Quantum Mechanics
 Second Quantization

Second Quantization

- Quantum Many-Body States

- Identical Particles

Second quantization is a formalism used to describe quantum many-body systems of identical particles.

- Classical mechanics: each particle is labeled by a distinct position $\boldsymbol{r}_{i} \Rightarrow$ any different configuration of $\left\{\boldsymbol{r}_{i}\right\}$ correspond to a different classical many-body state.
- Quantum mechanics: particles are identical, such that exchanging two particles ($\boldsymbol{r}_{i} \leftrightarrow \boldsymbol{r}_{j}$) does not lead to a different quantum many-body state.
Permutation symmetry of identical particles \Rightarrow joint probability distribution must be invariant under permutation:

$$
\begin{equation*}
p\left(\ldots, \boldsymbol{r}_{i}, \ldots, \boldsymbol{r}_{j}, \ldots\right)=p\left(\ldots, \boldsymbol{r}_{j}, \ldots, \boldsymbol{r}_{i}, \ldots\right) \tag{1}
\end{equation*}
$$

where the probability distribution p is related to the many-body wave function Ψ by

$$
\begin{equation*}
p\left(\ldots, \boldsymbol{r}_{i}, \ldots, \boldsymbol{r}_{j}, \ldots\right)=\left|\Psi\left(\ldots, \boldsymbol{r}_{i}, \ldots, \boldsymbol{r}_{j}, \ldots\right)\right|^{2} \tag{2}
\end{equation*}
$$

The wave function can only change up to an overall phase factor.

$$
\begin{equation*}
\Psi\left(\ldots, \boldsymbol{r}_{i}, \ldots, \boldsymbol{r}_{j}, \ldots\right)=e^{i \varphi} \Psi\left(\ldots, \boldsymbol{r}_{j}, \ldots, \boldsymbol{r}_{i}, \ldots\right) \tag{3}
\end{equation*}
$$

It forms as a one-dimensional representation of the permutation group. Mathematical fact: there are only two 1-dim representations for any permutation group,

- trivial representation \Rightarrow bosons

$$
\begin{equation*}
\Psi_{B}\left(\ldots, \boldsymbol{r}_{i}, \ldots, \boldsymbol{r}_{j}, \ldots\right)=+\Psi_{B}\left(\ldots, \boldsymbol{r}_{j}, \ldots, \boldsymbol{r}_{i}, \ldots\right) \tag{4}
\end{equation*}
$$

- sign representation \Rightarrow fermions

$$
\begin{equation*}
\Psi_{F}\left(\ldots, \boldsymbol{r}_{i}, \ldots, \boldsymbol{r}_{j}, \ldots\right)=-\Psi_{F}\left(\ldots, \boldsymbol{r}_{j}, \ldots, \boldsymbol{r}_{i}, \ldots\right) \tag{5}
\end{equation*}
$$

- Dirac Notations

Let us rephrase this using Dirac ket-state notation (more concise). Consider a complete set of single-particle states $|\alpha\rangle$ (labeled by α)

$$
\begin{equation*}
|\alpha\rangle=\int d^{d} \boldsymbol{r} \psi_{\alpha}(\boldsymbol{r})|\boldsymbol{r}\rangle \tag{6}
\end{equation*}
$$

where $\psi_{\alpha}(\boldsymbol{r})$ is the wave function representing the state.

- A two-particle state with the 1st particle in $\left|\alpha_{1}\right\rangle$ and the 2nd particle in $\left|\alpha_{2}\right\rangle$ will be described by

$$
\begin{align*}
& \left|\alpha_{1}\right\rangle \otimes\left|\alpha_{2}\right\rangle=\int d^{d} \boldsymbol{r}_{1} \int d^{d} \boldsymbol{r}_{2} \psi_{\alpha_{1}}\left(\boldsymbol{r}_{1}\right) \psi_{\alpha_{2}}\left(\boldsymbol{r}_{2}\right)\left|\boldsymbol{r}_{1}\right\rangle \otimes\left|\boldsymbol{r}_{2}\right\rangle \\
& =\int d^{d} \boldsymbol{r}_{1} \int d^{d} \boldsymbol{r}_{2} \Psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)\left|\boldsymbol{r}_{1}\right\rangle \otimes\left|\boldsymbol{r}_{2}\right\rangle . \tag{7}
\end{align*}
$$

$\Psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\psi_{\alpha_{1}}\left(\boldsymbol{r}_{1}\right) \psi_{\alpha_{2}}\left(\boldsymbol{r}_{2}\right)$ is identified as the two-body wave function.

- Exchanging $\boldsymbol{r}_{1} \leftrightarrow \boldsymbol{r}_{2}$ in the wave function $\Psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)$ leads to a new wave function $\Psi^{\prime}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)$

$$
\begin{equation*}
\Psi^{\prime}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\Psi\left(\boldsymbol{r}_{2}, \boldsymbol{r}_{1}\right)=\psi_{\alpha_{1}}\left(\boldsymbol{r}_{2}\right) \psi_{\alpha_{2}}\left(\boldsymbol{r}_{1}\right)=\psi_{\alpha_{2}}\left(\boldsymbol{r}_{1}\right) \psi_{\alpha_{1}}\left(\boldsymbol{r}_{2}\right), \tag{8}
\end{equation*}
$$

which corresponds to a new state

$$
\begin{align*}
& \int d^{d} \boldsymbol{r}_{1} \int d^{d} \boldsymbol{r}_{2} \Psi^{\prime}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)\left|\boldsymbol{r}_{1}\right\rangle \otimes\left|\boldsymbol{r}_{2}\right\rangle \\
& =\int d^{d} \boldsymbol{r}_{1} \int d^{d} \boldsymbol{r}_{2} \psi_{\alpha_{2}}\left(\boldsymbol{r}_{1}\right) \psi_{\alpha_{1}}\left(\boldsymbol{r}_{2}\right)\left|\boldsymbol{r}_{1}\right\rangle \otimes\left|\boldsymbol{r}_{2}\right\rangle \tag{9}\\
& =\left|\alpha_{2}\right\rangle \otimes\left|\alpha_{1}\right\rangle
\end{align*}
$$

describing a two-particle state with the 1st particle in $\left|\alpha_{2}\right\rangle$ and the 2nd particle in $\left|\alpha_{1}\right\rangle$.
Conclusion: exchanging the positions of two particles $\left(\boldsymbol{r}_{1} \leftrightarrow \boldsymbol{r}_{2}\right) \Leftrightarrow$ exchanging the labels of the single-particle state $\left(\alpha_{1} \leftrightarrow \alpha_{2}\right)$.

- First-Quantized States

First-quantization approach:

- Suppose the single-particle Hilbert space is D dimensional, spanned by the single-particle basis states $|\alpha\rangle(\alpha=1,2, \ldots, D)$.
- The many-body Hilbert space of N particles will be D^{N} dimensional, spanned by the manybody basis states

$$
\begin{equation*}
|[\alpha]\rangle \equiv\left|\alpha_{1}\right\rangle \otimes\left|\alpha_{2}\right\rangle \otimes \ldots \otimes\left|\alpha_{N}\right\rangle, \tag{10}
\end{equation*}
$$

where $\alpha_{i}=1,2, \ldots, D$ labels the state of the i th particle.

- A generic first-quantized state is a linear superposition of these basis states

$$
\begin{equation*}
|\Psi\rangle=\sum_{[\alpha]} \Psi[\alpha]|[\alpha]\rangle, \tag{11}
\end{equation*}
$$

where the coefficient $\Psi[\alpha] \in \mathbb{C}$ is also called the many-body wave function (as a more general function of labels α_{i} not positions \boldsymbol{r}_{i}).

Most of the first-quantized states are not qualified to describe systems of identical particles.

- For identical bosons, $\Psi[\alpha]$ must be symmetric

$$
\begin{equation*}
\Psi_{B}\left(\ldots, \alpha_{i}, \ldots, \alpha_{j}, \ldots\right)=+\Psi_{B}\left(\ldots, \alpha_{j}, \ldots, \alpha_{i}, \ldots\right) \tag{12}
\end{equation*}
$$

- For identical fermions, $\Psi[\alpha]$ must be antisymmetric

$$
\begin{equation*}
\Psi_{F}\left(\ldots, \alpha_{i}, \ldots, \alpha_{j}, \ldots\right)=-\Psi_{F}\left(\ldots, \alpha_{j}, \ldots, \alpha_{i}, \ldots\right) \tag{13}
\end{equation*}
$$

These states only span a subspace of the first-quantized Hilbert space.

first-quantized states
We would like to pick out (or construct) the basis states for the bosonic and fermionic subspaces. Starting from a generic basis state $|[\alpha]\rangle$, we can construct

- bosonic states by symmetrization

$$
\begin{align*}
& \mathcal{S}|[\alpha]\rangle=\mathcal{S}\left|\alpha_{1}\right\rangle \otimes\left|\alpha_{2}\right\rangle \otimes \ldots \otimes\left|\alpha_{N}\right\rangle \\
& \equiv \sum_{\pi \in S_{N}}\left|\alpha_{\pi(1)}\right\rangle \otimes\left|\alpha_{\pi(2)}\right\rangle \otimes \ldots \otimes\left|\alpha_{\pi(N)}\right\rangle \tag{14}
\end{align*}
$$

- fermionic states by antisymmetrization

$$
\begin{align*}
& \mathcal{A}|[\alpha]\rangle=\mathcal{A}\left|\alpha_{1}\right\rangle \otimes\left|\alpha_{2}\right\rangle \otimes \ldots \otimes\left|\alpha_{N}\right\rangle \\
& \equiv \sum_{\pi \in S_{N}}(-)^{\pi}\left|\alpha_{\pi(1)}\right\rangle \otimes\left|\alpha_{\pi(2)}\right\rangle \otimes \ldots \otimes\left|\alpha_{\pi(N)}\right\rangle, \tag{15}
\end{align*}
$$

π denotes an S_{N} group element and (-$)^{\pi}$ is the permutation sign of π.

$$
(-)^{\pi}=\left\{\begin{array}{cl}
+1 & \text { if } \pi \text { has even number of inversions } \tag{16}\\
-1 & \text { if } \pi \text { has odd number of inversions }
\end{array}\right.
$$

An inversion is a pair (x, y) such that $x<y$ and $\pi(x)>\pi(y)$. Take the S_{3} group for example:

$$
\begin{array}{ccccccc}
\pi(123) & 123 & 231 & 312 & 321 & 213 & 132 \\
(-)^{\pi} & +1 & +1 & +1 & -1 & -1 & -1 \tag{17}
\end{array}
$$

- Examples of bosonic states (unnormalized):
$\mathcal{S}|\alpha\rangle \otimes|\beta\rangle=|\alpha\rangle \otimes|\beta\rangle+|\beta\rangle \otimes|\alpha\rangle, \quad$ (assuming $\alpha \neq \beta$)
$\mathcal{S}|\alpha\rangle \otimes|\alpha\rangle=|\alpha\rangle \otimes|\alpha\rangle$.
- Examples of fermionic states (unnormalized):

$$
\begin{align*}
& \mathcal{A}|\alpha\rangle \otimes|\beta\rangle=|\alpha\rangle \otimes|\beta\rangle-|\beta\rangle \otimes|\alpha\rangle,(\text { assuming } \alpha \neq \beta) \\
& \mathcal{A}|\alpha\rangle \otimes|\alpha\rangle=0 \Rightarrow \text { no such fermionic state. } \tag{19}
\end{align*}
$$

Pauli exclusion principle: two (or more) identical fermions can not occupy the same state simultaneously.

Originally $|\alpha\rangle \otimes|\beta\rangle$ and $|\beta\rangle \otimes|\alpha\rangle$ (for $\alpha \neq \beta$) are two orthogonal first-quantized states, under either symmetrization or antisymmetrization, they correspond to the same state (up to ± 1 overall phase)

$$
\begin{align*}
& \mathcal{S}|\alpha\rangle \otimes|\beta\rangle=\mathcal{S}|\beta\rangle \otimes|\alpha\rangle, \\
& \mathcal{A}|\alpha\rangle \otimes|\beta\rangle=-\mathcal{A}|\beta\rangle \otimes|\alpha\rangle . \tag{20}
\end{align*}
$$

- The first-quantized Hilbert space is redundant \Rightarrow there are fewer basis states in the bosonic and fermionic subspaces.
- Consider N particles, each can take one of D different single-particle states,
- the dimension of bosonic subspace:

$$
\begin{equation*}
\mathcal{D}_{B}=\frac{(N+D-1)!}{N!(D-1)!} . \tag{21}
\end{equation*}
$$

- the dimension of fermionic subspace:

$$
\begin{equation*}
\mathcal{D}_{F}=\frac{D!}{N!(D-N)!} . \tag{22}
\end{equation*}
$$

It turns out that $\mathcal{D}_{B}+\mathcal{D}_{F} \leq D^{N}$ as long as $N>1 \Rightarrow$ the remaining basis states in the first-quantized Hilbert space are unphysical (for identical particles).
These unphysical states are annoying: we can not combine the states in the Hilbert space freely. We must always remember to symmetrized/antisymmetrized the state. \Rightarrow Is there a better way to organize the many-body Hilbert space, such that all states in the space are physical?

- Second-Quantized States (Fock States)

Sometimes difficulties in physics arise from the inappropriate language we used. There are two different ways to describe many-body states:

- In first-quantization, we ask: Which particle is in which state?
- In second-quantization, we ask: How many particles are there in every state?

The question we ask in first-quantization is inappropriate: if the particles are identical, it will be impossible to tell which particle is which in the first place. We need to switch to a new language

$\|\alpha\rangle \otimes\|\beta\rangle$	$\|\beta\rangle \otimes\|\alpha\rangle$
the 1st particle on $\|\alpha\rangle$ the 2nd particle in $\|\beta\rangle$	the 1st particle on $\|\beta\rangle$ the 2nd particle in $\|\alpha\rangle$
\downarrow	\checkmark
there is one particle in $\|\alpha\rangle$, another particle in $\|\beta\rangle$	

The new description does not require the labeling of particles. \Rightarrow It contains no redundant information. \Rightarrow It leads to a more precise and succinct description.

In the second-quantization approach,

- Each basis state in the many-body Hilbert space is labeled by a set of occupation numbers $n_{\alpha}($ for $\alpha=1,2, \ldots, D)$

$$
\begin{equation*}
|[n]\rangle \equiv\left|n_{1}, n_{2}, \ldots, n_{\alpha}, \ldots, n_{D}\right\rangle \tag{23}
\end{equation*}
$$

meaning that there are n_{α} particles in the state $|\alpha\rangle$.

$$
n_{\alpha}= \begin{cases}0,1,2,3, \ldots & \text { bosons } \tag{24}\\ 0,1 & \text { fermions } .\end{cases}
$$

- For bosons, n_{α} can be any non-negative integer.
- For fermions, n_{α} can only take 0 or 1 , due to the Pauli exclusion principle.
- The occupation numbers n_{α} sum up to the total number of particles, i.e. $\sum_{\alpha} n_{\alpha}=N$.
- The states $|[n]\rangle$ are also known as Fock states.
- All Fock states form a complete set of basis for the many-body Hilbert space, or the Fock space.
- Any generic second-quantized many-body state is a linear combination of Fock states,

$$
\begin{equation*}
|\Psi\rangle=\sum_{[n]} \Psi[n]|[n]\rangle . \tag{25}
\end{equation*}
$$

- Representation of Fock States

The first- and the second-quantization formalisms can both provide legitimate description of identical particles. (The first-quantization is just awkward to use, but it is still valid.)

Every Fock state has a first-quantized representation.

- The Fock state with all occupation numbers to be zero is called the vacuum state, denoted as

$$
\begin{equation*}
|0\rangle \equiv|\ldots, 0, \ldots\rangle \tag{26}
\end{equation*}
$$

It corresponds to the tensor product unit in the first-quantization, which can be written as

$$
\begin{equation*}
|0\rangle_{B}=|0\rangle_{F}=1 . \tag{27}
\end{equation*}
$$

We use a subscript B / F to indicate whether the Fock state is bosonic (B) or fermionic (F). For vacuum state, there is no difference between them.

- The Fock state with only one non-zero occupation number is a single-mode Fock state, denoted as

$$
\begin{equation*}
\left|n_{\alpha}\right\rangle=\left|\ldots, 0, n_{\alpha}, 0, \ldots\right\rangle \tag{28}
\end{equation*}
$$

In terms of the first-quantized states

$$
\begin{align*}
& \left|1_{\alpha}\right\rangle_{B}=\left|1_{\alpha}\right\rangle_{F}=|\alpha\rangle, \\
& \left|2_{\alpha}\right\rangle_{B}=|\alpha\rangle \otimes|\alpha\rangle, \\
& \left|3_{\alpha}\right\rangle_{B}=|\alpha\rangle \otimes|\alpha\rangle \otimes|\alpha\rangle, \tag{29}\\
& \left|n_{\alpha}\right\rangle_{B}=\frac{|\alpha\rangle \otimes|\alpha\rangle \otimes \ldots \otimes|\alpha\rangle \equiv|\alpha\rangle \otimes \otimes^{n_{\alpha}} .}{n_{\alpha} \text { factors }} .
\end{align*}
$$

- For multi-mode Fock states (meaning more than one single-particle state $|\alpha\rangle$ is involved), the first-quantized state will involve appropriate symmetrization depending on the particle statistics. For example,

$$
\begin{align*}
& \left|1_{\alpha}, 1_{\beta}\right\rangle_{B}=\frac{1}{\sqrt{2}}(|\alpha\rangle \otimes|\beta\rangle+|\beta\rangle \otimes|\alpha\rangle) \\
& \left|1_{\alpha}, 1_{\beta}\right\rangle_{F}=\frac{1}{\sqrt{2}}(|\alpha\rangle \otimes|\beta\rangle-|\beta\rangle \otimes|\alpha\rangle) \tag{30}
\end{align*}
$$

Note the difference between bosonic and fermionic Fock states (even if their occupation numbers are the same). Here are more examples

$$
\begin{align*}
& \left|2_{\alpha}, 1_{\beta}\right\rangle_{B}=\frac{1}{\sqrt{3}}(|\alpha\rangle \otimes|\alpha\rangle \otimes|\beta\rangle+|\alpha\rangle \otimes|\beta\rangle \otimes|\alpha\rangle+|\beta\rangle \otimes|\alpha\rangle \otimes|\alpha\rangle), \\
& \left|1_{\alpha}, 1_{\beta}, 1_{\gamma}\right\rangle_{F}=\frac{1}{\sqrt{6}}(|\alpha\rangle \otimes|\beta\rangle \otimes|\gamma\rangle+|\beta\rangle \otimes|\gamma\rangle \otimes|\alpha\rangle+ \tag{31}\\
& \quad|\gamma\rangle \otimes|\alpha\rangle \otimes|\beta\rangle-|\gamma\rangle \otimes|\beta\rangle \otimes|\alpha\rangle-|\beta\rangle \otimes|\alpha\rangle \otimes|\gamma\rangle-|\alpha\rangle \otimes|\gamma\rangle \otimes|\beta\rangle)
\end{align*}
$$

Ok, you get the idea. In general, the Fock state can be represented as

- for bosons,

$$
\begin{equation*}
|[n]\rangle_{B}=\left(\frac{\prod_{\alpha} n_{\alpha}!}{N!}\right)^{1 / 2} \mathcal{S} \underset{\alpha}{\otimes}|\alpha\rangle \otimes^{n_{\alpha}} \tag{32}
\end{equation*}
$$

- for fermions,

$$
\begin{equation*}
|[n]\rangle_{F}=\frac{1}{\sqrt{N!}} \mathcal{A} \underset{\alpha}{\otimes}|\alpha\rangle \otimes_{n_{\alpha}}^{n_{\alpha}} \tag{33}
\end{equation*}
$$

\mathcal{S} and \mathcal{A} are symmetrization and antisymmetrization operators defined in Eq. (14) and Eq. (15).

- Creation and Annihilation Operators

- State Insertion and Deletion

The creation and annihilation operators are introduced to create and annihilate particles in the quantum many-body system, as indicated by their names. The first step towards defining them is to understand how to insert and delete a single-particle state from the first-quantized state in a symmetric (or antisymmetric) manner.

Let us first declare some notations:

- Let $|\alpha\rangle,|\beta\rangle$ be single-particle states.
- Let 1 be the tensor identity (meaning that $|\alpha\rangle \otimes 1=1 \otimes|\alpha\rangle=|\alpha\rangle$).
- Let $|\Psi\rangle,|\Phi\rangle$ be generic first-quantized states as in Eq. (11).

Now we define the insertion operator $\triangleright_{ \pm}$and deletion operator $\triangleleft_{ \pm}$by the following rules:

- Linearity (for $a, b \in \mathbb{C}$)

$$
\begin{align*}
& |\alpha\rangle \triangleright_{ \pm}(a|\Psi\rangle+b|\Phi\rangle)=a|\alpha\rangle \triangleright_{ \pm}|\Psi\rangle+b|\alpha\rangle \triangleright_{ \pm}|\Phi\rangle, \\
& |\alpha\rangle \triangleleft_{ \pm}(a|\Psi\rangle+b|\Phi\rangle)=a|\alpha\rangle \triangleleft_{ \pm}|\Psi\rangle+b|\alpha\rangle \triangleleft_{ \pm}|\Phi\rangle . \tag{34}
\end{align*}
$$

- Vacuum action

$$
\begin{align*}
& |\alpha\rangle \triangleright_{ \pm} 1=|\alpha\rangle, \\
& |\alpha\rangle \triangleleft_{ \pm} 1=0 . \tag{35}
\end{align*}
$$

- Recursive relation

$$
\begin{align*}
& |\alpha\rangle \triangleright_{ \pm}|\beta\rangle \otimes|\Psi\rangle=|\alpha\rangle \otimes|\beta\rangle \otimes|\Psi\rangle \pm|\beta\rangle \otimes\left(|\alpha\rangle \triangleright_{ \pm}|\Psi\rangle\right), \\
& |\alpha\rangle \triangleleft_{ \pm}|\beta\rangle \otimes|\Psi\rangle=\langle\alpha \mid \beta\rangle|\Psi\rangle \pm|\beta\rangle \otimes\left(|\alpha\rangle \triangleleft_{ \pm}|\Psi\rangle\right) . \tag{36}
\end{align*}
$$

$\langle\alpha \mid \beta\rangle=\delta_{\alpha \beta}$ if $|\alpha\rangle$ and $|\beta\rangle$ are orthonormal basis states. The subscript \pm of the insertion or deletion operators indicates whether symmetrization (+) or antisymmetrization (-) is implemented.

- Boson Creation and Annihilation

- The boson creation operator $b_{\alpha}^{\dagger} a d d s$ a boson to the single-particle state $|\alpha\rangle$, increasing the occupation number by one $n_{\alpha} \rightarrow n_{\alpha}+1$. It acts on a N-particle first-quantized state $|\Psi\rangle$ as

$$
\begin{equation*}
b_{\alpha}^{\dagger}|\Psi\rangle=\frac{1}{\sqrt{N+1}}|\alpha\rangle \triangleright_{+}|\Psi\rangle, \tag{37}
\end{equation*}
$$

where $|\alpha\rangle \triangleright_{+}$inserts the single-particle state $|\alpha\rangle$ to $N+1$ possible insertion positions symmetrically.

- The boson annihilation operator b_{α} removes a boson from the single-particle state $|\alpha\rangle$, reducing the occupation number by one $n_{\alpha} \rightarrow n_{\alpha}-1$ (while $n_{\alpha}>0$). It acts on a N-particle firstquantized state $|\Psi\rangle$ as

$$
\begin{equation*}
b_{\alpha}|\Psi\rangle=\frac{1}{\sqrt{N}}|\alpha\rangle \triangleleft_{+}|\Psi\rangle, \tag{38}
\end{equation*}
$$

where $|\alpha\rangle \triangleleft_{+}$removes the single-particle state $|\alpha\rangle$ from N possible deletion positions symmetrically.

- Single-Mode Fock States

Based on these definitions, we can show that the creation and annihilation operators acting on single-mode Fock states as

$$
b_{\alpha}^{\dagger}\left|n_{\alpha}\right\rangle=\frac{1}{\sqrt{n_{\alpha}+1}}|\alpha\rangle \triangleright_{+}|\alpha\rangle \otimes^{n_{\alpha}}
$$

$$
\begin{align*}
& =\frac{n_{\alpha}+1}{\sqrt{n_{\alpha}+1}}|\alpha\rangle \otimes \otimes^{\left(n_{\alpha}+1\right)} \\
& =\sqrt{n_{\alpha}+1}\left|n_{\alpha}+1\right\rangle . \\
& b_{\alpha}\left|n_{\alpha}\right\rangle=\frac{1}{\sqrt{n_{\alpha}}}|\alpha\rangle \triangleleft_{+}|\alpha\rangle \otimes^{n_{\alpha}} \\
& =\frac{n_{\alpha}}{\sqrt{n_{\alpha}}}|\alpha\rangle \otimes \otimes^{\left(n_{\alpha}-1\right)} \tag{40}\\
& =\sqrt{n_{\alpha}}\left|n_{\alpha}-1\right\rangle .
\end{align*}
$$

Thus we conclude

$$
\begin{aligned}
& b_{\alpha}^{\dagger}\left|n_{\alpha}\right\rangle=\sqrt{n_{\alpha}+1}\left|n_{\alpha}+1\right\rangle, \\
& b_{\alpha}\left|n_{\alpha}\right\rangle=\sqrt{n_{\alpha}}\left|n_{\alpha}-1\right\rangle .
\end{aligned}
$$

- Especially, when acting on the vacuum state

$$
\begin{align*}
b_{\alpha}^{\dagger}\left|0_{\alpha}\right\rangle & =\left|1_{\alpha}\right\rangle, \\
b_{\alpha}\left|0_{\alpha}\right\rangle & =0 . \tag{42}
\end{align*}
$$

- Using Eq. (41), we can show that

$$
\begin{equation*}
b_{\alpha}^{\dagger} b_{\alpha}\left|n_{\alpha}\right\rangle=n_{\alpha}\left|n_{\alpha}\right\rangle, \tag{43}
\end{equation*}
$$

meaning that $b_{\alpha}^{\dagger} b_{\alpha}$ is the boson number operator of the $|\alpha\rangle$ state.
All the single-mode Fock state can be constructed by the boson creation operator from the vacuum state

$$
\begin{equation*}
\left|n_{\alpha}\right\rangle=\frac{1}{\sqrt{n_{\alpha}!}}\left(b_{\alpha}^{\dagger}\right)^{n_{\alpha}}\left|0_{\alpha}\right\rangle \tag{44}
\end{equation*}
$$

- Generic Fock States

The above result can be generalized to any Fock state of bosons

$$
\begin{aligned}
& b_{\alpha}^{\dagger}\left|\ldots, n_{\beta}, n_{\alpha}, n_{\gamma}, \ldots\right\rangle_{B}=\sqrt{n_{\alpha}+1}\left|\ldots, n_{\beta}, n_{\alpha}+1, n_{\gamma}, \ldots\right\rangle_{B}, \\
& b_{\alpha}\left|\ldots, n_{\beta}, n_{\alpha}, n_{\gamma}, \ldots\right\rangle_{B}=\sqrt{n_{\alpha}}\left|\ldots, n_{\beta}, n_{\alpha}-1, n_{\gamma}, \ldots\right\rangle_{B} .
\end{aligned}
$$

These two equations can be considered as the defining properties of boson creation and annihilation operators.

- Operator Identities

Eq. (45) implies the following operator identities

$$
\begin{equation*}
\left[b_{\alpha}^{\dagger}, b_{\beta}^{\dagger}\right]=\left[b_{\alpha}, b_{\beta}\right]=0,\left[b_{\alpha}, b_{\beta}^{\dagger}\right]=\delta_{\alpha \beta} . \tag{46}
\end{equation*}
$$

These relations can be considered as the algebraic definition of boson creation and annihilation operators.

- Fermion Creation and Annihilation

- The fermion creation operator c_{α}^{\dagger} adds a fermion to the single-particle state $|\alpha\rangle$, increasing the occupation number by one $n_{\alpha} \rightarrow n_{\alpha}+1$ (while $n_{\alpha}=0$). It acts on a N-particle first-quantized state $|\Psi\rangle$ as

$$
\begin{equation*}
c_{\alpha}^{\dagger}|\Psi\rangle=\frac{1}{\sqrt{N+1}}|\alpha\rangle \triangleright_{-}|\Psi\rangle, \tag{47}
\end{equation*}
$$

where $|\alpha\rangle \triangleright_{-}$inserts the single-particle state $|\alpha\rangle$ to $N+1$ possible insertion positions antisymmetrically.

- The fermion annihilation operator c_{α} removes a fermion from the single-particle state $|\alpha\rangle$, reducing the occupation number by one $n_{\alpha} \rightarrow n_{\alpha}-1$ (while $n_{\alpha}=1$). It acts on a N-particle firstquantized state $|\Psi\rangle$ as

$$
\begin{equation*}
c_{\alpha}|\Psi\rangle=\frac{1}{\sqrt{N}}|\alpha\rangle \triangleleft_{-}|\Psi\rangle, \tag{48}
\end{equation*}
$$

where $|\alpha\rangle \triangleleft_{-}$removes the single-particle state $|\alpha\rangle$ from N possible deletion positions antisymmetrically.

- Single-Mode Fock States

Based on these definitions, we can show that the creation and annihilation operators acting on single-mode Fock states as

$$
\begin{align*}
& c_{\alpha}^{\dagger}\left|0_{\alpha}\right\rangle=|\alpha\rangle \triangleright_{-} 1=|\alpha\rangle=\left|1_{\alpha}\right\rangle \\
& c_{\alpha}^{\dagger}\left|1_{\alpha}\right\rangle=\frac{1}{\sqrt{2}}|\alpha\rangle \triangleright_{-}|\alpha\rangle=\frac{1}{\sqrt{2}}(|\alpha\rangle \otimes|\alpha\rangle-|\alpha\rangle \otimes|\alpha\rangle)=0 \tag{49}\\
& c_{\alpha}\left|0_{\alpha}\right\rangle=0 \\
& c_{\alpha}\left|1_{\alpha}\right\rangle=|\alpha\rangle \triangleleft_{-}|\alpha\rangle=1=\left|0_{\alpha}\right\rangle . \tag{50}
\end{align*}
$$

Thus we conclude (note that $n_{\alpha}=0,1$ only take two values)

$$
\begin{aligned}
& c_{\alpha}^{\dagger}\left|n_{\alpha}\right\rangle=\sqrt{1-n_{\alpha}}\left|1-n_{\alpha}\right\rangle, \\
& c_{\alpha}\left|n_{\alpha}\right\rangle=\sqrt{n_{\alpha}}\left|1-n_{\alpha}\right\rangle .
\end{aligned}
$$

- Using Eq. (51), we can show that

$$
\begin{equation*}
c_{\alpha}^{\dagger} c_{\alpha}\left|n_{\alpha}\right\rangle=n_{\alpha}\left|n_{\alpha}\right\rangle, \tag{52}
\end{equation*}
$$

meaning that $c_{\alpha}^{\dagger} c_{\alpha}$ is the fermion number operator of the $|\alpha\rangle$ state.
All the single-mode Fock state can be constructed by the boson creation operator from the vacuum state

$$
\begin{equation*}
\left|n_{\alpha}\right\rangle=\left(c_{\alpha}^{\dagger}\right)^{n_{\alpha}}\left|0_{\alpha}\right\rangle . \tag{53}
\end{equation*}
$$

- Generic Fock States

The above result can be generalized to any Fock state of bosons

$$
\begin{align*}
& c_{\alpha}^{\dagger}\left|\ldots, n_{\beta}, n_{\alpha}, n_{\gamma}, \ldots\right\rangle_{F}=(-)^{\sum_{\beta<\alpha} n_{\beta}} \sqrt{1-n_{\alpha}}\left|\ldots, n_{\beta}, 1-n_{\alpha}, n_{\gamma}, \ldots\right\rangle_{F} \tag{54}\\
& c_{\alpha}\left|\ldots, n_{\beta}, n_{\alpha}, n_{\gamma}, \ldots\right\rangle_{F}=(-)^{\sum_{\beta<\alpha} n_{\beta}} \sqrt{n_{\alpha}}\left|\ldots, n_{\beta}, 1-n_{\alpha}, n_{\gamma}, \ldots\right\rangle_{F}
\end{align*}
$$

These two equations can be considered as the defining properties of fermion creation and annihilation operators.

- Operator Identities

Eq. (54) implies the following operator identities

$$
\begin{equation*}
\left\{c_{\alpha}^{\dagger}, c_{\beta}^{\dagger}\right\}=\left\{c_{\alpha}, c_{\beta}\right\}=0,\left\{c_{\alpha}, c_{\beta}^{\dagger}\right\}=\delta_{\alpha \beta} . \tag{55}
\end{equation*}
$$

These relations can be considered as the algebraic definition of fermion creation and annihilation operators.

