
Quantum Mechanics
Second Quantization

Second Quantization

◼ Quantum Many-Body States

◼ Identical Particles

Second quantization is a formalism used to describe quantum many-body systems of iden-
tical particles.

 Classical mechanics: each particle is labeled by a distinct position ri ⇒ any different configura-
tion of {ri} correspond to a different classical many-body state.

 Quantum mechanics: particles are identical, such that exchanging two particles (ri ↔ rj) does 
not lead to a different quantum many-body state.

Permutation  symmetry  of  identical  particles  ⇒  joint  probability  distribution  must  be
invariant under permutation:

p(…, ri,…, rj,…) = p(…, rj,…, ri,…), (1)

where the probability distribution p is related to the many-body wave function Ψ by

p(…, ri,…, rj,…) = Ψ(…, ri,…, rj,…)2. (2)

The wave function can only change up to an overall phase factor.

Ψ(…, ri,…, rj,…) = eⅈ φ Ψ(…, rj,…, ri,…). (3)

It forms as a one-dimensional representation of the permutation group. Mathematical fact:
there are only two 1-dim representations for any permutation group,

 trivial representation ⇒ bosons

ΨB(…, ri,…, rj,…) = +ΨB(…, rj,…, ri,…) (4)

 sign representation ⇒ fermions

ΨF(…, ri,…, rj,…) = -ΨF(…, rj,…, ri,…) (5)

◼ Dirac Notations

Let  us  rephrase this  using  Dirac ket-state notation  (more  concise). Consider  a  complete set  of
single-particle states α〉 (labeled by α)
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α〉 =  ⅆdr ψα(r) r〉, (6)

where ψα(r) is the wave function representing the state.

 A two-particle state with the 1st particle in α1〉 and the 2nd particle in α2〉 will be described by

α1〉 ⊗ α2〉 =  ⅆdr1  ⅆdr2 ψα1(r1) ψα2(r2) r1〉 ⊗ r2〉

=  ⅆdr1  ⅆdr2 Ψ(r1, r2) r1〉 ⊗ r2〉.
(7)

Ψ(r1, r2) = ψα1(r1) ψα2(r2) is identified as the two-body wave function.

 Exchanging r1 ↔ r2 in the wave function Ψ(r1, r2) leads to a new wave function Ψ′(r1, r2)

Ψ′(r1, r2) = Ψ(r2, r1) = ψα1(r2) ψα2(r1) = ψα2(r1) ψα1(r2), (8)

which corresponds to a new state

 ⅆdr1  ⅆdr2 Ψ′(r1, r2) r1〉 ⊗ r2〉

=  ⅆdr1  ⅆdr2 ψα2(r1) ψα1(r2) r1〉 ⊗ r2〉

= α2〉 ⊗ α1〉,

(9)

describing a two-particle state with the 1st particle in α2〉 and the 2nd particle in α1〉.
Conclusion:  exchanging  the  positions  of  two  particles  (r1 ↔ r2)  ⇔  exchanging  the  labels  of  the
single-particle state (α1  α2).

◼ First-Quantized States

First-quantization approach:

 Suppose the single-particle Hilbert space is D dimensional, spanned by the single-particle 
basis states α〉 (α = 1, 2,…, D).

 The many-body Hilbert space of N particles will be DN dimensional, spanned by the many-
body basis states

[α]〉 ≡ α1〉 ⊗ α2〉 ⊗…⊗ αN〉, (10)

where αi = 1, 2,…, D labels the state of the ith particle.

 A generic first-quantized state is a linear superposition of these basis states

Ψ〉 = 
[α]

Ψ[α] [α]〉,
(11)

where the coefficient Ψ[α] ∈ ℂ is also called the many-body wave function (as a more general 
function of labels αi not positions ri).

Most of the first-quantized states are not qualified to describe systems of identical particles.

 For identical bosons, Ψ[α] must be symmetric
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ΨB(…, αi,…, αj,…) = +ΨB(…, αj,…, αi,…) (12)

 For identical fermions, Ψ[α] must be antisymmetric

ΨF(…, αi,…, αj,…) = -ΨF(…, αj,…, αi,…) (13)

These states only span a subspace of the first-quantized Hilbert space.

unphysical states
bosonic
states fermionic

states

first-quantized states

We  would  like  to  pick  out  (or  construct)  the  basis states  for  the  bosonic  and  fermionic  sub-
spaces. Starting from a generic basis state [α]〉, we can construct

 bosonic states by symmetrization

 [α]〉 =  α1〉 ⊗ α2〉 ⊗…⊗ αN〉

≡ 
π∈SN

απ(1)〉 ⊗ απ(2)〉 ⊗…⊗ απ(N)〉, (14)

 fermionic states by antisymmetrization

 [α]〉 =  α1〉 ⊗ α2〉 ⊗…⊗ αN〉

≡ 
π∈SN

(-)π απ(1)〉 ⊗ απ(2)〉 ⊗…⊗ απ(N)〉, (15)

π denotes an SN group element and (-)π is the permutation sign of π.

(-)π = 
+1 if π has even number of inversions
-1 if π has odd number of inversions (16)

An inversion is a pair (x, y) such that x < y and π(x) > π(y). Take the S3 group for example:
π(123) 123 231 312 321 213 132
(-)π +1 +1 +1 -1 -1 -1 (17)

 Examples of bosonic states (unnormalized):

 α〉 ⊗ β〉 = α〉 ⊗ β〉+ β〉 ⊗ α〉, (assuming α ≠ β)

 α〉 ⊗ α〉 = α〉 ⊗ α〉.
(18)

 Examples of fermionic states (unnormalized):

 α〉 ⊗ β〉 = α〉 ⊗ β〉- β〉 ⊗ α〉, (assuming α ≠ β)

 α〉 ⊗ α〉 = 0 ⇒ no such fermionic state.
(19)

Pauli exclusion principle: two (or more) identical fermions can not occupy the same state 
simultaneously. 
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Originally α〉 ⊗ β〉 and β〉 ⊗ α〉 (for α ≠ β) are two orthogonal first-quantized  states, under either
symmetrization or antisymmetrization, they correspond to the same state (up to ±1 overall phase)

 α〉 ⊗ β〉 =  β〉 ⊗ α〉,

 α〉 ⊗ β〉 = - β〉 ⊗ α〉.
(20)

 The first-quantized Hilbert space is redundant ⇒ there are fewer basis states in the bosonic and 
fermionic subspaces.

 Consider N particles, each can take one of D different single-particle states,

 the dimension of bosonic subspace:

B =
(N +D - 1)!
N ! (D - 1)!

. (21)

 the dimension of fermionic subspace:

F =
D!

N ! (D -N)!
. (22)

It turns out that B +F ≤ DN as long as N > 1 ⇒ the remaining basis states in the first-quan-
tized Hilbert space are unphysical (for identical particles).

These unphysical states are annoying: we can not combine the states in the Hilbert space freely.
We must always remember to symmetrized/antisymmetrized the state. ⇒ Is there a better way to
organize the many-body Hilbert space, such that all states in the space are physical?

◼ Second-Quantized States (Fock States)

Sometimes difficulties in physics arise from the inappropriate language we used. There are two
different ways to describe many-body states:

 In first-quantization, we ask: Which particle is in which state?

 In second-quantization, we ask: How many particles are there in every state?

The question we ask in first-quantization  is inappropriate: if the particles are identical, it will be
impossible to tell which particle is which in the first place. We need to switch to a new language

α〉 ⊗ β〉 β〉 ⊗ α〉

the 1st particle on α〉
the 2nd particle in β〉

the 1st particle on β〉
the 2nd particle in α〉

↘ ↙

there is one particle in α〉, another particle in β〉

The new description does not require the labeling of particles. ⇒ It contains no redundant informa-
tion. ⇒ It leads to a more precise and succinct description.

In the second-quantization approach,

 Each basis state in the many-body Hilbert space is labeled by a set of occupation numbers 
nα (for α = 1, 2,…, D)
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[n]〉 ≡ n1, n2,…, nα,…, nD〉, (23)

meaning that there are nα particles in the state α〉.

nα = 
0, 1, 2, 3,… bosons,
0, 1 fermions. (24)

 For bosons, nα can be any non-negative integer.

 For fermions, nα can only take 0 or 1, due to the Pauli exclusion principle.

 The occupation numbers nα sum up to the total number of particles, i.e. ∑α nα = N.

 The states [n]〉 are also known as Fock states.

 All Fock states form a complete set of basis for the many-body Hilbert space, or the Fock 
space.

 Any generic second-quantized many-body state is a linear combination of Fock states,

Ψ〉 = 
[n]
Ψ[n] [n]〉.

(25)

◼ Representation of Fock States

The first- and the second-quantization formalisms can both provide legitimate description of
identical particles. (The first-quantization is just awkward to use, but it is still valid.)

Every Fock state has a first-quantized representation.

 The Fock state with all occupation numbers to be zero is called the vacuum state, denoted as

0〉 ≡ …, 0,…〉 (26)

It corresponds to the tensor product unit in the first-quantization, which can be written as

0〉B = 0〉F = . (27)

We use a subscript B/F to indicate whether the Fock state is bosonic (B) or fermionic (F). 
For vacuum state, there is no difference between them.

 The Fock state with only one non-zero occupation number is a single-mode Fock state, 
denoted as

nα〉 = …, 0, nα, 0,…〉 (28)

In terms of the first-quantized states

1α〉B = 1α〉F = α〉,

2α〉B = α〉 ⊗ α〉,

3α〉B = α〉 ⊗ α〉 ⊗ α〉,

nα〉B = α〉 ⊗ α〉 ⊗…⊗ α〉
nα factors

≡ α〉⊗nα.

(29)
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 For multi-mode Fock states (meaning more than one single-particle state α〉 is involved), 
the first-quantized state will involve appropriate symmetrization depending on the particle 
statistics. For example,

1α, 1β〉B =
1

2
(α〉 ⊗ β〉+ β〉 ⊗ α〉),

1α, 1β〉F =
1

2
(α〉 ⊗ β〉- β〉 ⊗ α〉).

(30)

Note the difference between bosonic and fermionic Fock states (even if their occupation num-
bers are the same). Here are more examples

2α, 1β〉B =
1

3
(α〉 ⊗ α〉 ⊗ β〉+ α〉 ⊗ β〉 ⊗ α〉+ β〉 ⊗ α〉 ⊗ α〉),

1α, 1β, 1γ〉F =
1

6
(α〉 ⊗ β〉 ⊗ γ〉+ β〉 ⊗ γ〉 ⊗ α〉+

γ〉 ⊗ α〉 ⊗ β〉- γ〉 ⊗ β〉 ⊗ α〉- β〉 ⊗ α〉 ⊗ γ〉- α〉 ⊗ γ〉 ⊗ β〉).

(31)

Ok, you get the idea. In general, the Fock state can be represented as

 for bosons,

[n]〉B =
∏α nα !
N !

1/2
 ⊗

α
α〉⊗nα. (32)

 for fermions,

[n]〉F =
1

N !
 ⊗

α
α〉⊗nα. (33)

 and  are symmetrization and antisymmetrization operators defined in Eq. (14) and Eq. (15).

◼ Creation and Annihilation Operators

◼ State Insertion and Deletion

The  creation  and  annihilation  operators  are  introduced  to  create  and  annihilate  particles
in  the  quantum  many-body  system,  as  indicated  by  their  names.  The  first  step  towards  defining
them  is  to  understand  how  to  insert  and  delete  a  single-particle  state  from  the  first-quantized
state in a symmetric (or antisymmetric) manner.

Let us first declare some notations:

 Let α〉, β〉 be single-particle states.

 Let  be the tensor identity (meaning that α〉 ⊗  =  ⊗ α〉 = α〉).

 Let Ψ〉, Φ〉 be generic first-quantized states as in Eq. (11). 
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Now we define the insertion operator ⊳± and deletion operator ⊲± by the following rules:

 Linearity (for a, b ∈ ℂ)

α〉 ⊳± (a Ψ〉+ b Φ〉) = a α〉 ⊳± Ψ〉+ b α〉 ⊳± Φ〉,

α〉 ⊲± (a Ψ〉+ b Φ〉) = a α〉 ⊲± Ψ〉+ b α〉 ⊲± Φ〉.
(34)

 Vacuum action

α〉 ⊳±  = α〉,

α〉 ⊲±  = 0.
(35)

 Recursive relation

α〉 ⊳± β〉 ⊗ Ψ〉 = α〉 ⊗ β〉 ⊗ Ψ〉± β〉 ⊗ (α〉 ⊳± Ψ〉),

α〉 ⊲± β〉 ⊗ Ψ〉 = 〈α β〉 Ψ〉± β〉 ⊗ (α〉 ⊲± Ψ〉).
(36)

〈α β〉 = δαβ if α〉 and β〉 are orthonormal basis states. The subscript ± of the insertion or deletion
operators indicates whether symmetrization (+) or antisymmetrization (-) is implemented.

◼ Boson Creation and Annihilation

 The boson creation operator bα† adds a boson to the single-particle state α〉, increasing the 
occupation number by one nα → nα + 1. It acts on a N-particle first-quantized state Ψ〉 as

bα† Ψ〉 =
1

N + 1
α〉 ⊳+ Ψ〉, (37)

where α〉 ⊳+ inserts the single-particle state α〉 to N + 1 possible insertion positions 
symmetrically.

 The boson annihilation operator bα removes a boson from the single-particle state α〉, 
reducing the occupation number by one nα → nα - 1 (while nα > 0). It acts on a N-particle first-
quantized state Ψ〉 as

bα Ψ〉 =
1

N
α〉 ⊲+ Ψ〉, (38)

where α〉 ⊲+ removes the single-particle state α〉 from N possible deletion positions 
symmetrically.

◻ Single-Mode Fock States

Based on these definitions, we can show that the creation and annihilation operators acting on
single-mode Fock states as

bα† nα〉 =
1

nα + 1
α〉 ⊳+ α〉⊗

nα
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=
nα + 1

nα + 1
α〉⊗(nα+1)

= nα + 1 nα + 1〉.

bα nα〉 =
1

nα
α〉 ⊲+ α〉⊗

nα

=
nα

nα
α〉⊗(nα-1)

= nα nα - 1〉.

(40)

Thus we conclude

bα† nα〉 = nα + 1 nα + 1〉,

bα nα〉 = nα nα - 1〉.
(41)

 Especially, when acting on the vacuum state

bα† 0α〉 = 1α〉,

bα 0α〉 = 0.
(42)

 Using Eq. (41), we can show that

bα† bα nα〉 = nα nα〉, (43)

meaning that bα† bα is the boson number operator of the α〉 state.
All  the  single-mode  Fock  state  can  be  constructed  by  the  boson  creation  operator  from  the
vacuum state

nα〉 =
1

nα !
bα†

nα
0α〉. (44)

◻ Generic Fock States

The above result can be generalized to any Fock state of bosons

bα† …, nβ, nα, nγ,…〉B = nα + 1 …, nβ, nα + 1, nγ,…〉B,

bα …, nβ, nα, nγ,…〉B = nα …, nβ, nα - 1, nγ,…〉B.
(45)

These two equations can be considered as the defining properties of boson creation and annihila-
tion operators. 

◻ Operator Identities

Eq. (45) implies the following operator identities
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bα†, bβ† = [bα, bβ] = 0, bα, bβ† = δαβ. (46)

These relations can be considered as the algebraic definition of boson creation and annihilation
operators.

◼ Fermion Creation and Annihilation

 The fermion creation operator cα† adds a fermion to the single-particle state α〉, increasing 
the occupation number by one nα → nα + 1 (while nα = 0). It acts on a N-particle first-quantized 
state Ψ〉 as

cα† Ψ〉 =
1

N + 1
α〉 ⊳- Ψ〉, (47)

where α〉 ⊳- inserts the single-particle state α〉 to N + 1 possible insertion positions anti-
symmetrically.

 The fermion annihilation operator cα removes a fermion from the single-particle state α〉, 
reducing the occupation number by one nα → nα - 1 (while nα = 1). It acts on a N-particle first-
quantized state Ψ〉 as

cα Ψ〉 =
1

N
α〉 ⊲- Ψ〉, (48)

where α〉 ⊲- removes the single-particle state α〉 from N possible deletion positions anti-
symmetrically.

◻ Single-Mode Fock States

Based on these definitions, we can show that the creation and annihilation operators acting on
single-mode Fock states as

cα† 0α〉 = α〉 ⊳-  = α〉 = 1α〉

cα† 1α〉 =
1

2
α〉 ⊳- α〉 =

1

2
(α〉 ⊗ α〉- α〉 ⊗ α〉) = 0

(49)

cα 0α〉 = 0

cα 1α〉 = α〉 ⊲- α〉 =  = 0α〉.
(50)

Thus we conclude (note that nα = 0, 1 only take two values)

cα† nα〉 = 1- nα 1- nα〉,

cα nα〉 = nα 1- nα〉.
(51)

 Using Eq. (51), we can show that
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cα† cα nα〉 = nα nα〉, (52)

meaning that cα† cα is the fermion number operator of the α〉 state.
All  the  single-mode  Fock  state  can  be  constructed  by  the  boson  creation  operator  from  the
vacuum state

nα〉 = cα†
nα
0α〉. (53)

◻ Generic Fock States

The above result can be generalized to any Fock state of bosons

cα† …, nβ, nα, nγ,…〉F = (-)∑β<αnβ 1- nα …, nβ, 1- nα, nγ,…〉F,

cα …, nβ, nα, nγ,…〉F = (-)∑β<αnβ nα …, nβ, 1- nα, nγ,…〉F.
(54)

These two equations can be considered as the defining properties of fermion creation and annihi-
lation operators. 

◻ Operator Identities

Eq. (54) implies the following operator identities

cα†, cβ† = {cα, cβ} = 0, cα, cβ† = δαβ. (55)

These  relations  can  be considered  as  the  algebraic definition  of fermion  creation  and  annihila-
tion operators.
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