PHYS 212B(Winter 2020) Final(2020 March)

PID (optional):

Please finish all three problems as much as you can. Submit your answer before 23:59 (midnight), March 19, 2020, by emailing to the TA Dachuan Lu ldachuan@ucsd.edu and Prof. You yzyou@ucsd.edu. If you have any confusion about the problem, please also contact the TA or the professor by email.

1. SChWinger boson representation

Two-dimensional quantum harmonic oscillator hosts two decoupled free bosons, whose annihilation operators can be denoted as a and b respectively

$$
a=\frac{x+\mathrm{i} p_{x}}{\sqrt{2}}, \quad b=\frac{y+\mathrm{i} p_{y}}{\sqrt{2}} .
$$

They satisfy the commutation relations $\left[a, a^{\dagger}\right]=\left[b, b^{\dagger}\right]=1$ and $[a, b]=\left[a, b^{\dagger}\right]=0$. The system enjoys the $\mathrm{U}(2)$ symmetry, which contains a $\mathrm{SU}(2)$ subgroup. Let us explore how to establish the $\mathrm{SU}(2)$ representations using boson operators.
Define $S^{x}=\frac{1}{2}\left(a^{\dagger} b+b^{\dagger} a\right)$, $S^{z}=\frac{1}{2}\left(a^{\dagger} a-b^{\dagger} b\right)$.
(a) Find S^{y} in terms of a, b. [Hint: such that $\boldsymbol{S} \times \boldsymbol{S}=\mathrm{i} \boldsymbol{S}$]
(b) Show that S^{y} is actually related to the angular momentum operator $L=x p_{y}-y p_{x}$ of the harmonic oscillator as $S^{y}=\frac{1}{2} L$.
(c) Define the following set of states with $s=0,1 / 2,1, \cdots$ and $m=-s,-s+1, \cdots, s-1, s$ (they are called the Schwinger boson representation),

$$
|s, m\rangle=\frac{\left(a^{\dagger}\right)^{s+m}}{\sqrt{(s+m)!}} \frac{\left(b^{\dagger}\right)^{s-m}}{\sqrt{(s-m)!}}|\Omega\rangle
$$

where $|\Omega\rangle$ is the state annihilated by a, b, i.e. $a|\Omega\rangle=b|\Omega\rangle=0$. Show that the state $|s, m\rangle$ is indeed a common eigenstate of $\boldsymbol{S}^{2}=\left(S^{x}\right)^{2}+\left(S^{y}\right)^{2}+\left(S^{z}\right)^{2}$ and S^{z} with eigenvalues $s(s+1)$ and m respectively. [Hint: using particle number basis.]

2. Spin- $\frac{1}{2}$ ON A TRIANGLE

Consider spin- $\frac{1}{2}$ on each site of a triangle. The Hilbert space is spanned by the following $2^{3}=8$ basis states: $\{|\uparrow \uparrow \uparrow\rangle,|\uparrow \uparrow \downarrow\rangle,|\uparrow \downarrow \uparrow\rangle,|\uparrow \downarrow \downarrow\rangle,|\downarrow \uparrow \uparrow\rangle,|\downarrow \uparrow \downarrow\rangle,|\downarrow \downarrow \uparrow\rangle,|\downarrow \downarrow \downarrow\rangle\}$. We will call this basis the tensor product basis. The Hamiltonian for this system is

$$
H=\mathbf{S}_{1} \cdot \mathbf{S}_{2}+\underset{1}{\mathbf{S}_{2}} \cdot \mathbf{S}_{3}+\mathbf{S}_{3} \cdot \mathbf{S}_{1}
$$

where $\mathbf{S}_{i}=\left(S_{i}^{x}, S_{i}^{y}, S_{i}^{z}\right)$ and $S_{i}^{a}=\frac{1}{2} \sigma_{i}^{a}$, where $i=1,2,3$ labels the triangle sites.

(a) Write H in terms of the total spin operator $\boldsymbol{S}=\boldsymbol{S}_{1}+\boldsymbol{S}_{2}+\boldsymbol{S}_{3}$ (express H as a polynomial of \boldsymbol{S}). Using the fact that three spin- $1 / 2$'s fuse to two spin- $1 / 2$'s and a spin- $3 / 2$ as $\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} \rightarrow \frac{1}{2} \oplus \frac{1}{2} \oplus \frac{3}{2}$, determine the eigenvalues of H and the corresponding degeneracies.
(b) Let $|s, m\rangle$ be the common eigenstate of the total spin \boldsymbol{S}^{2} and its z-component $S^{z}=\sum_{i=1}^{3} S_{i}^{z}$ with eigenvalues $s(s+1)$ and m respectively. Verify that $\left|\frac{3}{2},+\frac{3}{2}\right\rangle=|\uparrow \uparrow \uparrow\rangle$ (by showing that $|\uparrow \uparrow \uparrow\rangle$ in deed has the desired eigenvalues).
(c) We can use the spin raising and lowering operator $S^{ \pm}=S^{x} \pm \mathrm{i} S^{y}$ to construct the represent of $|s, m\rangle$ state in the tensor product basis (i.e. $\{|\uparrow\rangle,|\downarrow\rangle\}^{\otimes 3}$). Starting with $\left|\frac{3}{2},+\frac{3}{2}\right\rangle=|\uparrow \uparrow \uparrow\rangle$, by applying the spin lowering operator on both sides, find the expression for other states $\left|s=\frac{3}{2}, m\right\rangle$ in the spin- $3 / 2$ sector (please provide the answer for $m=-\frac{3}{2},-\frac{1}{2},+\frac{1}{2}$).

3. Quantum rotor under perturbation

Consider a quantum rotor described by the Hamiltonian

$$
H=\frac{1}{2}\left(\hat{N}-\frac{1}{2}\right)^{2}-g \cos (2 \theta)
$$

where $\hat{N}=-\mathrm{i} \partial_{\theta}$ is the angular momentum operator and $g \cos (2 \theta)$ is a small potential that can be treated as perturbation. Let $|N\rangle$ be the eigenstate of \hat{N} with eigenvalue N (i.e. $\hat{N}|N\rangle=N|N\rangle$).
(a) For the unperturbed Hamiltonian $H_{0}=\frac{1}{2}\left(\hat{N}-\frac{1}{2}\right)^{2}$, show that the angular momentum eigenstates $|N\rangle$ are also energy eigenstates, what are their corresponding energies? Show that every level is twofold degenerated (by showing that which and which states are degenerated in energy).
(b) Represent the perturbation $V=-g \cos (2 \theta)$ in the $|N\rangle$ basis, show that the perturbation never connects degenerated levels. Therefore we can still proceed with non-degenerate perturbation theory, even though the unperturbed Hamiltonian H_{0} has degenerated levels.
(c) Calculate the perturbative correction of every energy level E_{N} (as labeled by N) to the second order in g. Show that the two-fold degeneracies are still not lifted for all levels.

