
Quantum Mechanics
Perturbation Theory

Time-Independent Perturbation

◼ A Toy Model of Qubit

◼ General Ideas of Perturbation Theory

Perturbation theory: a set of approximation schemes that allows us to extend our knowledge
about an exactly solvable quantum system to its vicinity (in the parameter space). 

Why do we need perturbation theory?

" Exact solutions are rare. ⇒ We have to rely on perturbation theory to go beyond them and 
make the most of these exact solutions.

" Separation of scales: physics often takes place at different energy scales, e.g. … → quarks (GeV) 
→ nucleus (MeV) → atoms (eV) → molecules (100meV) → … ⇒ We can refine our descriptions 
by adding perturbative corrections progressively.

What are the central problems in perturbation theory?

" Time-independent perturbation: given the spectrum (eigenstates and eigenenergies) of H0, 
find the spectrum of H = H0 + λV , in power series of λ (given that λ is small).

" Time-dependent perturbation: given the (bare) propagator U0(t) = e-ⅈH0 t, find the propa-
gator 

U (t) = + exp -ⅈ 
0

t
ⅆ t′ H (t′) ,

H (t) = H0 + λV (t),
(1)

in power series of λ (given that λ is small). [We will explain the notations in Eq. (1) later.]

How is perturbation theory useful?

" Conceptually: to establish effective Hamiltonians, to analyze renormalization group flows …

" Practically: to calculate scattering amplitudes, response functions, spectral weights …

◼ Qubit Model and its Exact Solution

Let us start with a toy model of a single qubit. Consider

H (λ) = H0 + λV , (2)
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where H0 = σz and V = σx, s.t. H (λ) can be more explicitly written as

H (λ) = σz + λ σx

≏
1 λ
λ -1

.
(3)

What are the eigenenergies and eigenstates of H(λ)?

H (λ) 1ψ±(λ)〉 = E±(λ) 1ψ±(λ)〉. (4)

" Eigenenergies

E±(λ) = ± 1+ λ2 . (5)

" Eigenstates

1ψ+(λ)〉 =
1+ 1+ λ2  1↑〉 + λ 1↓〉

2 1+ λ2 + 1+ λ2 
,

1ψ-(λ)〉 =
1+ 1+ λ2  1↓〉 - λ 1↑〉

2 1+ λ2 + 1+ λ2 
.

(6)

◼ Taylor Expansion

Assuming λ is small (i.e. λ ≪ 1), Eq. (5) and Eq. (6) can be expanded in power series of λ

" As a reminder, the Taylor expansion of a function f (λ) is given by

f (λ) = 
k=0

∞ ∂λk f (0)

k !
λk

= f (0) + f ′(0) λ +
f ″(0)

2
λ2 +

f (3)(0)

6
λ3 +….

(7)

" Applying Eq. (7) to Eq. (5) and Eq. (6), we get

E± = ± 1+
λ2

2
-

λ4

8
+… , (8)

1ψ+(λ)〉 = 1↑〉 +
λ

2
1↓〉 -

λ2

8
1↑〉 -

3 λ3

16
1↓〉 +

11 λ4

128
1↑〉 +…,

1ψ-(λ)〉 = 1↓〉 -
λ

2
1↑〉 -

λ2

8
1↓〉 +

3 λ3

16
1↑〉 +

11 λ4

128
1↓〉 +….

(9)

Goal:  obtain  these  power  series  without  first  calculating  the  exact  solution!  -  This  is  possible  as
long as we know how to evaluate the derivatives ∂λnE(0) and ∂λn 1ψ±(0)〉.

The  perturbation  theory  is  essentially  an  iterative  algorithm  to  calculate  these  derivatives
order by order, based on our knowledge about H0 and V .
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The  perturbation  theory  is  essentially  an  iterative  algorithm  to  calculate  these  derivatives
order by order, based on our knowledge about H0 and V .

◼ Non-Degenerate Perturbation Theory

◼ Problem Setup

The starting point is the following Hamiltonian (linearly parameterized by λ)

H (λ) = H0 + λV . (10)

" This implies

H (0) = H0,

∂λH (0) = V ,

∂λ2H (0) = ∂λ
3H (0) = … = 0.

(11)

" To simplify the notation, we will suppress the argument λ if it is evaluated at λ = 0.

H = H0,

∂λH = V ,

∂λ2H = ∂λ
3H = … = 0.

(12)

Rule: Everything is treated as a function of λ, like f (λ). But if the dependence on λ is not explic-
itly spelt out, we assume it to be the function evaluated at λ = 0, i.e. f ≡ f λ=0 = f (0).

Consider the eigen equation

H (λ) 1n(λ)〉 = En(λ) 1n(λ)〉. (13)

For each given λ, there is a different H (λ), and hence a different set of En(λ) and 1n(λ)〉, labeled by
n = 1, 2, 3, ….

" En(λ) is the nth energy level. It is a real number depending on λ.

" 1n(λ)〉 is the nth eigenstate (in correspondence to En(λ)). It is a state vector in the Hilbert space 
that can change with λ. Note: The notation 1n(λ)〉 does not imply that the index n is λ depen-
dent, it should be understood as

1n(λ)〉 = 
m

ψnm(λ) 1m〉. (14)

We  assume  a  discrete  spectrum  without  degeneracy,  such  that  the  “nth”  level/state  is  uniquely
defined. [The case with degeneracy will be discussed latter.]

Statement  of  the  problem:  suppose  we know the  eigenenergies  and eigenstates  at  and only  at
λ = 0,

H 1n〉 = En 1n〉, (15)

and we also know what the perturbation is: V = ∂λH ,
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Vmn = 〈mAV 1n〉 = 〈mA ∂λH 1n〉, (16)

calculate En(λ) and 1n(λ)〉 in power series of λ (to any desired order) in terms of En, Vmn and 1n〉.

◼ Hellmann-Feynman Theorems

" Applying ∂λ to both sides of H 1n〉 = En 1n〉,

∂λH 1n〉 +H 1∂λn〉 = ∂λEn 1n〉 +En 1∂λn〉. (17)

" Note: 1∂λn〉 stands for the derivative of the state 1n〉 (not the index n)

1∂λn〉 = 
m

∂λψnm(λ) 1m〉
λ=0

. (18)

It does not imply that the integer index n can be differentiated.

" Overlap with 〈mA from the left,

〈mA ∂λH 1n〉 + 〈mAH 1∂λn〉 = ∂λEn 〈m n〉 +En 〈m ∂λn〉. (19)

Using 〈mAH = 〈mAEm,

〈mA ∂λH 1n〉 +Em 〈m ∂λn〉 = ∂λEn 〈m n〉 +En 〈m ∂λn〉

⇒ 〈mA ∂λH 1n〉 = ∂λEn 〈m n〉 + (En -Em) 〈m ∂λn〉.
(20)

" Note that ∂λH = V  and 〈m n〉 = δmn,

Vmn = 〈mAV 1n〉 = ∂λEn δmn + (En -Em) 〈m ∂λn〉. (21)

This establishes a relation between the matrix element Vmn  (of the perturbation) and the deriva-
tives ∂λEn and 1∂λn〉.

" When m = n, Eq. (21) implies

∂λEn = Vnn. (22)

This is the first Hellmann-Feynman theorem.

" When m ≠ n, Eq. (21) implies

〈m ∂λn〉 =
Vmn

En -Em
,

〈∂λm n〉 =
Vmn

Em -En
.

(23)

This is the second Hellmann-Feynman theorem. Tip: the energy denominator is always 
given by the energy of the state that is being differentiated minus the energy of the other state.

The  Hellmann-Feynman theorems  tell  us  how  the  derivative  of  the  energy  ∂λEn  or  the
state  1∂λn〉  and  〈∂λmA  on  the  left-hand-side  is  related  to  something  on  the  right-hand-side  which
does  not  contain  ∂λ.  ⇒  This  effectively  reduces  the  order  of  ∂λ  by  one.  ⇒  Applying  them itera-
tively,  we  will  be  able  to  calculate  the  derivatives  to  any  order  for  both  energies  and  states,
which are all we need to construct the power series of the perturbative expansion.
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The  Hellmann-Feynman theorems  tell  us  how  the  derivative  of  the  energy  ∂λEn  or  the
state  1∂λn〉  and  〈∂λmA  on  the  left-hand-side  is  related  to  something  on  the  right-hand-side  which
does  not  contain  ∂λ.  ⇒  This  effectively  reduces  the  order  of  ∂λ  by  one.  ⇒  Applying  them itera-
tively,  we  will  be  able  to  calculate  the  derivatives  to  any  order  for  both  energies  and  states,
which are all we need to construct the power series of the perturbative expansion.

◼ Energy Corrections

According to the Taylor expansion,

En(λ) = 
k=0

∞ ∂λk En

k !
λk = En + ∂λEn λ +

1

2
∂λ2En λ2 +…. (24)

" We already know from Eq. (22) that

∂λEn = Vnn = 〈nA ∂λH 1n〉. (25)

" We continue to evaluate

∂λ2En = ∂λ 〈nA ∂λH 1n〉

= 〈∂λnA ∂λH 1n〉 + 〈nA ∂λ2H 1n〉 + 〈nA ∂λH 1∂λn〉.
(26)

Note that ∂λ2H = 0 according to the setup in Eq. (12).

∂λ2En = 〈∂λnA ∂λH 1n〉 + 〈nA ∂λH 1∂λn〉

= 
m

(〈∂λn m〉 〈mA ∂λH 1n〉 + 〈nA ∂λH 1m〉 〈m ∂λn〉)

= 
m

Vnm

En -Em
Vmn +Vnm

Vmn

En -Em

= 2 
m

Vnm Vmn

En -Em
.

(27)

But, wait a moment … The energy denominator diverges when m = n,  what is wrong? - Note
that Eq. (23) only holds for m ≠ n, so we must be careful. Let us restart from the 2nd line of Eq.
(27),

∂λ2En = 
m

(〈∂λn m〉 〈mA ∂λH 1n〉 + 〈nA ∂λH 1m〉 〈m ∂λn〉)

= 
m≠n

(〈∂λn m〉 〈mA ∂λH 1n〉 + 〈nA ∂λH 1m〉 〈m ∂λn〉) +

(〈∂λn n〉 〈nA ∂λH 1n〉 + 〈nA ∂λH 1n〉 〈n ∂λn〉)

= 2 
m≠n

Vnm Vmn

En -Em
+Vnn(〈∂λn n〉 + 〈n ∂λn〉)

= 2 
m≠n

Vnm Vmn

En -Em
+Vnn ∂λ 〈n n〉.

(28)

Given that 〈n n〉 = 1, taking ∂λ on both sides, ∂λ 〈n n〉 = ∂λ1 = 0. So
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∂λ2En = 2 
m≠n

Vnm Vmn

En -Em
. (29)

So to the 2nd order in λ, the perturbative correction to the energy is given by

En(λ) = En +Vnn λ + 
m≠n

Vnm Vmn

En -Em
λ2 +…. (30)

◻ Comment on Gauge Fixing

In  fact,  〈n ∂λn〉  is  the  connection  of  the  vector  bundle  which  can  always  be  set  to  zero  by
gauge fixing along the path of λ. To see this, we start with

〈n n〉 = 1

⇒ 〈∂λn n〉 + 〈n ∂λn〉 = ∂λ 〈n n〉 = ∂λ1 = 0

⇒ Re 〈n ∂λn〉 = 0.
(31)

So 〈n ∂λn〉 can only be purely imaginary. But we are free to perform the gauge transformation

1n(λ)〉 → eⅈ ϕ(λ) 1n(λ)〉, (32)

under which,

〈n ∂λn〉 → 〈n ∂λn〉 + ⅈ ∂λϕ. (33)

We can always choose ∂λϕ to transform 〈n ∂λn〉 to zero. So in addition to Eq. (23), we can fur-
ther require

〈n ∂λn〉 = 〈∂λn n〉 = 0. (34)

◼ State Corrections

According to the Taylor expansion,

1n(λ)〉 = 
k=0

∞ ∂λk n

k !
λk = 1n〉 + 1∂λn〉 λ +

1

2
∂λ2n λ2 +…. (35)

By Eq. (23), we know

1∂λn〉 = 
m≠n

1m〉 〈m ∂λn〉 = 
m≠n

1m〉
Vmn

En -Em
. (36)

Let us continue to calculate the next order derivative [Please bear with me ...]

∂λ2n = ∂λ 
m≠n

1m〉
〈mA ∂λH 1n〉

En -Em

= 
m≠n

1∂λm〉
〈mA ∂λH 1n〉

En -Em
+ 1m〉

〈∂λmA ∂λH 1n〉

En -Em
+

- (37)
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1m〉
〈mA ∂λH 1∂λn〉

En -Em
- 1m〉

〈mA ∂λH 1n〉

(En -Em)2
(∂λEn - ∂λEm)

= 
m≠n


l≠m

1l〉
Vlm

Em -El

Vmn

En -Em
+ 

l≠m

1m〉
Vml

Em -El

Vln

En -Em
+


l≠n

1m〉
Vml

En -Em

Vln

En -El
- 1m〉

Vmn

(En -Em)2
(Vnn -Vmm)

(37)

Push  l = m  or  l = n  terms  out  of  the  summation,  so  as  to  combine  the  first  three  summations
under ∑l≠m,n (sum over l excluding both m and n),

∂λ2n = 
m≠n


l≠m,n

1l〉
Vlm

Em -El

Vmn

En -Em
+ 1m〉

Vml

Em -El

Vln

En -Em
+ 1m〉

Vml

En -Em

Vln

En -El
+

1n〉
Vnm

Em -En

Vmn

En -Em
+ 1m〉

Vmn

Em -En

Vnn

En -Em
+

1m〉
Vmm

En -Em

Vmn

En -Em
- 1m〉

Vmn Vnn

(En -Em)2
+ 1m〉

Vmn Vmm

(En -Em)2

= 
m≠n


l≠m,n

1l〉
Vlm

Em -El

Vmn

En -Em
+ 1m〉

Vml

Em -El

Vln

En -Em
+ 1m〉

Vml

En -Em

Vln

En -El
-

1n〉
Vnm Vmn

(En -Em)2
- 2 1m〉

Vmn Vnn

(En -Em)2
+ 2 1m〉

Vmn Vmm

(En -Em)2

(38)

The double summation ∑m≠n ∑l≠m,n  means to sum over l  and m, under the constraint that l, m, n
are mutually exclusive.  The summation is  symmetric  under the exchange of  l  and m.  So for the
first term in Eq. (38),


m≠n


l≠m,n

1l〉
Vlm

Em -El

Vmn

En -Em
= 

m≠n


l≠m,n

1m〉
Vml

El -Em

Vln

En -El
, (39)

therefore

∂λ2n =


m≠n


l≠m,n

1m〉Vml Vln
1

(El -Em) (En -El)
+

1

(Em -El) (En -Em)
+

1

(En -Em) (En -El)
-

1n〉
Vnm Vmn

(En -Em)2
- 2 1m〉

Vmn Vnn

(En -Em)2
+ 2 1m〉

Vmn Vmm

(En -Em)2

= 
m≠n


l≠m,n

2 1m〉
Vml Vln

(En -Em) (En -El)
- 1n〉

Vnm Vmn

(En -Em)2
- 2 1m〉

Vmn Vnn

(En -Em)2
+ 2 1m〉

Vmn Vmm

(En -Em)2

(40)
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Finally we absorb the last term to the summation ∑l=m,n to eliminate the constraint of l ≠ m,

∂λ2n = 
m≠n


l≠n

2 1m〉
Vml Vln

(En -Em) (En -El)
- 2 1m〉

Vmn Vnn

(En -Em)2
- 1n〉

Vnm Vmn

(En -Em)2
(41)

Put together Eq. (36) and Eq. (41), to the 2nd order in λ, the perturbative correction to the basis
state is given by

1n(λ)〉 = 1n〉 + 
m≠n

1m〉
Vmn

En -Em
λ +


m≠n


l≠n

1m〉
Vml Vln

(En -Em) (En -El)
- 

m≠n

1m〉
Vmn Vnn

(En -Em)2
-

1

2

m≠n

1n〉
Vnm Vmn

(En -Em)2
λ2 +….

(42)

Following  this  procedure,  one  can  calculate  the  perturbative  correction  order  by  order.  Higher
order results can be found on Wikipedia under Perturbation Theory (Quantum Mechanics).

[Optional problem] Using the techniques above to show that the 3rd order correction to
energy is given by
En = …+ ∑m≠n ∑l≠n

Vnm Vml Vln

(En-Em) (En-El)
-Vnn ∑m≠n

Vnm Vmn

(En-Em)2
 λ3 +…

HW
1

◼ Summary of Results

Sometimes, it is simpler to redefine λV  as V

H (λ) = H0 + λV → H0 +V . (43)

Rule: whenever we encounter λVmn we rewrite it as Vmn.

Instead of  thinking that  the parameter  λ  is  small,  we can think that  the operator  V  is  small
(i.e.  all  matrix  elements  Vmn → 0  uniformly).  The  perturbative  corrections  are  actually  in  power
series of V ,

En(V ) = En +Vnn + 
m≠n

Vnm Vmn

En -Em
+…,

1n(V )〉 = 1n〉 + 
m≠n

1m〉
Vmn

En -Em
+….

(44)

To summarize, given the unperturbed Hamiltonian H0 and the perturbation V  (represented in the
eigenbasis of H0),

H0 = 
n

1n〉En 〈nA, V = 
m,n

1m〉Vmn 〈nA, (45)

the  perturbation  theory  allows  us  to  construct  the  spectral  decomposition  of  the  perturbed
Hamiltonian H0 +V  (i.e. its corrected eigenenergies and eigenstates)
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H0 +V = 
n

1n(V )〉En(V ) 〈n(V )A. (46)

◼ Physical Intuitions

In matrix form, H0 is diagonal in its eigenbasis, but V  is not.

H0 +V ≏

⋮ ⋮
⋯ En +Vnn ⋯ Vnm ⋯

⋮ ⋮
⋯ Vmn ⋯ Em +Vmm ⋯

⋮ ⋮

, (47)

we will need to re-diagonalize the new Hamiltonian H0 +V . But if the off-diagonal elements are
weak  (V → 0),  H0 +V  is  approximately  diagonal,  that  is  why  the  new  eigenenergies  and  eigen-
states can be obtained from the old ones by perturbative corrections.

" To the 1st order, En(V ) simply takes out the diagonal matrix element of H0 +V , which 
amounts to re-evaluating the energy expectation value on the old eigenstate 1n〉:

En +Vnn = 〈nAH0 +V 1n〉. (48)

" State hybridization: the 1st order correction of 1n(V )〉 hybridizes (mixes) the original state 1n〉 
with all the other 1m〉 states that are connected to 1n〉 by non-vanishing Vmn.

1n(V )〉 = 1n〉 + 
m≠n

1m〉
Vmn

En -Em
(49)

The hybridization coefficient is

" proportional to the transition rate Vmn,

" inversely proportional to the energy level spacing (En -Em).

1n〉
En

1m〉
Em

Vmn

1n〉
En

1m〉
Em

Vmn

" When En -Em → 0 (energy levels become degenerated) ⇒ the hybridization coefficient 
diverges ⇒ signifies the breakdown of the non-degenerate perturbation theory. This scenario 
is called a level resonance.

" Level repulsion: the 2nd order energy correction always repel the levels apart (by making the 
higher level higher and the lower level lower).

En +
m

1VnmA2

En -Em

< En if En < Em,
> En if En > Em. (50)
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1n〉
En

1m〉
Em

Vmn

Vnm

◼ Application: the Qubit Model

H0 +V ≏
1 λ
λ -1

. (51)

" Unperturbed spectrum. 1↑〉: E↑ = +1, 1↓〉: E↓ = -1.

" State hybridization:

1↑〉′ = 1↑〉 +
V↓↑

E↑ -E↓
1↓〉 +… = 1↑〉 +

λ

2
1↓〉 +…,

1↓〉′ = 1↓〉 +
V↑↓

E↓ -E↑
1↑〉 +… = 1↓〉 -

λ

2
1↑〉 +….

(52)

" Level repulsion:

E↑
′ = E↑ +

V↑↓ V↓↑

E↑ -E↓
+… = +1+

λ2

2
+…,

E↓
′ = E↓ +

V↓↑ V↑↓

E↓ -E↑
+… = -1-

λ2

2
+….

(53)

Here we use a ′ to denote the corrected states 1n〉′ ≡ 1n(V )〉 and energies En
′ ≡ En(V ).

Consider a quantum pendulum described by the Hamiltonian H = - 1
2
∂θ2-g cos θ. 

Assume g ≪ 1, calculate (i) the eigenenergies to the 2nd order in g, and (ii) the eigen-
states to the 1st order in g.

HW
2

◼ A Numerical Interlude: Jacobi Algorithm*

◼ Algorithm

The Jacobi Algorithm is an iterative approach to diagonalize a Hamiltonian.

" Given a Hamiltonian H  (as a matrix).

" Pick an off-diagonal element Hmn (labeled by two indices m and n), called a pivot. In practice, 
the largest Hmn is taken as the pivot, but that is not necessary in general.

(54)
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⋮ ⋮
⋯ Hnn ⋯ Hnm ⋯

⋮ ⋮
⋯ Hmn ⋯ Hmm ⋯

⋮ ⋮

.

(54)

The goal is to suppress Hmn.

" First introduce two angles θ and ϕ to parameterize the following ratio

Hmn

Hnn -Hmm
=

1

2
eⅈ ϕ tan 2 θ. (55)

" Then construct a unitary matrix G (called the Givens matrix)

G =

M
cos θ -e-ⅈ ϕ sin θ

M
eⅈ ϕ sin θ cos θ

M

. (56)

" The following transformation will eliminate Hmn and brings H  closer to diagonal

H → H ′ = G† H G. (57)

" Take the new Hamiltonian H ′ and start over again (until it is sufficiently diagonalized).

◼ Demonstration

Here is  a demonstration of  how the Hamiltonian matrix looks like in each step (lighter color:
smaller magnitude, color: phase), and a list of diagonal elements in the initial and final Hamilto-
nian (compared to the exact eigenvalues).

+1-1
+ⅈ

-ⅈ
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→ → → → → → →

→ → → → → → →

→ → → → → →

Initial: -0.619487 -0.457804 -0.283601 0.887745 1.42186
Final: -2.38874 -1.6616 0.662814 1.43058 2.90566
Exact: -2.38874 -1.6616 0.662788 1.4306 2.90566

The algorithm can be used to block-diagonalize a Hamiltonian as well. We just need to restrict
the choice of the pivot outside the diagonal blocks.

→ → → → → → →

→ → → → → → →

→ → → → → →

◼ Perturbative Limit

Denote the diagonal and off-diagonal elements as

En = Hnn,

Vmn = Hmn (for m ≠ n).
(58)

In the limit Vmn → 0, the angle θ → 0 according to Eq. (55),

eⅈ ϕ θ ≃
Vmn

En -Em
. (59)

The Givens matrix becomes

G ≃

M

1 Vnm

Em-En

M
Vmn

En-Em
1

M

. (60)

PerturbationTheory.nb 12



This corresponds to the following basis transform

( 1n〉′ 1m〉′ ) = ( 1n〉 1m〉 )G ≃ ( 1n〉 1m〉 )
1 Vnm

Em-En

Vmn

En-Em
1

, (61)

which is consistent with the perturbation theory

1n〉′ ≃ 1n〉 + 1m〉
Vmn

En -Em
,

1m〉′ ≃ 1m〉 + 1n〉
Vnm

Em -En
.

(62)

Conclusion:  for  small  V ,  one  can  use  the  non-degenerate  perturbation  theory  to  implement  the
Givens rotation (approximately) and to bring the Hamiltonian to diagonal or block-diagonal.

◼ Degenerate Perturbation Theory

◼ General Ideas

How do we deal with degeneracies in H0 spectrum?

Strategy: divide and conquer.

+

λ

= → →

The degenerated states span a Hilbert subspace, called the degenerate subspace.

" First apply non-degenerate perturbation theory to bring the Hamiltonian to diagonal blocks 
in the degenerate subspaces.

" Each diagonal block represents an effective Hamiltonian within the degenerated subspace.

" previously: perturbative correction to each energy level → now: perturbative correction to 
each effective Hamiltonian. 

" Then go on with each effective Hamiltonian:

" If the degeneracy has been lifted (typically), we proceed with non-degenerate perturbation in 
each block.

" If the diagonal elements are still fully degenerated, we proceed with exact diagonalization (no 
perturbative approach available in this case).

The  degenerate  perturbation  theory:  applying  non-degenerate  perturbation  theory  in  hierar-
chies. It progressively focus on lower and lower energy scales ⇒ A key idea of the renormaliza-
tion group approach in quantum field theory.  
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The  degenerate  perturbation  theory:  applying  non-degenerate  perturbation  theory  in  hierar-
chies. It progressively focus on lower and lower energy scales ⇒ A key idea of the renormaliza-
tion group approach in quantum field theory.  

◼ Generalized Hellmann-Feynman Theorems

We  can  generalize  the  Hellmann-Feynman  theorems  to  generic  spectrum  with  degenera-
cies. When the unperturbed Hamiltonian H0 has degenerate levels, we use two indices to label the
basis state

1n〉
generalize

1nα〉 (63)

" n: principal quantum number, labels degenerate subspaces.

" α: secondary quantum number, labels orthogonal degenerate state within each subspace.

The states with the same index n are degenerated:

H0 1nα〉 = En 1nα〉, (64)

such that the eigenenergy En only depends on n.

" 1nα〉 form a set of orthonormal basis: 〈mα n β〉 = δmn δαβ.

" The perturbation operator V  can be represented in this basis:

V = 
mα,n β

1mα〉Vmα,n β 〈n βA. (65)

However, once the perturbation V  is included,

H (λ) = H0 + λV , (66)

the  degeneracy  in  each  subspace  can  no  longer  be  maintained  in  general.  Instead,  we  will  only
require the perturbed Hamiltonian H (λ) to be block-diagonalized in the 1nα(λ)〉 basis, meaning that

H (λ) 1n β(λ)〉 = 
α

1nα(λ)〉En,αβ(λ). (67)

" En,αβ(λ) is the matrix element of the effective Hamiltonian in the nth degenerate subspace.

" En,αβ(λ) should take the form of

En,αβ ≡ En,αβ(0) = En δαβ, (68)

to restore Eq. (64) in the λ = 0 unperturbed limit.

" The Hermitian conjugate version of Eq. (67) reads

〈mγ(λ)AH (λ) = 
δ

〈mδ(λ)AEm,δγ
* (λ) = 

δ

Em,γδ(λ) 〈mδ(λ)A, (69)

where we have assumed that the effective Hamiltonian is  Hermitian: Em,δγ
* (λ) = Em,γδ(λ).

Applying ∂λ on both sides of Eq. (67) and overlapping with 〈mγA, we obtain
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〈mγA ∂λH 1n β〉 = 
α

∂λEn,αβ 〈mγ nα〉 +
α

〈mγ ∂λnα〉En,αβ -
δ

Em,γδ 〈mδ ∂λn β〉

= ∂λEn,γ β δmn + (En -Em) 〈mγ ∂λn β〉
(70)

" When m = n, the first Hellmann-Feynman theorem:

∂λEn,αβ = 〈nαA ∂λH 1n β〉 = Vnα,n β. (71)

" When m ≠ n, the second Hellmann-Feynman theorem:

〈mα ∂λn β〉 =
〈mαA ∂λH 1n β〉

En -Em
=

Vmα,n β

En -Em
,

〈∂λmα n β〉 =
〈mαA ∂λH 1n β〉

Em -En
=

Vmα,n β

Em -En
.

(72)

We also assume (by gauge fixing) that

〈nα ∂λn β〉 = 〈∂λnα n β〉 = 0. (73)

Comment: 〈nα ∂λn β〉 is a non-Abelian connection that can be gauge fixed by unitary transforma-
tions within the nth degenerate subspace. [But we will not go into more details about this.]

◼ Effective Hamiltonian

Using  Eq.  (71),  Eq.  (72),  Eq.  (73)  and the  techniques  we  have  developed  previously,  the  fol-
lowing derivatives can be calculated

∂λEn,αβ = Vnα,n β,

∂λ2En,αβ = 2 
m≠n


γ

Vnα,mγ Vmγ,n β

En -Em
,

1∂λnα〉 = 
m≠n


β

1m β〉
Vm β,nα

En -Em
.

(74)

With these, we can obtain:

" (the matrix element of) the effective Hamiltonian to the 2nd order in λ

En,αβ(λ) = En δαβ +Vnα,n β λ + 
m≠n


γ

Vnα,mγ Vmγ,n β

En -Em
λ2 +…, (75)

" the corrected basis state to the 1st order in λ
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1nα(λ)〉 = 1nα〉 + 
m≠n


β

1m β〉
Vm β,nα

En -Em
λ +…. (76)

Note that the summation range of the secondary index will depend on the choice of the primary
index, which can be inferred easily.

Eq. (75) and Eq. (76) allow us to construct the effective Hamiltonian in operator form

Hn
eff(λ) = 

α,β

1nα(λ)〉En,αβ(λ) 〈n β(λ)A. (77)

The  full  Hamiltonian:  summation  of  effective  Hamiltonians  over  degenerate  subspaces
H (λ) = ⊕nHn

eff(λ).

◼ Application: A Spin-1 Model

Consider a spin-1 system (3-dimensional Hilbert space).

" Basis: 1+1〉, 10〉, 1-1〉.

" The matrix representations for spin operators Sx and Sz

Sx ≏
1

2

0 1 0
1 0 1
0 1 0

, Sz ≏
1 0 0
0 0 0
0 0 -1

. (78)

Hamiltonian

H (λ) = H0 + λV ,

H0 = (Sz)2 ≏
1 0 0
0 0 0
0 0 1

,

V = Sx + Sz ≏

1 1
2

0
1
2

0 1
2

0 1
2

-1

.

(79)

Degenerate subspaces

n states energy
1 1+1〉, 1-1〉 E1 = 1
0 10〉 E0 = 0

(80)

" Corrected basis (use ′ to denote the perturbed result)

1±1〉′ = 1±1〉 + 10〉
V0,±1

E1 -E0
λ +… = 1±1〉 +

λ

2
10〉 +…,

(81)
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10〉′ = 10〉 + 1+1〉
V+1,0

E0 -E1
λ + 1-1〉

V-1,0

E0 -E1
λ +…

= 10〉 -
λ

2
(1+1〉 + 1-1〉) +….

(81)

" Effective Hamiltonian

" n = 1 subspace

H1
eff = 1+1〉′ E1 +V+1,+1 λ +

V+1,0 V0,+1

E1 -E0
λ2 〈+1A′ + 1-1〉′ E1 +V-1,-1 λ +

V-1,0 V0,-1

E1 -E0
λ2 〈-1A′ +

1+1〉′ V+1,-1 λ +
V+1,0 V0,-1

E1 -E0
λ2 〈-1A′ + 1-1〉′ V-1,+1 λ +

V-1,0 V0,+1

E1 -E0
λ2 〈+1A′ +…

= 1+1〉′ 1+ λ +
λ2

2
〈+1A′ + 1-1〉′ 1- λ +

λ2

2
〈-1A′ + 1+1〉′

λ2

2
〈-1A′ + 1-1〉′

λ2

2
〈+1A′ +…

(82)

On the corrected basis 1+1〉′, 1-1〉′, H1
eff can be represented as a 2× 2 matrix

H1
eff ≏

1+ λ + λ2

2
λ2

2
λ2

2
1- λ + λ2

2

. (83)

The degeneracy is lifted ⇒ we can proceed with non-degenerate perturbation in the next 
iteration.

" n = 0 subspace

H0
eff = 10〉′ E0 +V0,0 λ +

V0,+1 V+1,0 +V0,-1 V-1,0

E0 -E1
λ2 〈0A′ +…

= 10〉′ -λ2 〈0A′ +…

(84)

We can use another round of the non-degenerate perturbation theory to further diagonalize H1
eff.

We start with

H1
eff = 1+1〉′ E+1

′ 〈+1A′ + 1-1〉′ E-1
′ 〈-1A′ + 1+1〉′ V+1,-1

′ 〈-1A′ + 1-1〉′ V-1,+1
′ 〈+1A′,

E±1
′ = 1± λ +

λ2

2
,

V+1,-1
′ = V-1,+1

′ =
λ2

2
, V+1,+1

′ = V-1,-1
′ = 0.

(85)

" Corrected states

1+1〉″ = 1+1〉′ + 1-1〉′
V-1,+1

′

E+1
′ -E-1

′
+… = 1+1〉′ +

λ

4
1-1〉′ +…

(86)

PerturbationTheory.nb 17



1-1〉″ = 1-1〉′ + 1+1〉′
V+1,-1

′

E-1
′ -E+1

′
+… = 1-1〉′ -

λ

4
1+1〉′ +…

(86)

Plugging in Eq. (81),

1+1〉″ = 1+1〉 +
λ

2
10〉 +

λ

4
1-1〉 +

λ2

4 2
10〉 +…

1-1〉″ = 1-1〉 +
λ

2
10〉 -

λ

4
1+1〉 -

λ2

4 2
10〉 +…

(87)

The λ2 terms should not be included, because the expansion is only reliable to the 1st order in λ.

" Corrected energies

E+1
″ = E+1

′ +V+1,+1
′ +

V+1,-1
′ V-1,+1

′

E+1 -E-1
= 1+ λ +

λ2

2
+
λ3

8
+…

E-1
″ = E-1

′ +V-1,-1
′ +

V-1,+1
′ V+1,-1

′

E-1 -E+1
= 1- λ +

λ2

2
-
λ3

8
+…

(88)

The λ3 terms should not be included, because the expansion is only reliable to the 2nd order in 
λ.

In conclusion, we found following perturbative expansions for the spin-1 model given in Eq. (79)

eigenenergies eigenstates

E+1
″ = 1+ λ + λ2

2
+Xλ3 1+1〉″ = 1+1〉 + λ

2
10〉 + λ

4
1-1〉 + Xλ2

E0
′ = -λ2 +Xλ3 10〉′ = 10〉 - λ

2
(1+1〉 + 1-1〉) + Xλ2

E-1
″ = 1- λ + λ2

2
+X λ3 1-1〉″ = 1-1〉 + λ

2
10〉 - λ

4
1+1〉 + X λ2

(89)

If we exactly diagonalize H (λ) and perform the Taylor expansion, the above results can be verified.

-λ2 + O[λ]3 - 0 + 
-1

2
+

+1

2
 λ + O[λ]2

1 - λ + λ2

2
+ O[λ]3 -1 + 

0

2
-

+1

4
 λ + O[λ]2

1 + λ + λ2

2
+ O[λ]3 +1 + 

0

2
+

-1

4
 λ + O[λ]2
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Time-Dependent Perturbation

◼ Time-Dependent Perturbation Theory

◼ Problem Setup

Two schemes of the perturbation theory:

" Time-independent perturbation: corrections to energy levels, states, effective Hamiltonians.

" Time-dependent perturbation: corrections to time-evolution operators (propagators, 
Green’s functions).

The time-dependent perturbation theory is more general (because we can always set the perturba-
tion to be time-independent afterwards). 

Consider the Hamiltonian

H (t) = H0 +V (t). (90)

" The spectrum of H0 is known

H0 1n〉 = En 1n〉. (91)

The basis states 1n〉 are fixed (time-independent), because H0 is time-independent.

" All the time dependence is ascribed to the operator V (t), which can be represented in the eigen-
basis of H0

V (t) = 
m,n

1m〉Vmn(t) 〈nA. (92)

Vmn(t) is expected to be small (compared to the energy scale of H0) through out the time t.
Time-evolution of quantum states in the Schrödinger picture is governed by the Schrödinger
equation (set ℏ = 1 for simplicity):

ⅈ ∂t 1ψ(t)〉Z = H (t) 1ψ(t)〉Z = (H0 +V (t)) 1ψ(t)〉Z. (93)

Time-evolution is unitary: the solution of 1ψ(t)〉Z must take the form of

1ψ(t)〉Z = U (t) 1ψ(0)〉Z. (94)

" This defines the unitary operator U (t), called the time-evolution operator. Once we know 
U (t), we can apply it to any initial state 1ψ(0)〉Z to obtain the final state 1ψ(t)〉Z (we don’t need 
to solve the Schrödinger equation over and over again).

Plug Eq. (94) to Eq. (93) leads to an equation for U (t),

ⅈ ∂t U (t) = H (t)U (t), (95)

subject  to  the  initial  condition:  U (0) = M.  Note:  this  is  matrix  (or  operator)  equation,  which  has
many more variables to solve than the Schrödinger equation.
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subject  to  the  initial  condition:  U (0) = M.  Note:  this  is  matrix  (or  operator)  equation,  which  has
many more variables to solve than the Schrödinger equation.

This  is  a  hard  problem  in  general.  But  we  know  the  solution  for  a  special  case:  the  unper-
turbed case when V (t) = 0, where

ⅈ ∂t U0(t) = H0 U0(t). (96)

The solution is given by

U0(t) = e-ⅈH0 t = 
n

1n〉 e-ⅈEn t 〈nA. (97)

Now suppose V (t) is small (as a perturbation), H (t) is only slightly modified from H0, thus we
expect that U (t) is also close to U0(t) up to perturbative corrections. The goal of the time-depen-
dent perturbation theory is to calculate these corrections in power series of V (t).

H0
+V (t) H (t)

U0(t)
+??? U (t)

◼ Interaction Picture

Strategy:  changing  the  frame  of  reference.  Switch  to  the  comoving  frame  with  the  state
(following the unperturbed evolution), so as to focus on the effect of the V (t) perturbation.

Use U0(t) to transform everything to the Interaction picture.

" State-based formalism.

1ψ(t)〉ℐ = U0
†(t) 1ψ(t)〉Z = eⅈH0 t 1ψ(t)〉Z, (98)

One can show that

ⅈ ∂t 1ψ(t)〉ℐ = ⅈ ∂t eⅈH0 t 1ψ(t)〉Z

= ⅈ ∂t eⅈH0 t 1ψ(t)〉Z + eⅈH0 t ⅈ ∂t 1ψ(t)〉Z
= eⅈH0 t(-H0) 1ψ(t)〉Z + eⅈH0 t(H0 +V (t)) 1ψ(t)〉Z
= U0

†(t)V (t) 1ψ(t)〉Z
= U0

†(t)V (t)U0(t)U0
†(t) 1ψ(t)〉Z.

(99)

Define the perturbation in the interaction picture:

Vℐ(t) = U0
†(t)V (t)U0(t) = 

m,n

1m〉Vmn(t) eⅈ(Em-En) t 〈nA. (100)

The time-evolution of 1ψ(t)〉ℐ is described by
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ⅈ ∂t 1ψ(t)〉ℐ = Vℐ(t) 1ψ(t)〉ℐ. (101)

" Operator-based formalism.

Uℐ(t) = U0
†(t)U (t). (102)

t
0

U (t)

U0
† (t)

Uℐ(t) captures the “additional” unitary evolution implemented by U (t) compared to the refer-
ence U0(t). Following the similar derivation in Eq. (99), we can show that Uℐ(t) is governed by

ⅈ ∂t Uℐ(t) = Vℐ(t)Uℐ(t), (103)

subject to the initial condition: Uℐ(0) = M. The solution of Uℐ(t) can be used

" to provide the universal solution for 1ψ(t)〉ℐ = Uℐ(t) 1ψ(0)〉ℐ,

" and to construct U (t) = U0(t)Uℐ(t).

There is no explicit dependence on H0  in either Eq. (101) or Eq. (103), which allows us to focus
on the perturbation Vℐ(t).

◼ Dyson Series

Integrating both sides of Eq. (103) in time

ⅈUℐ(t) - ⅈUℐ(0) = ⅈ 
0

t
ⅆ t′ ∂t′ Uℐ(t′) = 

0

t
ⅆ t′ Vℐ(t′)Uℐ(t′), (104)

plugging in the initial condition Uℐ(0) = M, we obtain an integral equation, equivalent to the differ-
ential equation Eq. (103),

Uℐ(t) = M - ⅈ 
0

t
ⅆ t′ Vℐ(t′)Uℐ(t′). (105)

This provides a self-consistent equation for Uℐ(t). If we take this expression and substitute Uℐ(t′)
under the integrand, we obtain

Uℐ(t) = M - ⅈ 
0

t
ⅆ t′ Vℐ(t′) + (-ⅈ)2 

0

t
ⅆ t′ Vℐ(t′) 

0

t′

ⅆ t″ Vℐ(t″)Uℐ(t″). (106)

Iterating this procedure, we obtain a formal solution in power series of Vℐ, known as the Dyson
series:

Uℐ(t) = 
k=0

∞

(-ⅈ)k 
0

t
ⅆ tk 

0

tk
ⅆ tk-1 …

0

t2
ⅆ t1 Vℐ(tk)Vℐ(tk-1) …Vℐ(t1). (107)

where  the  k = 0  term  corresponds  to  M.  The  operators  Vℐ(t)  are  organized  in  a  time-ordered
sequence  with  0 ≤ t1 ≤ … ≤ tk-1 ≤ tk ≤ t.  Rule:  earlier  operator  on  the  right,  later  operator  on  the
left.
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where  the  k = 0  term  corresponds  to  M.  The  operators  Vℐ(t)  are  organized  in  a  time-ordered
sequence  with  0 ≤ t1 ≤ … ≤ tk-1 ≤ tk ≤ t.  Rule:  earlier  operator  on  the  right,  later  operator  on  the
left.

◼ Green’s Function

Let  us  take  a  closer  look  at  the  product  of  Vℐ  in  the  Dyson  series.  By  definition
Vℐ(t) = U0

†(t)V (t)U0(t),

Vℐ(tk)Vℐ(tk-1) …Vℐ(t1)

= U0
†(tk)V (tk)U0(tk)U0

†(tk-1)V (tk-1)U0(tk-1) …U0
†(t1)V (t1)U0(t1).

(108)

This motivates us to introduce the unitary operator G0(t, t′), known as the bare Green’s func-
tion or the bare propagator,

G0(t, t′) = U0(t)U0
†(t′) = 

n

1n〉 e-ⅈEn(t-t′) 〈nA, (109)

which propagates the state from time t′ to t. In terms of the bare Green’s function,

Vℐ(tk)Vℐ(tk-1) …Vℐ(t1)

= U0
†(t)G0(t, tk)V (tk)G0(tk, tk-1)V (tk-1) …G0(t2, t1)V (t1)G0(t1, 0).

(110)

The  left  most  U0
†(t)  can  be  canceled  out  if  we  consider  the  time-evolution  operator  in  the

Schrödinger picture, i.e. U (t) = U0(t)Uℐ(t). According to Eq. (107) and Eq. (110), we have

U (t) = 
k=0

∞

(-ⅈ)k 
0

t
ⅆ tk


0

tk
ⅆ tk-1 …

0

t2
ⅆ t1 G0(t, tk)V (tk)G0(tk, tk-1)V (tk-1) …G0(t2, t1)V (t1)G0(t1, 0).

(111)

Further define the dressed Green’s function (or the dressed propagator) as

G(t, t′) = U (t)U †(t′), (112)

then Eq. (111) can be written as

G(t, t0) = 
k=0

∞

(-ⅈ)k 
t0

t
ⅆ tk 

t0

tk
ⅆ tk-1 …


t0

t2
ⅆ t1 G0(t, tk)V (tk)G0(tk, tk-1)V (tk-1) …G0(t2, t1)V (t1)G0(t1, t0),

(113)

where we have generalized the initial time to t0. This is the Dyson series for Green’s function.

" G(t, t′) can be calculated in power series of V (t) given G0(t, t′).

" Since U (t) = G(t, 0), we also know how to calculate U (t) in power series of V (t).

So we have reached our goal!
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◼ Feynman Diagrams 

However,  the  formula  Eq.  (113)  looks  complicated.  Let  us  develop  some  physical  intuitions
using Feynman diagrams.

" A directed single-line link: the bare Green’s function from one time to another,

t′ t = G0(t, t′). (114)

The arrow specifies the direction of time (from past to future).

" A solid node: the perturbation operator at a particular time,

t = -ⅈV (t). (115)

" Connecting links and nodes: identifying the time together

t0 t1 t2
= G0(t2, t1) (-ⅈV (t1))G0(t1, t0). (116)

Note: in the diagram, the time flows along the arrow from left to right; but in the operator 
product, the operator acts in sequence from right to left. Things are mirror image (left-right 
reversed) to each other with respect to the “=” sign.

" If the time is not labeled explicitly, then

" the time of the outmost node (the initial and final nodes) is fixed, (convention: t0 - the initial 
time, t - the final time),

" the time of the internal node will be automatically integrated over, and the integration goes 
through all possible arrangements preserving the time-ordering.

= G0(t, t0),

= (-ⅈ ) 
t0

t
ⅆ t1 G0(t, t1)V (t1)G0(t1, t0),

= (-ⅈ )2 
t0

t
ⅆ t2 

t0

t2
ⅆ t1 G0(t, t2)V (t2)G0(t2, t1)V (t1)G0(t1, t0),

…

(117)

" A directed double-line link: the dressed Green’s function from one time to another,

= G(t, t0). (118)

With the diagrammatic representations in Eq. (117) and Eq. (118), we can rewrite Eq. (113) as

= + + +…. (119)

" If we turn off the perturbation, i.e.V (t) = 0 or = 0, Eq. (119) reduces to

= , (120)

as all the diagrams containing the node will vanish. This simply restores G(t, t0) = G0(t, t0) in 
the absence of perturbation.

" In the presence of V (t), the propagator is dressed order-by-order by scattering with the perturba-
tion . For example,  describes that the system is first propagated to an intermediate 
time, acted by the perturbation operator, and then continued to propagate to the final time. 
Other diagrams describe higher order processes. The full propagation is the sum of all possible 
processes.
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◼ Energy Level Transitions

◼ Transition Probability

If  a  system is  prepared  in  an  initial  state  1i〉  at  time  t0,  at  a  subsequent  time  t,  the  initial
state will evolve to G(t, t0) 1i〉. Then the probability to find the system in a final state 1f 〉 should
be given by

Pi→f = 1〈f AG(t, t0) 1i〉A2. (121)

Pi→f  is known as the transition probability.

To the 1st order in V (t), Eq. (113) reads

G(t, t0) ≃ G0(t, t0) - ⅈ 
t0

t
ⅆ t1 G0(t, t1)V (t1)G0(t1, t0) +…, (122)

where G0(t, t′) = ∑n 1n〉 e-ⅈEn(t-t′) 〈nA is given in Eq. (109). Suppose 1i〉 and 1f 〉 are eigenstates of H0,
we have

〈f AG(t, t0) 1i〉 ≃ 〈f AG0(t, t0) 1i〉 - ⅈ 
t0

t
ⅆ t1 〈f AG0(t, t1)V (t1)G0(t1, t0) 1i〉

= e-ⅈEf t+Ei t0 δf i - ⅈ 
t0

t
ⅆ t1 e-ⅈEf (t-t1) 〈f AV (t1) 1i〉 e-ⅈEi(t1-t0)

= e-ⅈEf t+Ei t0 δf i - ⅈ 
t0

t
ⅆ t1 〈f AV (t1) 1i〉 eⅈEf-Ei t1

(123)

For i ≠ f , the transition probability is given by

Pi→f (t, t0) =
1

ℏ2 
t0

t
ⅆ t1 〈f AV (t1) 1i〉 eⅈ ωf i t1

2
, (124)

here we have restored the Planck constant ℏ  and rewrite the energy difference as Ef -Ei = ℏ ωf i.
Note that as a probability, Pi→f  is dimensionless.

◼ Fermi’s Golden Rule

◼ Adiabatic Process

Consider the perturbation is gradually turn on following an exponential grow from the infinite
past (and switch off after t = 0)
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V (t) =
V et/τ t < 0
0 t ≥ 0

. (130)
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Suppose the system is prepared in state 1i〉 in the infinite past (t0 → -∞), what is the probability
for the system to transit to the state 1f 〉 at t = 0?

According to Eq. (124),

Pi→f =
1

ℏ2 
-∞

0
ⅆ t1 〈f AV 1i〉 et1/τ eⅈ ωf i t1

2

=
1〈f AV 1i〉A2

Ef -Ei
2 + ℏ2  τ2

.
(131)

The transition probability exhibits a resonance around ωf = ωi: states are more likely to hybridize
when they are closer in energy.
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Ef -Ei τ / ℏ

P
i→

f

V

fi
2

In the adiabatic limit  of τ → ∞,  the perturbation is turned on very slowly,  such that the H0

eigenstate 1i〉 simply evolves to the corresponding eigenstate of H = H0 +V , which is given by

1i(V )〉 = 1i〉 + 
m≠i

1m〉
Vmi

Ei -Em
+…, (132)

according to the time-independent perturbation, c.f. Eq. (44). Then the probability to observe the
system in the state 1f 〉 will be

1〈f i(V )〉A2 =
Vf i

2

Ei -Ef 
2
, (133)

which matches the result of time-dependent perturbation Eq. (131) in the limit of τ → ∞. Thus we
have  verified  that  the  time-dependent  perturbation  falls  back  to  the  time-independent  perturba-
tion if the perturbation changes slow enough in time.

On the other hand, for any realistic physical process, the time scale τ can not be infinitely long.
A  finite  τ  sets  an  energy  resolution  ℏ τ-1  (due  to  the  uncertainty  principle),  below  which  the
energy level resonance is smoothed out. So the singularity of the energy denominator in the time-
independent perturbation do not actually occur in reality.
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