v〉 =
i

vi ei〉. (74)

 The coefficients vi depend on what vector v〉 is being expanded.

 The dimension of the vector space dim ℋ = the number of basis vectors = the maximal 
number of linearly independent vectors in the space.

 The Hilbert space dimension of a quantum system can be finite or infinite. Example: a 
qubit - dimℋ = 2, ten qubits - dimℋ = 210 = 1024, a particle in a continuous space - 
dimℋ = ∞.

 The summation in Eq. (74) becomes a infinite sum (countable) or an integration (uncount-
able) when the Hilbert space dimension is infinite.

 Dimension of the Hilbert space is often a choice: we don’t really know how many indepen-
dent states are there in a quantum system. We only care about the states that are relevant 
to us. 

◼ Orthonormal Basis

Orthonormal basis: a basis ℬ = {i〉 : i = 1, 2,…} in which the basis vectors are normalized 

and orthogonal to each other.
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〈i j〉 = δij =
1 i = j,
0 i ≠ j. (75)

 Each orthogonal basis state describes a distinct reality of the quantum system.

 Example: 0〉 and 1〉 form an orthonormal basis of the qubit Hilbert space. They represent two 
distinct realities: if the qubit is in state 0〉, it is definitely not in state 1〉 (and vice versa).

 Completeness: Any full set of distinct states in the Hilbert space ℋ forms a complete set of 
orthonormal basis ℬ, such that every state v〉 ∈ ℋ can be expanded as a linear superposition  

of the basis states,

v〉 = v1 1〉+ v2 2〉+… = 

i〉∈ℬ

vi i〉. (76)

 The superposition coefficient  vi are the components of the state vector, which can be 
extracted by the scalar product  with the basis state,

vi = 〈i v〉. (77)

Eq. (76) and Eq. (77) can be written in a more elegant form in terms of bras and kets only

v〉 = 
i〉∈ℬ

i〉 〈i v〉.
(78)

 The squared norm of a state v〉 is the sum of squared norm of its components on (any) 
orthonormal basis.

〈v v〉 =
i

〈i v〉2 =
i

vi2. (79)

Using the orthonormal property 〈i j〉 = δij to evaluate the norm of v〉 = ∑i i〉 〈i v〉.
Exc
7

 Orthonormal basis states are represented by one-hot vectors, as they are normalized and 
orthogonal to each other

1〉 ≏

1
0
0
⋮

, 2〉 ≏

0
1
0
⋮

, 3〉 ≏

0
0
1
⋮

, …. (81)

Choosing a basis is always a helpful practice in quantum mechanics. But quantum mechanics 
can be formulated in a basis independent manner.
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Let {0〉, 1〉} be an orthonormal basis of a qubit, consider the following linear combina-
tions 
0′〉 = e φ/2 cos(θ / 2) 0〉+ e- φ/2 sin(θ / 2) 1〉,
1′〉 = -e φ/2 sin(θ / 2) 0〉+ e- φ/2 cos(θ / 2) 1〉, 
where θ and φ are arbitrary real angles. Show that 0′〉 and 1′〉 also form an 
orthonormal basis (for any choices of  θ and φ).

HW
2

◼ Summary

 States are vectors.

 Ket and bra:

ket bra (dual)
Hilbert space ℋ ℋ*

basis ℬ = {i〉} ℬ* = {〈i}
state v〉 = ∑i vi i〉 〈v = ∑i vi

* 〈i

vector
v1
v2
⋮

( v1
* v2

* ⋯ )

component vi = 〈i v〉 vi
* = 〈v i〉

(82)

 Scalar product

〈u v〉 =
i

〈u i〉 〈i v〉 =
i

ui
* vi. (83)

 Normalized state 〈v v〉 = 1. To normalize a state:

v〉 →
v〉

〈v v〉
. (84)

 Orthogonal states 〈u v〉 = 0.

 Orthonormal basis ℬ = i〉 : 〈i j〉 = δij.

 Fidelity (similarity between quantum states)

F(u, v) = 〈u v〉2
= 1 identical states
= 0 distinct states
∈ (0, 1) overlapping states

. (85)

 Statistical interpretation: p(u v) = p(v u) = F(u, v).
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Quantum Operators

◼ Operator and Matrix

◼ Operator

Operator: an operator acts on a state and returns a new state.

O

: ℋ → ℋ

v〉 ↦ w〉 = O

v〉

(86)

 Distinction: operator is a vector-to-vector mapping, while functional is a vector-to-scalar 
mapping.

 Linear operator: an operator O

 is say to be linear if it satisfies the linear property

∀ u〉, v〉 ∈ ℋ ; α, β ∈  :

O

(α u〉+ β v〉) = αO


u〉+ βO


v〉.

(87)

In quantum mechanics, all operators are linear operators (we will omit the adjective “linear” 
from now on).

Identity operator is a special operator that maps any state to itself (the do-nothing oper-
ator), denoted as .

∀ v〉 :  v〉 = v〉. (88)

◼ Operator as a Matrix

Given an orthonormal basis  ℬ = {i〉 : i = 1, 2,…} of the Hilbert space ℋ , every operator  
acting on ℋ can be expanded as a linear combination of basis operators i〉 〈j,

O

=

ij

i〉Oij 〈j, (89)

 Oij ∈  are complex coefficients, which can be extracted by

Oij = 〈iO

j〉. (90)

Prove Eq. (90) from Eq. (89).Exc
8

 i〉 〈j denotes the operator that take the system from state j〉 to state i〉, because

(i〉 〈j) k〉 = i〉 〈j k〉 = i〉 δjk

=
i〉 if k = j,
0 if k ≠ j.

(92)
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 Matrix representation. Every operator can be represented as a matrix

O

≏

O11 O12 ⋯
O21 O22 ⋯
⋮ ⋮ ⋱

. (93)

 The ith row jth column matrix element Oij is the linear combination coefficient in front of 
the basis operator i〉 〈j.

Use the vector representation of ket and bra basis to show Eq. (93) is the corre-
sponding representation of  Eq. (89).

Exc
9

Example: Identity operator

Identity operator is universally represented by the identity matrix in any orthonormal 
basis (independent of the basis choice).
According to Eq. (90),

ij = 〈i  j〉 = 〈i j〉 = δij =
1 i = j
0 i ≠ j

. (95)

 In matrix representation Eq. (93),

 =

1
1
⋱

. (96)

 Using Dirac notation Eq. (89),

 =

ij

i〉 ij 〈j =
i

i〉 〈i.
(97)

This is also call the resolution of identity.
Example: Pauli operators

Pauli operators are a set of operators acting on a qubit.

σ
 x

= 1〉 〈0+ 0〉 〈1,

σ
 y

=  1〉 〈0-  0〉 〈1,

σ
 z

= 0〉 〈0- 1〉 〈1,
(98)

Sometimes the identity operator

 = 0〉 〈0+ 1〉 〈1, (99)

is also included as the 0th Pauli operator.

Pauli matrices - matrix representations of Pauli operators on the qubit basis {0〉, 1〉}:
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 ≏
1 0
0 1

, σ x ≏
0 1
1 0

, σ y ≏
0 -

 0
, σ z ≏

1 0
0 -1

. (100)

◼ Operator Acting on State

Applying an operator to a state ≏ multiplying a matrix to a vector.

 Consider an operator O

 acting on a state v〉 resulting in a state w〉

w〉 = O

v〉, (101)

where states and operators are expanded as

v〉 =
i

vi i〉, w〉 =
i

wi i〉,

O

=

ij

i〉Oij 〈j.
(102)

 The expansion coefficients are related by the matrix-vector multiplication

w〉 = O


v〉
↓≏ ↓≏ ↓≏

w1
w2
⋮

=

O11 O12 ⋯
O21 O22 ⋯
⋮ ⋮ ⋱

v1
v2
⋮

(103)

or equivalently

wi =
j

Oij vj. (104)

Prove the statement Eq. (103) using Eq. (102).Exc
10

◼ Tensor Network*

Tensor network: a diagrammatic representation of tensor contractions

 Each object (either state or operator) is a tensor (multi-dimensions array).

 Vectors are rank-1 tensors, represented by an object with one leg

v

In component form:

vi = vi

 Matrices are rank-2 tensors, represented by an object with two legs
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O

In component form:

Oi j = Oij

 Tensor contraction: indices on internal legs are automatically summed over. For example, 
matrix-vector multiplication can be expressed as a tensor contraction.

w〉 = O

v〉

O vw =

In component form:

wi = O vi j

wi =
j

Oij vj

◼ Operator Algebra

◼ Operator Product

Product (or composition) of two operators O

 and P


 is a combined operator O


P

 that 

first applies P

 to the sate then applies O


 (from right to left):

O

P

 v〉 = O


P

v〉. (109)

 Composing two operators ≏ multiplying two matrices.

O

P

≏

O11 O12 ⋯
O21 O22 ⋯
⋮ ⋮ ⋱

P11 P12 ⋯
P21 P22 ⋯
⋮ ⋮ ⋱

. (110)

Prove Eq. (110) using Eq. (89).Exc
11

 Tensor network representation

O P

In component form:

i O k P j
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(O P)ij =
k

Oik Pkj

 Operator product is non-commutative in general, i.e.

O

P

≠ P

O

. (112)

Example: product of Pauli operators

Multiplication table

 σ
 x

σ
 y

σ
 z

  σ
 x

σ
 y

σ
 z

σ
 x
σ
 x

  σ
 z

- σ
 y

σ
 y
σ
 y

- σ
 z

  σ
 x

σ
 z
σ
 z
 σ
 y

- σ
 x



(113)

Verify Eq. (113) by multiplying Pauli matrices defined in Eq. (100). Exc
12

 The table Eq. (113) can be summarized in a single formula: the product of Pauli matrices (as 
the defining property of Pauli matrices)

σ
 a
σ
 b

= δab +  ϵabc σ
 c, (114)

where a, b, c = x, y, z.

 δab denotes the Kronecker delta symbol, defined as

δab =
1 if a = b
0 if a ≠ b (115)

 ϵabc denotes the Levi-Civita symbol, defined as

ϵabc =

1 if (a b c) is a cyclic of (x y z)
-1 if (a b c) is a cyclic of (z y x)
0 otherwise

(116)

 Another version of Eq. (114) using vector notation

(m ·σ

) (n ·σ


) = (m ·n) +  (m ×n) ·σ , (117)

where m, n are three-component vectors (each component is a scalar). 

 The generalized vector σ  should be understood as a vector of matrices, or as a three-dimen-
sional tensor (shape: 3 × 2× 2).

 Here m ·σ

 means
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m ·σ

= mx σ

 x
+my σ

 y
+mz σ

 z

≏
mz mx - my

mx + my -mz
.

(118)

As we contract a 3-component vector m with a 3 × 2× 2-component tensor σ  along the first 
index (the dimension 3 index), the result is a 2 × 2 matrix.

Use Eq. (117) to show that the product of three Pauli operators follows 
(l ·σ ) (m ·σ


) (n ·σ


) =  l · (m ×n) + ((m ·n) l - (l ·n)m + (l ·m) n) ·σ  

[Hint: the vector triple product formula will be useful 
l × (m ×n) = (l ·n)m - (l ·m) n]
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◼ Commutator

Commutator of two operators O

 and P



O

, P

 = O


P

-P

O

. (119)

 Commutator is antisymmetric, O

, P

 = -P


, O

. 

 As a result, commutator of an operator with itself always vanishes O

, O

 = 0.

 If the commutator vanishes O

, P

 = 0, we say that the two operators O


 and P


 commute, i.e. 

O

P

= P

O

 (operators can pass though each other as if they were numbers)  it does not 

matter which operator is applied first, the consequence will be the same.
Example: dressing up to school.

 A: put on the socks,

 B: put on the shoes,

 C: put on the hat,

A and B do not commute (changing the order leads to different result). But A and C commute, 
B and C also commute (changing the order does not affect the result).

Useful rules to evaluate commutators

 Bi-linearity

O

, P

+Q

 = O


, P

+ O


, Q

,

O

+P

, Q

 = O


, Q

+ P


, Q

.

(120)

Prove Eq. (120).Exc
13

 Product rules
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O

, P

Q

 = O


, P

Q

+P

O

, Q

,

O

P

, Q

 = O


, Q

P

+O

P

, Q

.

(122)

Prove Eq. (122).Exc
14

 Jacobi identity (as a replacement of associative law)

O

, P

, Q

+ P


, Q

, O

+ Q


, O

, P

 = 0,

O

, P

, Q

+ P


, Q

, O

+ Q


, O

, P

 = 0.

(124)

Example: Commutators of Pauli operators

σ
 x, σ y = 2  σ z,

σ
 y, σ z = 2  σ x,

σ
 z, σ x = 2  σ y.

(125)

Or more compactly as

σ
 a, σ b = 2  ϵabc σ c, (126)

for a, b, c = 1, 2, 3 (stand for x, y, z). This can be considered as the defining algebraic properties 
of single-qubit operators  (Pauli matrices). Or even more compactly using the cross product of 
vectors

σ

×σ

= 2  σ . (127)

◼ Operator Function

Operator power. nth power of an operator O

 is the composition of O


 by n times.

O
 n

= O

O

…(n times) …O


. (128)

Operator function. Given a function f (x) that admits Taylor  expansion

f (x) =
n

cn xn, (129)

the corresponding operator function is defined as

f (O

) =

n

cn O
 n
, (130)

with the same set of coefficients cn.

 f (O

) is still an operator that can act on states in ℋ .

 Operator exponential. Given the exponential function
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x = 1+ x +
x2

2!
+… =

n=0

∞ 1

n !
xn, (131)

the exponential of an operator is defined as

O


= +O

+
O
 2

2!
+… =

n=0

∞ 1

n !
O
 n
, (132)

 Note: exponentiating an matrix is NOT exponentiating each of the matrix element.
Example: exponentiating a Pauli matrix

Given σ y ≏
0 -

 0
, 

show that the matrix representation of  θ σ
 y
 is 

 θ σ
 y
≏

cos θ sin θ
-sin θ cos θ

.

Exc
15

Use the definition Eq. (132) to prove that 
exp( θ n ·σ


) = cos(θ) +  sin(θ) n ·σ


 

given that n is a 3-component real unit vector.

HW
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◼ Operator Trace

The trace of an operator O

 is defined as

Tr O

=

i

〈iO

i〉. (137)

The result is a scalar.

 On the matrix level, taking the trace is simply summing over diagonal matrix elements

Tr
O11 O12 ⋯
O21 O22 ⋯
⋮ ⋮ ⋱

= O11 +O22 +… =

i

Oii. (138)

 Tensor network representation (tracing = closing the legs)

O

 Linear property: trace is a linear functional of operators.

Tr αO

+ β P


 = a Tr O


+ βTr P


. (139)

 Cyclic property: the trace of a product of operators is invariant under the cyclic permuta-
tion of the operators.
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Tr O

P

 = Tr P


O

,

Tr O

P

Q

 = Tr P


Q

O

 = Tr Q


O

P

,

…

(140)

Prove Eq. (140).Exc
16

Example: trace of Pauli operators

Pauli operators are traceless.

Tr σ x = Tr σ y = Tr σ z = 0. (143)

This is true for a Pauli operator along any direction

Tr n ·σ

= 0. (144)

◼ Projection Operators

◼ Projectors

State projector: the projection operator onto a state v〉



v = v〉 〈v. (145)

Such that for any state u〉, applying the projection operator 

v, the result is the projection of u〉 

along v〉



v u〉 = v〉 〈v u〉. (146)

Example: analog in the real vector space

θ v

u

v cos θ

u and v are two unit vectors, the projection of u on v is given by

v cos θ = v (v ·u). (147)

Basis projector: the projection operator onto a basis state i〉



i = i〉 〈i. (148)
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 Basis projectors satisfies the following properties



i
2
= 

i,



i 

j = 0 if i ≠ j.

(149)

Or more compactly written as



i 

j = δij 


i. (150)

Verify Eq. (149), following the definition Eq. (148).Exc
17

 Given the one-hot representation of orthonormal basis

1〉 ≏

1
0
0
⋮

, 2〉 ≏

0
1
0
⋮

, …. (153)

Matrix representations of the corresponding basis projectors are



1 ≏

1
0
0
⋱

, 

2 ≏

0
1
0
⋱

, …. (154)

Subspace projector: the projection operator onto a subspace. Suppose a subspace ℋ1 is 
spanned by a set of orthonormal basis ℬ1 ⊆ ℬ, its projector is



ℋ1 = 

i〉∈ℬ1

i〉 〈i.
(155)

 Dimension of the subspace ℋ1 is given by the trace of its projector (as it counts the number 
of basis states in ℬ1)

Tr 

ℋ1 = dimℋ1. (156)

 Completeness relation: full Hilbert space projector ≡ identity operator



ℋ = 

i〉∈ℬ

i〉 〈i = .
(157)

Recall Eq. (97) that  = ∑i i〉 〈i. Hilbert space dimension is given by

dimℋ = Tr 

ℋ = Tr . (158)
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Consider a Hilbert space ℋ spanned by three vectors 

x〉 ≏
1
0
0
, y〉 ≏

0
1
0
, z〉 ≏

0
0
1
. 

Let ℋ∥ = span {x〉, y〉} and ℋ⟂ = span {z〉} be complementary subspaces.
(i) Construct the subspace projectors 


ℋ∥

 and 

ℋ⟂

 and represent them as 3 × 3 
matrices (in the {x〉, y〉, z〉} basis).
(ii) For any v〉 ∈ ℋ , show that v∥〉 = 


ℋ∥
v〉 and v⟂〉 = 


ℋ⟂
v〉 give the subspace decom-

position of v〉 such that  v〉 = v∥〉+ v⟂〉 with v∥〉 ∈ ℋ∥ and v⟂〉 ∈ ℋ⟂.

HW
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◼ Quantum State Collapse*
What happens when we observe a quantum system?

Observing a quantum system can be viewed as a hypothesis testing.

 Given the prior knowledge that a quantum system is described by a state v〉. 

 An observer comes with an objective to test the hypothesis that "the quantum system is in 
a target state u〉".

 For this purpose, two projection operators are defined



u = u〉 〈u, (projector to the state u〉)



u = -


u. (projector to the complement subspace)

(159)

 Quantum mechanics predicts that the observation will accept the hypothesis with the 
probability

p(u v) = 〈v 

u v〉 = 〈u v〉2, (160)

and reject the hypothesis with the (complement) probability

p(u v) = 〈v 

u v〉 = 1- 〈u v〉2. (161)

 After observation, if the hypothesis is accepted (the state u〉 is observed), we must update our 
knowledge about the quantum system to the posterior knowledge described by the state 
u〉. In this sense, the original quantum state v〉 collapses to

v〉 → u〉 =


u v〉

p(u v)
=



u v〉

〈v 

u v〉

. (162)

 However, if the hypothesis is rejected (the state u〉 is not observed), we must also update our 
posterior knowledge by collapsing to

v〉 →


u v〉

p(u v)
=



u v〉

〈v 

u v〉

. (163)
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Verify Eq. (160), Eq. (161) and Eq. (162).Exc
18

Summary: the collapse of any prior state v〉 to the target state u〉 is described by the state 
projection operator 


u (associated with the target state). 

 As an observable, it gives the probability p(u v) for the state collapse to happen.

 As an operator, it implements the state collapse v〉 → u〉 (Note: this is not a linear operation, 
as v〉 appears on both the numerator and the denominator).

Example: Observing a qubit

Given the prior knowledge that a qubit is in the state

ψ〉 ≏
ψ0

ψ1
. (167)

The probability p(0 ψ) to observe the qubit in the state 0〉

0〉 ≏
1
0
 

0 = 0〉 〈0 =

1
0

( 1 0 ) =
1 0
0 0 (168)

is given by

p(0 ψ) = 〈ψ 

0 ψ〉

=  ψ0
* ψ1

*

1 0
0 0

ψ0

ψ1

= ψ0
* ψ0 = ψ0

2.

(169)

If 0〉 state is indeed observed, the quantum state should collapse to



0 ψ〉

p(0 ψ)
≏

1

ψ0
2

1 0
0 0

ψ0

ψ1

=
ψ0

ψ0

1
0
∼
1
0
≏ 0〉.

(170)

Measurement

◼ Hermitian Operators

◼ Hermitian Conjugate

We have explained how an operator O

 acts on a ket state v〉, what about its action on the 

bra state 〈v?

ket bra (dual)
Hilbert space ℋ ℋ*
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basis ℬ = {i〉} ℬ* = {〈i}
state v〉 = ∑i vi i〉 〈v = ∑i vi

* 〈i

vector
v1
v2
⋮

( v1
* v2

* ⋯ )

component vi = 〈i v〉 vi
* = 〈v i〉

operator O

= ∑ij i〉Oij 〈j O

 †
= ∑ij i〉Oji

* 〈j

matrix
O11 O12 ⋯
O21 O22 ⋯
⋮ ⋮ ⋱

O11
* O21

* ⋯

O12
* O22

* ⋯

⋮ ⋮ ⋱

component Oij = 〈iO

j〉 Oij

* = 〈jO
 †
i〉

action w〉 = O

v〉 〈w = 〈vO

 †

 Just like the bra 〈v is the dual of the ket u〉, the Hermitian conjugate operator O
 †

 is the 
dual of the original operator O


, such that

 if the operator O

 takes v〉 to w〉:

O

: ℋ → ℋ

v〉 ↦ w〉 = O

v〉

(172)

 then the operator O
 †

 takes 〈v to 〈w:

O
 †
: ℋ* → ℋ*

〈v ↦ 〈w = 〈vO
 † (173)

 Tensor network representation

O v w=

O†v w=

 Given an orthonormal basis  ℬ = {i〉 : i = 1, 2,…} of the Hilbert space ℋ , if O

 is given by

O

=

ij

i〉Oij 〈j, (174)

then O
 †

 should be given by

O
 †

=

ij

i〉Oji
* 〈j.

(175)
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Verify that Eq. (175) is consistent with the definition Eq. (173).Exc
19

 In terms of matrix representation, the Hermitian conjugate acts as

 matrix transpose (interchanges the rows and columns),

 followed by complex conjugation of each matrix element.

O11 O12 ⋯
O21 O22 ⋯
⋮ ⋮ ⋱

†

=

O11
* O21

* ⋯

O12
* O22

* ⋯

⋮ ⋮ ⋱

. (180)

How to think of it: Hermitian conjugate ∼ a generalization of complex conjugate from complex 
numbers to matrices.

Hermitian conjugate has the following properties:

 Duality: suppose O

 is an operator 

(O
 †
)
†
= O

. (181)

 Linearity: suppose O

 and P


 are operators, α and β are complex numbers,

αO

+ β P



†
= α* O

 †
+ β* P

 †
. (182)

 Transpose Property: suppose O

 and P


 are operators

O

P


†
= P
 †
O
 †
. (183)

O P

P† O†

Prove the property Eq. (183).Exc
20

◼ Hermitian Operator

Real numbers play a special role in physics. The results of any measurements are real. If in 
quantum mechanics, physical observables are represented by operators, how do we impose the 
“real” condition on operators?

 A real number is a number whose complex conjugation is itself.

 A real operator Hermitian operator is an linear operator whose Hermitian conjugate is 
itself. 

An operator O

= ∑ij i〉Oij 〈j is call Hermitian, if
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O

= O
 †
, (186)

or in terms of matrix elements,

Oij = Oji
* . (187)

 Given a complex number z, real part: Re z = (z + z*) / 2, imaginary part: Im z = (z - z*) / (2 ). 
Similarity,  given a generally non-Hermitian operator P



ReP

=
1

2
P

+P
 †
, ImP


=
1

2 
P

-P
 †
. (188)

 Both ReP

 and ImP


 are Hermitian operators.

◼ Eigenvalues and Eigenvectors (General)

Given an operator O

, the eigenvectors Ok〉 are a set of special vectors, on which the oper-

ator O

 acts as a scalar multiplication

O

Ok〉 = Ok Ok〉, (k = 1, 2,…) (189)

and the corresponding scalars Ok are called the eigenvalues (of the corresponding eigenvectors).

 Eq. (189) is called the eigen equation of an operator O

.

 The eigenvalues can be found by solving the algebraic (polynomial) equation for O ∈ 

detO

-O  = 0. (190)

 For each solution of eigenvalue O = Ok, the corresponding eigenvector Ok〉 is found by 
solving the linear equation

O

-Ok  Ok〉 = 0. (191)

 Use Mathematica to solve the eigen problem (recommended)

Eigensystem[{{1, -1}, {1, 1}}]

{{1 + , 1 - }, {{, 1}, {-, 1}}}

Degeneracy: an eigenvalue Ok of an operator O

 is called gk-fold degenerated, if there are 

exactly gk linearly independent eigenvectors corresponding to the same eigenvalue

O

Ok,m〉 = Ok Ok,m〉, (m = 1, 2,…, gk). (192)

 Since any linear combination of the degenerated eigenvectors



m=1

gk
αm Ok,m〉, with αk ∈  (193)
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is still an eigenvector of the same eigenvalue Ok, thus the degenerated eigenvectors forms 
a degenerated subspace ℋO=Ok (the subspace of all eigenvectors of the same eigenvalue Ok)

ℋO=Ok = span {Ok,m〉 :m = 1, 2,…, gk}. (194)

 Eigen projector: projection operator to the degenerated subspace associated with an eigen-
value Ok



O=Ok = 

m=1

gk
Ok,m〉 〈Ok,m. (195)

◼ Eigenvalues and Eigenvectors (Hermitian Operator)
What is special about Hermitian operators?

Suppose O

= O
 †

 is a Hermitian operator and

O

Ok〉 = Ok Ok〉, (k = 1, 2,…). (196)

 Eigenvalues are real.

O

= O
 †
 Ok ∈ . (197)

 Eigenvectors form a complete set of basis. (Any vector  can be expanded as a sum of these 
eigenvectors.)

 Eigenvectors of different eigenvalues are orthogonal (automatically)

Ok ≠ Ol  〈Ok Ol〉 = 0. (198)

 Eigenvectors of the same eigenvalue can be made orthogonal (by orthogonalization, e.g. 
Gram-Schmidt procedure).

Orthogonalize[{{1, 2}, {3, 4}}]


1

5
,

2

5
, 

2

5
, -

1

5


 For bounded Hermitian operators (e.g. finite matrices in finite dimensional Hilbert space), 
eigenvectors can be normalized.

Prove Eq. (197) and Eq. (198).Exc
21

Therefore each Hermitian operator O

 generates a complete set of orthonormal basis 

{Ok〉 : k = 1, 2,…} for the Hilbert space ℋ , also called the eigenbasis of O

.

 Hermitian operator O

 can always be represented in its own eigenbasis, leading to the spec-

tral decomposition
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O

=

k

Ok〉Ok 〈Ok . (205)

 Note: unlike a generic matrix representation O

= ∑ij i〉Oij 〈j, in the spectral decomposition 

Eq. (205), the summation only run through the eigenbasis once.

 In the eigenbasis, the Hermitian operator is represented as a diagonal matrix.

O

≏

O1
O2

⋱

. (206)

So the procedure of bring the matrix representation to its diagonal form by transforming to 
its eigenbasis is called diagonalization. (We will discuss more about it later.)

 More generally, when there are degeneracies, Eq. (205) should be written to

O

=

k



m=1

gk
Ok,m〉Ok 〈Ok,m

=

k

Ok 

O=Ok ,

(207)

where the eigen projector 

O=Ok was defined in Eq. (195).

 The fact that all eigenvectors of O

 form a complete set of orthonormal basis can be rephrases 

as the following properties of eigen projectors

 Orthonormality



O=Ok 


O=Ol = δkl 


O=Ok . (208)

Meaning that 

O=Ok
2

= 

O=Ok and 


O=Ok 


O=Ol = 0 if k ≠ l (i.e. Ok ≠ Ol).

 Completeness



k



O=Ok = 


ℋ ≡ . (209)

Example: Eigenvalues and eigenvectors of Pauli operators

Pauli matrices are 2 × 2 Hermitian matrices. Each one has two distinct eigenvalues, and two 
corresponding orthogonal eigenvectors.

opertor σ
 x

σ
 y

σ
 z

(matrix)
0 1
1 0

0 -

 0
1 0
0 -1

eigenvalue +1 -1 +1 -1 +1 -1
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eigenvector +〉 -〉 〉 〉 0〉 1〉

(vector) 1
2

1
1

1
2

1
-1

1
2

1


1
2

1
-

1
0

0
1

projector +〉 〈+ -〉 〈- 〉 〈 〉 〈 0〉 〈0 1〉 〈1

(matrix) 1
2

1 1
1 1

1
2

1 -1
-1 1

1
2

1 -

 1
1
2

1 

- 1
1 0
0 0

0 0
0 1

Spectral decompositions:

 Pauli-x

σ
 x

= 

σx=+1 -


σx=-1, (211)

with projection operators



σx=+1 = +〉 〈+ =

+σ
 x

2
,



σx=-1 = -〉 〈- =

-σ
 x

2
.

(212)

 Pauli-y

σ
 y

= 

σy=+1 -


σy=-1, (213)

with projection operators



σy=+1 = 〉 〈 =

+σ
 y

2
,



σy=-1 = 〉 〈 =

-σ
 y

2
.

(214)

 Pauli-z

σ
 z

= 

σz=+1 -


σz=-1, (215)

with projection operators



σz=+1 = 0〉 〈0 =

+σ
 z

2
,



σz=-1 = 1〉 〈1 =

-σ
 z

2
.

(216)

In general, the Pauli operator n ·σ

 along the direction of the unit vector n has the following 

spectral decomposition

n ·σ

= 

n·σ=+1 -


n·σ=-1, (217)

with the projection operators
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n·σ=±1 = n·σ=±1〉 〈n·σ=±1 =

±n ·σ


2
. (218)

Prove Eq. (217) and Eq. (218).Exc
22

Assuming O

 is a Hermitian operator, use the spectral decomposition Eq. (207) and 

the properties of projection operators to show that 
(i) The operator power can be expanded as O

 n
= ∑k Ok

n 

O=Ok .

(ii) More generally, the operator function f (O

) defined in Eq. (130) can be expanded 

as f (O

) = ∑k f (Ok) 


O=Ok .
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◼ Observables

◼ Physical Observable

Postulate 2 (Observables): Physical observables of a quantum system are described 
by Hermitian operators (represented as Hermitian matrices) acting on the associated 
Hilbert space.

Consider a Hermitian operator O

 with eigenvalues Ok and eigenvectors Ok,m〉 

(m = 1, 2,…, gk),

O

=

k

Ok 

O=Ok , (226)

where the eigen projector is



O=Ok = 

m=1

gk
Ok,m〉 〈Ok,m. (227)

The operator O

 corresponds to a physical observable O in the sense that

 All possible measurement outcomes (or observation values) of the observable O are 
given by (and only by) the eigenvalues Ok.

 The measurement projects (collapses) the quantum state to the eigenspace ℋk of the corre-
sponding measurement outcome Ok. The state collapse is implemented by the eigen projector  


ℋk .

◼Measurement Postulate

Postulate 3 (Measurement): Given a quantum system in the state ψ〉 and the observ-
able O to be measured: 
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(i) the probability to observe the measurement outcome Ok is p(Ok ψ) = 〈ψ 

O=Ok ψ〉, 

(ii) if Ok is observed, the state will collapse to 

O=Ok ψ〉  p(Ok ψ) .

In quantum measurement, there is no way to tell for certain which outcome will be observed. 
There is only a conditional probability p(Ok ψ) that we can compute.

 Non-degenerated case: Suppose Ok has no degeneracy,



O=Ok = Ok〉 〈Ok . (228)

 The probability to observe Ok is given by the squared overlap between the prior state ψ〉 
and the eigenstate Ok〉

p(Ok ψ) = 〈Ok ψ〉2. (229)

 After the measurement, if Ok is observed, the system collapses to the posterior state Ok〉

ψ〉
measureO, observe Ok

Ok〉. (230)

These results are consistent with our previous discussions in Eq. (160) and Eq. (162) about 
quantum state collapse.

 Degenerated case (generic): With degeneracy, the eigen projector is



O=Ok = 

m=1

gk
Ok,m〉 〈Ok,m. (231)

 The probability to observe Ok is given by the squared overlap between the prior state ψ〉 
and all eigenstates Ok,m〉 in the degenerate subspace

p(Ok ψ) = 
m=1

gk
〈Ok,m ψ〉2. (232)

 After the measurement, if Ok is observed, the system collapses to the posterior state, given 
by a linear superposition of Ok,m〉

ψ〉
measureO, observe Ok



m=1

gk
αm Ok,m〉, (233)

where the coefficients αm are given by

αm =
〈Ok,m ψ〉

p(Ok ψ)
. (234)

Derive Eq. (232) and Eq. (233) from Eq. (195).Exc
23
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Let {1〉, 2〉, 3〉} be a set of orthonormal basis of a three-state system. Suppose the 
system is in the prior state ψ〉 = 1

3
(1〉+ 2〉+ 3〉).

Consider measuring the observable O

= 1〉 〈2+ 2〉 〈1- 3〉 〈3 . 

(i) What are the possible measurement outcomes (observation values)?
(ii) What are the probabilities to observe each outcome?
(iii) What posterior states will the system collapse to after observing each outcome?

HW
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◼ Expectation Value

Expectation value of an observable O, denoted as 〈O〉, is the averaged measurement out-
come of O over many repeated experiments (with the same prior state ψ〉 prepared each time). 

According to the measurement postulate

〈O〉 :=
k

Ok p(Ok ψ)

=

k

Ok 〈ψ 

O=Ok ψ〉.

(238)

Given O

= ∑k Ok 


O=Ok , we conclude

〈O〉 = 〈ψO

ψ〉. (239)

 The answer is a real scalar (as O

 is Hermitian).

 Represented as vectors and matrices,

〈O〉 = ( ψ1
* ψ2

* ⋯ )

O11 O12 ⋯
O21 O22 ⋯
⋮ ⋮ ⋱

ψ1

ψ2

⋮

. (240)

 Tensor network representation

ψ
i O j

ψ

〈O〉 =
ij

ψi
* Oij ψj.

Alternatively,  the expectation value can also be written as a trace of the product of the observ-
able operator O


 and the state projector 


ψ = ψ〉 〈ψ [defined in Eq. (145)]

〈O〉 = Tr O



ψ. (241)

 The equivalence between Eq. (239) and Eq. (241) is self-evident from the tensor network 
diagrams
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ψ O ψ = O ψ ψ

 The advantage of this approach is to circumvent solving for ψ〉 explicitly (sometimes the state 
projector is easier to construct than the state vector).

Let m and n be three-component real unit vectors. For a qubit, consider measuring 
n ·σ on the m·σ=+1〉 state.
(i) What is the probability to observe n ·σ = +1?
(ii) What is the expectation value of the operator n ·σ


 on the state  m·σ=+1〉?

[Express your results in terms of m and n.]

HW
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◼ Sequential Measurements

◼ Commuting Operators

Commuting operators share common eigenbasis, and the converse is also true.

 Commuting operators: Two  operators A

 and B


 commute, if A


B

= B

A

 (operators can 

commute through each other), i.e.

A

, B

 = 0. (242)

(Here 0 denotes the zero operator , a matrix whose elements are all zeros.)

 Common eigenbasis: Two  operators A

 and B


 share a common eigenbasis, if there exist a 

complete set of basis ℬ = {Ak,Bk〉 : k = 1, 2,…, dimℋ} such that both operators are diagonal in 
the basis ℬ, i.e.

A

Ak,Bk〉 = Ak Ak,Bk〉,

B

Ak,Bk〉 = Bk Ak,Bk〉.

(243)

Idea: commuting operators can pass through each other as if they were numbers. If A

 and B


 

share a common eigenbasis, when acting on their common eigenvectors, they behave like num-
bers (by their eigenvalues),

A

B

Ak,Bk〉 = Ak Bk Ak,Bk〉 = Bk Ak Ak,Bk〉 = B


A

Ak,Bk〉. (244)

Any state v〉 = ∑k αk Ak,Bk〉 is just a linear superposition of the basis states, so the behavior of 
A

B

v〉 = B


A

v〉 is generic for all states, thus the equality can be promoted from the state level 

to the operator level A

B

= B

A

, i.e. the two operators commute.

Example: Finding common eigenbasis of commuting operators. Consider two Hermitian 
operators
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A

≏

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

, B

≏

0 - 0 0
 0 0 0
0 0 0 

0 0 - 0

. (245)

A = {{0, 0, 0, 1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {1, 0, 0, 0}};
B = {{0, -, 0, 0}, {, 0, 0, 0}, {0, 0, 0, }, {0, 0, -, 0}};
A // MatrixForm
B // MatrixForm

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

0 - 0 0
 0 0 0
0 0 0 

0 0 - 0

It can be checked that A

 and B


 commute (by showing that A


, B

 = 0)

A.B - B.A // MatrixForm

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

They must share a set of common eigenbasis. How to find that? - Strategy: using a random 

algorithm. 

 Construct a random operator H

= a A


+ b B


 by combining A


 and B


 with random numbers a 

and b.

(H = 0.2 A + 0.5 B) // MatrixForm

0. 0. - 0.5  0. 0.2
0. + 0.5  0. 0.2 0.

0. 0.2 0. 0. + 0.5 

0.2 0. 0. - 0.5  0.

 Find the eigenbasis of H


{vals, vecs} = Chop@Eigensystem[H]

{{0.7, -0.7, 0.3, -0.3},
{{-0.5, 0. - 0.5 , 0. - 0.5 , -0.5}, {-0.5, 0. + 0.5 , 0. - 0.5 , 0.5},
{-0.5, 0. - 0.5 , 0. + 0.5 , 0.5}, {-0.5, 0. + 0.5 , 0. + 0.5 , -0.5}}}
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1〉 =
1

2

-1
-

-

-1

, 2〉 =
1

2

-1
+

-

+1

, 3〉 =
1

2

-1
-

+

+1

, 4〉 =
1

2

-1
+

+

-1

(246)

 With probability 1, the eigenbasis of H

 is the common eigenbasis of A


 and B


, such that both 

operators are diagonal in this basis.

Chop[vecs.A.ConjugateTranspose[vecs]] // MatrixForm
Chop[vecs.B.ConjugateTranspose[vecs]] // MatrixForm

1. 0 0 0
0 -1. 0 0
0 0 -1. 0
0 0 0 1.

-1. 0 0 0
0 1. 0 0
0 0 -1. 0
0 0 0 1.

We might rename the eigenvectors by their eigenvalues under both A

 and B


,

1〉 → +1,-1〉, 2〉 → -1,+1〉, 3〉 → -1,-1〉, 4〉 → +1,+1〉; (247)

such that the eigen equations can be written in the standard form Eq. (243)

A

Ak,Bk〉 = Ak Ak,Bk〉,

B

Ak,Bk〉 = Bk Ak,Bk〉;

(248)

with the eigenvalues arranged as

(A1, A2, A3, A4) = (+1, -1, -1, +1),

(B1, B2, B3, B4) = (-1, +1, -1, +1).
(249)

◼ Compatible Observables

Suppose A and B are two observables and we perform the following sequential measure-
ments on a single quantum system:

1. measure A,

2. measure B,

3. measure A.

We say that A and B are compatible observables, iff the result of 3 is always certain to be 
the same as the result of 1.

In general, this will not be the case.
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 In step 1, we measure A and suppose that we obtain the outcome A1 (as one eigenvalue of 
A

), the system has collapse to the state A1〉.

 In step 2, we measure B and suppose that we obtain the outcome B1 (as one eigenvalue of B

), 

the system will collapse to the state B1〉. (This will happen with probability 〈B1 A1〉2).

 In step 3, we measure A again. There is no guarantee that the previous outcome A1 will 
appear again. Instead we may obtain a different outcome A2 with probability 〈A2 B1〉2 in 
general.

 In order to obtain A1 again with probability 1, we must require

〈A1 B1〉2 = 1, (250)

i.e. A1〉 and B1〉 labels the identical state. Since A1〉 is an eigenstate of A

 with eigenvalue A1 

and B1〉 is an eigenstate of B

 with eigenvalue B1, the state must be a common eigenstate 

A1,B1〉 of both A

 and B


, s.t.

A

A1,B1〉 = A1 A1,B1〉,

B

A1,B1〉 = B1 A1,B1〉.

(251)

 For this scenario to always happen regardless the choice of (A1, B1), A

 and B


 share a set of 

common eigenbasis Ak,Bk〉 (k = 1, 2,…, dimℋ).

Conclusion: Given two observables A and B, described by Hermitian operators A

 and B


, then 

following statements are equivalent

 A and B are compatible observables;

 A

 and B


 share common eigenbasis;

 A

 and B


 are commuting operators : A


, B

 = 0. 

◼ Repeated Measurements

◼ Statistics of Measurements

Repeated measurements: Given a state ψ〉 and an observable O, perform the following 
repeatedly:

1. prepare a quantum system in the state ψ〉 (e.g. by measuring 

ψ = ψ〉 〈ψ and post-select);

2. measure O on the state ψ〉 (the outcome Ok will be obtained with probability 
p(Ok ψ) = 〈ψOk ψ〉)

3. discard the quantum system (or reset the state).

This will collect an ensemble of measurement outcomes

Ok : p(Ok ψ) = 〈Ok ψ〉2. (252)
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With this ensemble, we can define the following statistics

 Mean (expectation value):

〈O〉 =
k

Ok p(Ok ψ) = 〈ψO

ψ〉. (253)

 Variance (2nd moment):

varO =

k

(Ok - 〈O〉)2 p(Ok ψ) = 〈ψ O

- 〈O〉 

2
ψ〉. (254)

Introduce the observable ΔO (the deviation of O from its expectation value)

ΔO = O - 〈O〉 , (255)

The variance can be written as var O = (ΔO)2.

 Standard deviation: characterizes the uncertainty of the measurement of O

stdO = (varO)1/2 = (ΔO)2
1/2. (256)

◼ Uncertainty Relation

Uncertainty Relation: for any pair of observables A and B measured on any given state 
(repeatedly),

(stdA) (stdB) ≥
1

2
〈[A, B]〉. (257)

 In words, the product of the uncertainties cannot be smaller than half of the magnitude of the 
expectation value of the commutator.

 For commuting observables ([A, B] = 0), (stdA) (stdB) ≥ 0, it is possible to have 
stdA = stdB = 0 simultaneously,  i.e. A and B can be jointly measured with perfect certainty.

 For non-commuting observables, there exists a state on which 〈[A, B]〉 ≠ 0. Then on such 
state, it is impossible to have stdA = stdB = 0 simultaneously,  i.e. A and B can not be jointly 
measured with certainty.

Proof of the uncertainty relation:

Suppose A

 and B


 are Hermitian operators. Let ϕ〉 = A


+  x B


 ψ〉. For any choice of x ∈ ,

〈ψ A

-  x B


 A

+  x B


 ψ〉 = 〈ϕ ϕ〉 ≥ 0. (258)

On the other hand,

〈ψ A

-  x B


 A

+  x B


 ψ〉

= 〈ψA
 2

+  x A

, B

+ x2 B

 2
ψ〉

= B2 x2 +  〈[A, B]〉 x + A2 ≥ 0.

(259)
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The quadratic equation B2 x2 +  〈[A, B]〉 x + A2 = 0 has no (or only one) real root, implying 
that its discriminant Δ must be negative (or zero), i.e.

Δ = ( 〈[A, B]〉)2 - 4 B2 A2 ≤ 0. (260)

Therefore for any A, B on any state ψ〉, 

A21/2 B21/2 ≥
1

2
〈[A, B]〉. (261)

The uncertainty relation Eq. (257) can be shown by replacing A → ΔA and B → ΔB.

Suppose A and B are Hermitian operators.
(i) Show that A2,  B2 and  〈[A, B]〉 are real.
(ii) Show that [ΔA, ΔB] = [A, B].

HW
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Dynamics

◼ Unitary Operators

◼ Basis Transformation

Suppose we have two sets of orthonormal basis of the same Hilbert space ℋ

ℬ = {i〉 : i = 1, 2,…, dimℋ},

ℬ′ = {i〉′ : i = 1, 2,…, dimℋ}.
(262)

For example, the eigen basis of σ x v.s. that of σ z.

 The same state v〉 can have different vector representations in different bases

vi = 〈i v〉, vi′ = 〈i′ v〉. (263)

 The same operator O

 can have different matrix representations in different bases

Oij = 〈iO

j〉, Oij′ = 〈i′ O


j〉′. (264)

How are representations in different bases related? - Basis transformation. Basis transforma-
tion from ℬ to ℬ′ is describe by a matrix U  with the matrix element

Uij = 〈i′ j〉. (265)

such that the representation in the new basis is related to that in the old basis by

vi
′ =

j

Uij vj,

Oij
′ =

kl

Uik Okl Ujl
* .

(266)
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Using Eq. (265) to prove that Eq. (266) is compatible with Eq. (263) and Eq. (264).Exc
24

In quantum mechanics, every operator is a matrix, and every matrix is an operator. So does 
the basis transformation matrix.

U

=

i

i〉 〈i′. (269)

Check that the matrix element of U

 in Eq. (269) is indeed given by Eq. (265), when 

represented in either the basis ℬ or ℬ′.
Exc
25

U

 in Eq. (269) is an example of the unitary operator.

A operator U

 is unitary, iff

U
 †
U

= U

U
 †

= . (272)

Check that Eq. (269) satisfies the defining property Eq. (272) for unitary operator.Exc
26

 The inverse of a unitary operator is its Hermitian conjugate

U
 -1

= U
 †
. (274)

The operator (basis transformation) implemented by U

 is reversed by that of U

 †
, and vice 

versa.

 When the two sets of basis i〉 and i〉′ are identical, U =  becomes the identity operator 
(which is also unitary).

In terms of the unitary operator, the basis transformation Eq. (266) can be written as

for ket state : v〉 → U

v〉,

for bra state : 〈v → 〈vU
 †
,

for operator : O

→ U

O

U
 †
.

(275)

vU v U †

OU U †

 The operator O

 is also made of ket and bra states, so the unitary operator must be applied 

from both sides, when transforming an operator.

 The expectation value of an observable is invariant under basis transformation. (Physical 
reality should be basis-independent.)
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〈O〉 = 〈ψO

ψ〉 → 〈ψU

 †
U

O

U
 †
U

ψ〉 = 〈ψ O


 ψ〉 = 〈O〉. (276)

◼Matrix Diagonalization

Diagonalization of a Hermitian operator : find a unitary operator U

 to bring the Hermitian 

operator O

 to diagonal form by transforming to its eigenbasis.

O

=

k

Ok〉Ok 〈Ok ,

U

=

k

k〉 〈Ok ,
(277)

such that under O

→ U

O

U
 †
,

Λ

= U

O

U
 †

=

k

k〉Ok 〈k ≏
O1

O2
⋱

(278)

is diagonal in the basis of one-hot vectors k〉.

 Every Hermitian matrix can be written as

O

= U
 †
Λ

U

, (279)

with Λ

 being diagonal and U


 being unitary.

O U † Λ U=

 Or equivalently,  the unitary transformation U

 brings the Hermitian matrix to its diagonal 

form,

U

O

U
 †

= Λ

. (280)

OU U † Λ=

Example: diagonalization of Pauli matrix

The Pauli matrix σ x can be diagonalized by the following unitary transformation (whose row 

vectors are bra eigenvectors of σ x)

U

H =

〈+

〈-
≏

1

2

1 1
1 -1

. (281)

 This unitary operation U

H is also known as the Hadamard gate in quantum information, an 

example of single-qubit gate.

 Under the unitary transformation, σ x is brought to its diagonal form, which is σ z
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U

H σ
 x U

H
†
≏

1

2

1 1
1 -1

0 1
1 0

1

2

1 1
1 -1

=
1 0
0 -1

≏ σ
 z.

(282)

◼ Hermitian Generators

If Hermitian operators are generalization of real numbers, then unitary operators are 
generalization of phase factors. (z ∈  and z = 1)

z* z = z z* = z2 = 1. (283)

 For complex numbers, a phase factor can be written as z =  θ, where θ ∈  is a real phase 
angle.

 Similar ideas apply to unitary operators: every unitary operator can be generated by a 
Hermitian operator Θ


 in the form of

U

=   Θ



. (284)

Given a Hermitian operator Θ


Θ

=

k

Θk 

Θ=Θk (285)

by   Θ


 we mean

 either by operator Taylor  expansion Eq. (132)

  Θ


= +  Θ

+
 Θ


2

2!
+
 Θ


3

3!
+…. (286)

 or by spectral decomposition (HW 6)

  Θ


=

k

 Θk 

Θ=Θk (287)

Don’t do element-wise exponentiation on the matrix!

Use Eq. (287) to show that U

=   Θ



 is unitary as long as Θ

 is Hermitian.

Exc
27

Example: unitary generated by Pauli matrix. Recall U

(θ) = e θ σ

 y
 in (Exc 15).

U

(θ) =  θ σ

 y
≏

cos θ sin θ
-sin θ cos θ

. (289)

It implements a basis rotation with θ being the rotation angle:

U

(θ) 0〉 ≏

cos θ sin θ
-sin θ cos θ

1
0

=
cos θ
-sin θ

. (290)
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Special case: when θ = 0, U

(0) =   no rotation is performed.

More generally, let U

(θ) be the unitary operator that implements certain basis rotation by

a real angle θ. When θ = Δθ is small, we can Taylor  expand

U

(Δθ) = U


(0) +U

 ′
(0) Δθ +… = +U

 ′
(0) Δθ +…, (291)

where U
 ′
(0) is ∂θU


(θ) evaluated at θ = 0.

 U
 ′
(0) is also an operator (matrix), usually denoted as U

 ′
(0) = G


. We call G


 the generator of 

the rotation/unitary operator, because it generates an infinitesimal rotation

U

(Δθ) = +  ΔθG


+ .... (292)

 U

(Δθ) is unitary  G


 is Hermitian.

U (Δθ)† U (Δθ)

= -  ΔθG
 †

+ ... +  ΔθG

+ ...

= +  ΔθG

-G
 †
+… = .

(293)

 Large rotations can be accumulated from small rotations.

U

(N Δθ) = U


(Δθ)

N
= +  ΔθG



N
. (294)

As Δθ is small (but N  can be large, s.t. θ = N Δθ is finite),

lnU

(N Δθ) = N ln+  ΔθG


 = N ΔθG


, (295)

So U

(N Δθ) = N ΔθG



, we obtain the exponential form

U

(θ) =  θG



. (296)

Conclusion: every Hermitian operator Θ

= θG


 generates a unitary operator  Θ



 by the exponen-
tial map.

◼ Time Evolution

◼ Time-Evolution is Unitary

Unitarity: information is never lost!
Basic assumption: quantum information is preserved under quantum dynamics, i.e. two identical 
and isolated systems

 start out in different states  remains in different states (towards both future and past).

 start out in the same state  follow identical evolution (towards both future and past).

Although measurement seems to be non-deterministic, evolution of quantum state is 
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deterministic: suppose you know the state at one time, then the quantum equation of motion 
tell you what it will be later.

ψ(t)〉 = U

(t) ψ(0)〉, (297)

ψ(0)〉 is the initial state, and ψ(t)〉 is the state at time t. U

(t) is the time-evolution operator 

that takes ψ(0)〉 to ψ(t)〉. ☟We will show that U

(t) should be unitary.

 Distinct states remain distinct:

〈ϕ(0) ψ(0)〉 = 0  〈ϕ(t) ψ(t)〉 = 〈ϕ(0)U

(t)† U


(t) ψ(0)〉 = 0. (298)

 Identical states remain the identical:

〈ψ(0) ψ(0)〉 = 1  〈ψ(t) ψ(t)〉 = 〈ψ(0)U

(t)† U


(t) ψ(0)〉 = 1. (299)

Or, the fact that the probability adds up to 1 must be preserved.
Treat ψ(0)〉 and ϕ(0)〉 as members of any orthonormal basis, then Eq. (298) and Eq. (299) implies

〈iU

(t)† U


(t) j〉 = δij  U


(t)† U


(t) = . (300)

Therefore, the time-evolution operator U

(t) is unitary.

◼ Hamiltonian

Hamiltonian generates time-evolution!

As a unitary operator, the time-evolution operator is also generated by a Hermitian operator, 
called the Hamiltonian,

H

= U

 ′
(0) =  ∂t U


(t) t=0 . (301)

For small Δt, infinitesimal evolution is given by

U

(Δt) = - H


Δt + ..., (302)

therefore the state evolves as

ψ(Δt)〉 = U

(Δt) ψ(0)〉 = ψ(0)〉-  Δt H


ψ(0)〉, (303)

meaning that

 ∂t ψ(0)〉 = 
ψ(Δt)〉- ψ(0)〉

Δt
= H

ψ(0)〉. (304)

There is nothing special about t = 0. Eq. (304) should hold at any time.

 ∂t ψ(t)〉 = H

ψ(t)〉. (305)

This is the Schrödinger equation, the equation of motion for the quantum state.

 The Hamiltonian H

(t) = U

 ′
(t) can be time-dependent in general.
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 But in many cases, we consider H

 to be time-independent, by assuming the time-transla-

tion symmetry.

What happens to Planck’s constant?

ℏ =
h

2 π
= 1.0545718 (13) × 10-34 J s. (306)

In quantum mechanics, the observable associated with the Hamiltonian is the energy. To
balance the dimensionality across the Schrödinger equation, Planck’s constant is inserted for Eq. 
(305):

 ℏ ∂t ψ(t)〉 = H

ψ(t)〉. (307)

Why is ℏ so small? Well, the answer has more to do with biology than with physics  Why we 
are so big, heavy and slow? A natural choice for quantum mechanics is to set the units such 
that ℏ = 1. It is a common practice in theoretical physics (we will also use this convention 

sometimes).

◼ Schrödinger Equation: State Dynamics

Postulate 4 (Dynamics): The time-evolution of the state of a quantum system is gov-
erned by the Hamiltonian of the system, according to the time-dependent 
Schrödinger equation.

 ℏ ∂t ψ(t)〉 = H

ψ(t)〉. (308)

If the Hamiltonian H

 is time-independent, we can first find its eigenvalues (or eigen ener-

gies) and eigenvectors (or energy eigenstates).

H

Ek〉 = Ek Ek〉. (309)

This is also called the time-independent Schrödinger equation. Without solving a differential 
equation, we just need to diagonalize a Hermitian matrix in this case.

Each energy eigenstate will evolve in time simply by a rotating overall phase,

Ek(t)〉 = e
-


ℏ
Ek t Ek〉. (310)

 Ek〉 form a complete set of orthonormal basis, called energy eigenbasis. 

Verify that Eq. (310) is a solution of Eq. (308):Exc
28

Any initial state ψ(0)〉 will evolve in time by first representing the initial state in the energy 
eigenbasis, and attaching to each energy eigenstate by its rotating overall phase,
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ψ(t)〉 =
i

e-


ℏ
Ei t Ei〉 〈Ei ψ(0)〉

= e-


ℏ
H

t
ψ(0)〉.

(313)

A time-independent Hamiltonian generates the time-evolution via matrix exponentiation

U

(t) = e-



ℏ
H

t. (314)

However, for time-dependent Hamiltonian, there no such a clean formula. Evolution must be 
carried out step by step, denoted as a time-ordered exponential

U

(t) =  exp -



ℏ

0

t
H

(t′)  t′ . (315)

◻ Larmor Precession and Rabi Oscillation

How to write down a Hamiltonian?

 derive it from experiment,

 borrow it from some theory we like,

 pick one and see what happens.☜

Hamiltonian must be Hermitian anyway.  For a single spin (qubit), the most general Hamilto-
nian takes the form of

H

= h0 + hx σ

 x
+ hy σ

 y
+ hz σ

 z

= h0 + h ·σ
 ,

(316)

where h0, hx, hy, hz ∈  are all real coefficients.

 The time-evolution operator (set ℏ = 1 in the following)

U

(t) = e-H


t

= e- h0 tcos(h t) -  sin(h t) h

·σ

,

(317)

where h = h · h  and h

= h / h.

Derive Eq. (317) from Eq. (316).Exc
29

 A state ψ(0)〉 will evolve with time following

ψ(t)〉 = U

(t) ψ(0)〉

= e- h0 tcos(h t) -  sin(h t) h

·σ

 ψ(0)〉.

(319)

 If we measure σ on the state ψ(t)〉, the expectation value will be given by

〈σ〉t = 〈ψ(t) σ

ψ(t)〉

= cos(2 h t) 〈σ〉0 + sin(2 h t) h

× 〈σ〉0 + (1- cos(2 h t)) h


h

· 〈σ〉0.

(320)
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which also evolves with time.

Derive Eq. (320) from Eq. (319).
Hint: Eq. (117) can make life much more easier.

Exc
30

Larmor precession: assume h = (0, 0, hz) along the z-direction, and parameterize the expecta-
tion of the spin vector by 〈σ〉 = (sin θ cos φ, sin θ sin φ, cos θ).

〈σ〉t = (sin θ0 cos (φ0 + 2 hz t), sin θ0 sin(φ0 + 2 hz t), cos θ0), (326)

where θ0 and φ0 are the initial azimuthal and polar angles.

 The solution describes the spin 〈σ〉 precessing around the axis of the Zeeman field h.

 The precession frequency ω = 2 h is called the Larmor frequency. It can be used to probe 
the local Zeeman field strength, which has applications in nuclear magnetic resonance (NMR) 
and nitrogen-vacancy (NV) center.

 Energy of a spin in the Zeeman field is 〈H 〉 = -h · 〈σ〉 (up to some constant energy shift h0).

Rabi oscillation: a qubit initially prepared in state 0〉, evolved under the Hamiltonian

H

= Ω σ

 x
+ Δ σ

 z
≏
Δ Ω

Ω -Δ
, (327)

where Ω is the driving field and Δ is called detuning. The probability to find the qubit in state 
1〉 at time t is given by

p(1 0)t = 〈1〉t =
1- 〈σz〉t
2

=
sin2(ω t / 2)

1+ (Δ /Ω)2
, (328)

with the Rabi frequency ω = 2 Ω2 + Δ2 .

0 π 2 π 3 π 4 π
0.0
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0.6
0.8
1.0

Ω t

p
(1
0)
t

Δ /Ω = 0
Δ /Ω = 1
Δ /Ω = 2
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 Rabi π-Pulse: flipping 0〉 to 1〉 (and vice versa) by a π-pulse (turn on the driving field Ω for 
time t = π /Ω and turn off) at resonance Δ = 0. This implements a NOT gate (or X gate) on a 
single qubit.

◼ Heisenberg Equation: Operator Dynamics

Two  pictures of the quantum dynamics:

 Schrödinger picture: state evolves in time, operator remains fixed,

〈O(t)〉 = 〈ψ(t)O

ψ(t)〉. (329)

 Heisenberg picture: operator evolves in time, state remains fixed,

〈O(t)〉 = 〈ψO

(t) ψ〉. (330)

The two pictures are consistent, if

ψ(t)〉 = U

(t) ψ〉  O


(t) = U


(t)† O


U

(t), (331)

such that Eq. (329) and Eq. (330) are consistent, as they both implies

〈O(t)〉 = 〈ψU

(t)† O


U

(t) ψ〉. (332)

Note: one should only apply one picture at a time, i.e. either the state or the operator is time-
dependent, but not both.

In the Heisenberg picture, the time-evolution of an operator

O

(t) = U


(t)† O


U

(t), (333)

described by the Heisenberg equation

 ℏ ∂t O

(t) = O


(t), H


. (334)

Derive Eq. (334) from Eq. (333).Exc
31

Correspondingly, its expectation value evolves as

 ℏ ∂t 〈O(t)〉 = O

(t), H


. (337)

If O

, H

 = 0, the Heisenberg equation Eq. (334) implies that ∂t 〈O〉 = 0, i.e. O will be invariant 

in time. The observable O is a conserved quantity (or an integral of motion) if O

 com-

mutes with the Hamiltonian H

.
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Consider a single-qubit Hamiltonian H = h ·S

, where S


=
ℏ

2
σ

 is the spin operator.

(i) Show that the expectation values of the spin operator evolves as ∂t 〈S〉 = h × 〈S〉.
(ii) Show that
〈S (t)〉 = cos(h t) 〈S (0)〉+ sin(h t) h


× 〈S (0)〉+ (1- cos(h t)) h


h

· 〈S (0)〉

is a solution of ∂t 〈S〉 = h × 〈S〉, where h

= h / h.

This describes the dynamics of a spin in a Zeeman field h.
(iii) Show that the spin component along the Zeeman field h


·S is a conserved 

quantity.

HW
10
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