
Quantum Mechanics
Algebraic Methods

Harmonic Oscillator

◼ 1D Harmonic Oscillator

◼ Hamiltonian

Hamiltonian for the 1D harmonic oscillator

H =
1

2 m
p2 +

1

2
m ω2 x2. (1)

" Coordinate operator x,

" Momentum operator p,

Defined by their commutation relation

[x, p] = ⅈ ℏ. (2)

Let us rescale the operators p and x

p → p ℏm ω , x → x
ℏ

m ω
, (3)

then the Hamiltonian looks simpler

H =
1

2
ℏ ω p2 + x2. (4)

" Energy scale set by ℏ ω.

" New operators x and p are dimensionless.

" Commutation relation for the rescaled operators

[x, p] = ⅈ. (5)

◼ The Idea of Boson

It turns out the eigen energies of the harmonic oscillator Eq. (4) is given by En = ℏ ω(n + 1 / 2)
(accept it for now, and we will prove it later).

AlgebraicMethods.nb 1



" Levels are equally spaced: oscillator can only absorb/emit energy in integer multiples of ℏ ω.

" Each unit (quantum) of energy is a boson:

" For mechanical oscillation (sound), the boson is also called a phonon.

" For electromagnetic oscillation (light), the boson is also called a photon.

" Each boson carries energy ℏ ω ⇒ can be considered as a particle.

Interpretation of boson: elementary excitation

oscillator boson
state /n〉 En / ℏ ω

/0〉 (ground) 1 / 2 vacuum
/1〉 3 / 2 1 boson
/2〉 5 / 2 2 bosons
⋮ ⋮ ⋮

(6)

The boson can be

" created by the operator a†: /0〉 → /1〉 → /2〉 → …,

" annihilated by the operator a: … → /2〉 → /1〉 → /0〉.

◼ Annihilation and Creation Operators

Introduce the boson annihilation and creation operators

a =
1

2
(x + ⅈ p), a† =

1

2
(x - ⅈ p). (7)

" a and a† are Hermitian conjugate to each other.

" Analogy: complex numbers z = x + ⅈ y, z* = x - ⅈ y ⇒ coordinate ~ real part, momentum ~ imagi-
nary part.

Commutation relation

a, a† = 1, (8)

meaning a a† = a† a + 1.

◼ Boson Number Basis

Let /n〉 be the state of n  boson excitations (n = 0, 1, 2, …). They form a set of basis known as
the Fock state basis or the boson number basis. Representation of a and a† on this basis:

a /n〉 = n /n - 1〉,

a† /n〉 = n + 1 /n + 1〉.
(9)
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One can verify that

a† a /n〉 = n /n〉, a a† /n〉 = (n + 1) /n〉, (10)

" therefore a a† = a† a + 1 indeed holds for all states, as an operator identity.

" a† a is the boson number operator, which counts the number of bosons in the Fock state.

" The Hilbert space spanned by Fock states is called the Fock space (or the occupation 
number space).

Can we construct the Fock space from scratch?

Define the operator n9 = a† a,

" n9  is Hermitian (n9 † = n9 ),

" n9  is positive (semi)definite: ∀ /ψ〉 : 〈ψ= n9 /ψ〉 = 〈ψ= a† a /ψ〉 ≥ 0,

⇒ n9  has a set of orthogonal eigenstates (denoted as /n〉, labeled by n = 0, 1, 2, …)

n9 /n〉 = λn /n〉. (11)

with λn ≥ 0. Because the spectrum is bounded from below, we can always arrange the eigenvalues
in ascending order 0 ≤ λ0 ≤ λ1 ≤ λ2 ≤ …, /0〉 is the “ground state” of n9 . 

From the following operator identity (use Eq. (8))

n9 a = a (n9 - 1), n9 a† = a† (n9 + 1), (12)

one can show that

n9 (a /n〉) = (λn - 1) (a /n〉), n9 a† /n〉 = (λn + 1) a† /n〉. (13)

If /n〉 is an eigenstate of n9  with eigenvalue λn, then a /n〉 and a† /n〉 are also eigenstates of n9  with
eigen values λn ∓ 1. But there is a caveat: we must make sure that the state is normalizable (the
sate has a finite norm). For example a /0〉 must have zero norm, otherwise a /0〉 would be an eigen-
state  of  n9  with  eigenvalue  λ0 - 1 < λ0,  which  contradict  the  with  the  fact  that  λ0  is  the  smallest
eigenvalue, therefore a /0〉 = 0 ⇒ n9 /0〉 = 0⇒ λ0 = 0.

Then we consider a /1〉, it is an eigenstate with eigenvalue λ1 - 1, but λ0  is the only eigenvalue
smaller  than  λ1,  so  λ1 - 1 = λ0⇒  λ1 = 1.  Iteratively  apply  similar  argument,  one  can  build  up  the
entire Fock state representation.

◼ Matrix Representations

Fock states can be represented as vectors

/0〉 ≏

1
0
0
⋮

, /1〉 ≏

0
1
0
⋮

, /2〉 ≏

0
0
1
⋮

, … (14)

Correspondingly, the creation and annihilation operators are represented as matrices 
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amn = 〈m= a /n〉 = n 〈m n - 1〉 = n δm,n-1,

a†mn = 〈m= a† /n〉 = n + 1 〈m n + 1〉 = n + 1 δm,n+1,
(15)

or more explicitly as

a ≏

0 1

0 2
0 ⋱

⋱

, a† ≏

0

1 0

2 0
⋱ ⋱

. (16)

By  matrix  multiplication,  one  can  verify  that  a† a  indeed  acts  as  the  number  operator  as
expected.

n9 = a† a ≏

0
1

2
⋱

. (17)

The coordinate and momentum operators are represented as

x =
a + a†

2
≏

1

2

0 1

1 0 2

2 0 ⋱

⋱ ⋱

,

p =
a - a†

2 ⅈ
≏

1

2 ⅈ

0 1

- 1 0 2

- 2 0 ⋱

⋱ ⋱

.

(18)

To have some fun, let us check

x p ≏
ⅈ

2

1 0 - 2

0 1 0 - 6

2 0 1 0 ⋱

6 0 1 ⋱

⋱ ⋱ ⋱

,

p x ≏
ⅈ

2

-1 0 - 2

0 -1 0 - 6

2 0 -1 0 ⋱

6 0 -1 ⋱

⋱ ⋱ ⋱

,

(19)
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so we indeed verify the commutation relation [x, p] = ⅈ,

[x, p] ≏

ⅈ

ⅈ

ⅈ

⋱

= ⅈ F. (20)

The  operator  algebra  is  basis  independent.  Even  if  the  matrices  in  Eq.  (18)  do  not  look  like
coordinate  and  momentum in  any  intuitive  way,  but  their  commutation  algebra  works  out  just
right. So it is the algebra [x, p] = ⅈ that should be considered as the defining property of x  and p
operators.

◼ Energy Spectrum

In terms of a and a†, the oscillator Hamiltonian becomes

H = ℏ ω a† a +
1

2
, (21)

So the eigen energies are given by

En = ℏ ω n +
1

2
. (22)

The  constant  ℏ ω / 2  is  known  as  the  zero-point  energy  or  the  vacuum  energy.  The  corre-
sponding eigenstate /n〉 can be raised from the ground state by

/n〉 =
1

n !
a†

n
/0〉. (23)

To verify that /n〉 is indeed an eigenstate of n9  with eigenvalue n, we try

n9 /n〉 = a† a /n〉

=
1

n !
a† a a†

n
/0〉

= …

=
1

n !
a†a†

n a + na†
n-1

 /0〉

=
1

n !
a†a†

n a /0〉 + na†
n-1

/0〉

=
1

n !
a†0+ n a†

n-1
/0〉

(24)
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=
1

n !
n a†

n
/0〉

= n /n〉.

(24)

Complete the missing steps in Eq. (24) by proving that 
a a†

n
= a†

n a + na†
n-1 (for n = 0, 1, 2, …).

Hint: consider mathematical induction.

HW
1

◼ Wave Functions

The ground state is defined by a /0〉 = 0 ⇒  (x + ⅈ p) /0〉 = 0, where p = -ⅈ ∂x,  so the ground state
wave function ψ0(x) must satisfy the differential equation

(x + ∂x) ψ0(x) = 0, (25)

the solution is

ψ0(x) =
1

π1/4
e-

1
2
x2

. (26)

The excited state can be raised from the ground state by applying a†. For example /1〉 = a† /0〉
implies

ψ1(x) =
1

2
(x - ∂x) ψ0(x) =

1

π1/4
2 x e-

1
2
x2

. (27)

Iteratively, we can obtain the wave functions for all eigenstates

ψn(x) =
1

π1/4 2n n !
Hn(x) e-

1
2
x2

, (28)

where Hn(x) is known as the Hermite polynomial.
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n ψn (x) Hn (x) plot of ψn (x)

0 ⅇ-
x2

2

π1/4
1

1 2 ⅇ-
x2

2 x
π1/4

2 x

2
ⅇ-

x2

2 -1+2 x2

2 π1/4
2 -1 + 2 x2

3
ⅇ-

x2

2 x -3+2 x2

3 π1/4
4 x -3 + 2 x2

4
ⅇ-

x2

2 3-12 x2+4 x4

2 6 π1/4
4 3 - 12 x2 + 4 x4

5
ⅇ-

x2

2 x 15-20 x2+4 x4

2 15 π1/4
8 x 15 - 20 x2 + 4 x4

Momentum space wave function

ψ

n(p) =

1

π1/4 2n n !
Hn(p) e-

1
2
p2

. (29)

" Comparing Eq. (28) and Eq. (29), there is an SO(2) rotational symmetry in the 2D phase 
space of (x, p), which is evident in Eq. (4).

" This also corresponds to the U(1) symmetry:

a → eⅈ θ a, a† → e-ⅈ θ a†. (30)

" U(1) symmetry ⇒ conservation of the boson number.

◼ Uncertainty Relation

The uncertainty relation states that

(std x) (std p) ≥
1

2
/[x, p]= =

1

2
, (31)

for the rescaled operators x and p (s.t. [x, p] = ⅈ).

Let us check it on the Fock state /n〉. We will use

x =
a + a†

2
, p =

a - a†

2 ⅈ
. (32)

The one can evaluate

〈n= x /n〉 =
1

2
〈n= a + a† /n〉

=
1

2
 n 〈n n - 1〉 + n + 1 〈n n + 1〉

(33)
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= 0,

(33)

〈n= x2 /n〉 =
1

2
〈n= a + a†

2
/n〉

=
1

2
〈n= a a /n〉 + 〈n= a a† /n〉 + 〈n= a† a /n〉 + 〈n= a† a† /n〉

=
1

2
(0+ (n + 1) + n + 0)

= n + 1 / 2.

(34)

So the position uncertainty is given by

(std x)2 = 〈n= x2 /n〉 - 〈n= x /n〉2 = n + 1 / 2. (35)

Similarly, for the momentum uncertainty

(std p)2 = 〈n= p2 /n〉 - 〈n= p /n〉2 = n + 1 / 2. (36)

Therefore, the uncertainty relation holds for all Fock states /n〉, 

(std x) (std p) = n + 1 / 2 ≥ 1 / 2. (37)

But specifically, the ground state /0〉 saturates the uncertainty relation. We say /0〉 is a min-
imal uncertainty state. The fact that the ground state possesses a finite amount of zero-point
energy has to do with the uncertainty relation. Given that

x2 p2 ≥
1

4
/[x, p]=2 =

1

4
, (38)

the expectation value of the Hamiltonian is therefore bounded

E = 〈H 〉 =
ℏ ω

2
p2 + x2 ≥

ℏ ω

2
p2 +

1

4 p2
≥

ℏ ω

2
. (39)

To  saturates  the  minimal  energy  bound,  the  state  must  first  saturates  the  uncertainty  bound,
which is the case for the ground state /0〉.

Exercise:  Calculate  the  expectation  value  〈0= x4 /0〉  of  the  x4  operator  on  the  ground
state /0〉.

HW
2

◼ Coherent States

◼ Definition

Are there any other minimal uncertainty states besides /0〉?

Yes,  they are  known as the coherent state  (or  called Glauber state).  Each coherent state
/α〉  is  labeled  by  a  complex  number  α ∈ ℂ  and  defined  as  the  the  eigenstate  of  the  annihilation
operator a with the eigenvalue α.
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a /α〉 = α /α〉. (40)

The parameter  α = /α= eⅈ φcorresponds  to  the  complex  wave amplitude  of  the  boson  (under  the
wave-particle  duality).  This  should  be  distinguished  from  the  wave  function  ψα(x) = 〈x α〉  of
the oscillator.

" Note that a is non-Hermitian, 

" its eigenvalues α can be complex,

" its eigenstates with different eigenvalues may not be orthogonal, i.e. 〈α1 α2〉 ≠ δ(α1 - α2).

" Nevertheless, we do assume that /α〉 is normalized, i.e. 〈α α〉 = 1.

" Eq. (40) also implies

〈α= a† = 〈α= α*. (41)

Using Eq. (40) and Eq. (41), one can show that

〈α= x /α〉 =
1

2
〈α= a + a† /α〉

=
1

2
(α + α*) 〈α α〉

= 2 Re α,

(42)

〈α= x2 /α〉 =
1

2
〈α= a + a†

2
/α〉

=
1

2
〈α= a a /α〉 + 〈α= a a† /α〉 + 〈α= a† a /α〉 + 〈α= a† a† /α〉

=
1

2
〈α= a a /α〉 + 〈α= a† a + 1 /α〉 + 〈α= a† a /α〉 + 〈α= a† a† /α〉

=
1

2
α2 + 2 α* α + α*2 + 1

= 2 (Re α)2 + 1 / 2,

(43)

So the position uncertainty is given by

(std x)2 = 〈α= x2 /α〉 - 〈α= x /α〉2

= 2 (Re α)2 + 1 / 2- 2 (Re α)2

= 1 / 2.
(44)

Similarly, for the momentum uncertainty,
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〈α= p /α〉 = 2 Im α,

〈α= p2 /α〉 = 2 (Im α)2 + 1 / 2,

(std p)2 = 〈α= p2 /α〉 - 〈α= p /α〉2 = 1 / 2.

(45)

Therefore the uncertainty relation is indeed saturated for coherent states, regardless the choice of
α  ⇒  All  coherent  states  are  minimal  uncertainty  states.  ⇒  The  quantum  fluctuations  are
minimal in coherent states. A quantum harmonic oscillator in the coherent state behaves as close
as possible to its classical counterpart (without violating the rules of quantum mechanics).

◼ Fock State Representation

In terms of the Fock state basis /n〉, a coherent state /α〉 can be represented as

/α〉 = e-
1
2
/α=2


n=0

∞ αn

n !
/n〉. (46)

This claim can be verified as follows.

a /α〉 = e-
1
2
/α=2


n=1

∞ αn

n !
a /n〉 + a /0〉

= e-
1
2
/α=2


n=1

∞ αn

n !
n /n - 1〉 + 0

= e-
1
2
/α=2


n=1

∞ αn

(n - 1)!
/n - 1〉,

(47)

by m = n - 1,

a /α〉 = e-
1
2
/α=2


m=0

∞ αm+1

m !
/m〉

= α /α〉.

(48)

So /α〉 is indeed the eigenstate of a with eigen value α.

" In particular, the ground state (vacuum state) /0〉 is a coherent state with α = 0.

" Note: /α = 0〉 = /n = 0〉 is the only case when the coherent state index α ∈ ℂ and the Fock state 
index n ∈ ℤ coincide. In general, α = n does not imply /α〉 and /n〉 to be the same state. For 
example,

/α = 1〉 = e-1/2 
n=0

∞ 1

n !
/n〉

= e-1/2 /n = 0〉 + /n = 1〉 +
1

2
/n = 2〉 +

1

6
/n = 3〉 +…

≠ /n = 1〉.

(49)
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" Based on Eq. (46), the probability to observe n bosons in the coherent state /α〉 is given by

pα(n) = /〈n α〉=2 =
/α=2 n

n !
e-/α=2. (50)

" The mean boson number is determined by the expectation value of the boson number oper-
ator n9 = a† a,

〈n〉α = 〈α= n9 /α〉 = /α=2. (51)

because by Eq. (40) and Eq. (41)

〈α= n9 /α〉 = 〈α= a† a /α〉

= 〈α= α* α /α〉

= /α=2 〈α α〉

= /α=2.

(52)

We can rewrite Eq. (50) as

pα(n) =
〈n〉αn

n !
e-〈n〉α, (53)

which follows the Poisson distribution.

◼ Time Evolution

The  coherent states  (except  /0〉)  are  not  energy  eigenstates.  ⇒  They  evolve  with  time.  The
time-evolution operator U (t) of the harmonic oscillator:

U (t) = e-ⅈH t/ℏ = e-
ⅈ ω t
2 e-ⅈ ω t n9 . (54)

Applying U (t) to /α〉:

U (t) /α〉 = e-
ⅈ ω t
2 e-ⅈ ω t n9  e-

1
2
/α=2


n=0

∞ αn

n !
/n〉

(55)
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= e-
ⅈ ω t
2 e-

1
2
/α=2


n=0

∞ αn

n !
e-ⅈ ω t n9 /n〉

= e-
ⅈ ω t
2 e-

1
2
/α=2


n=0

∞ α e-ⅈ ω t
n

n !
/n〉

= e-
ⅈ ω t
2 e-

1
2
α e-ⅈ ω t 

2


n=0

∞ α e-ⅈ ω t
n

n !
/n〉.

(55)

We can rewrite it as

U (t) /α〉 = e-
ⅈ ω t
2 α e-ⅈ ω t = e-

ⅈ ω t
2 /α(t)〉. (56)

So up to an overall phase factor e-ⅈ ω t/2 (originated from the zero-point energy), the amplitude α
evolves as

α(t) = α(0) e-ⅈ ω t. (57)

From Eq. (42), Eq. (45) and Eq. (51), we learnt that

〈x〉α(t) = 〈α(t)= x /α(t)〉 = 2 Re α(t),

〈p〉α(t) = 〈α(t)= p /α(t)〉 = 2 Im α(t),

〈n〉α(t) = 〈α(t)= n9 /α(t)〉 = /α(t)=2.

(58)

Suppose we start with a coherent state at α(0) = A  2  (for a real positive A), then

〈x〉α(t) = A cos ω t,

〈p〉α(t) = -A sin ω t,

〈n〉α(t) =
1

2
A2.

(59)

" The expectation values of coordinate and momentum do oscillate following the classical 
behavior of a harmonic oscillator.

" The expectation value of the boson number remains constant. As a consequence, the energy 
of the oscillator is conserved.

〈H 〉α(t) = ℏ ω 〈n〉α(t) +
1

2
=

ℏ ω

2
A2 + 1. (60)

◼ U(1) Symmetry

Conservation laws in two different languages:

oscillator boson
conserved quantity energy H particle number n9

U (1) symmetry
x → x cos θ - p sin θ,
p → p cos θ + x sin θ,

a → e ⅈ θ a
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oscillator boson
conserved quantity energy H particle number n9

U (1) symmetry
x → x cos θ - p sin θ,
p → p cos θ + x sin θ,

a → e ⅈ θ a

Which Hermitian operator generates the U(1) symmetry transformation?

Noether’s  theorem:  what  is  conserved  is  what  generates  the  symmetry.  The  U(1)  sym-
metry is generated by the boson number operator n9 .

U (θ) = eⅈ θ n9 . (61)

The creation/annihilation operators transform as

U (θ)† a U (θ) = eⅈ θ a,

U (θ)† a† U (θ) = e-ⅈ θ a.
(62)

The U(1) transformation also rotates the amplitude α of the coherent state /α〉

U (θ) /α〉 = eⅈ θ α. (63)

The time evolution  of  the  harmonic  oscillator  is  actually  a  uniform U(1)=SO(2)  phase space
rotation, with θ = -ω t.

◼ Real Space Representation

Real space (coordinate space) wave function of the coherent state /α〉

ψα(x) = 〈x α〉 =
1

π1/4
exp ⅈ 〈p〉α x -

1

2
(x - 〈x〉α)2 , (64)

where  〈x〉α = 〈α= x /α〉  and  〈p〉α = 〈α= p /α〉  are  the  expectation  values  of  coordinate  and  momentum
for the coherent state /α〉, s.t.

α =
〈x〉α + ⅈ 〈p〉α

2
. (65)

" Be aware, we are switching among three sets of basis! Don’t get confused.

coordinate basis : x9 /x〉 = x /x〉,

Fock state basis : n9 /n〉 = n /n〉,

coherent state "basis" : a /α〉 = α /α〉.
(66)

To show Eq. (64), we need to check that the wave function ψα(x) indeed represents an eigenstate
of  the  annihilation  operator  a  with  eigenvalue  α.  Given  that  p = -ⅈ ∂x  (when  it  acts  on  a  wave
function),
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a =
x + ⅈ p

2
=

x + ∂x

2
, (67)

we can verify that

a ψα(x) =
x + ∂x

2

1

π1/4
exp ⅈ 〈p〉α x -

1

2
(x - 〈x〉α)2

=
x + ⅈ 〈p〉α - (x - 〈x〉α)

2

1

π1/4
exp ⅈ 〈p〉α x -

1

2
(x - 〈x〉α)2

=
〈x〉α + ⅈ 〈p〉α

2
ψα(x)

= α ψα(x).

(68)

The probability to find the oscillator at position x in the coherent sate α is given by

pα(x) = /ψα(x)=2 =
1

π1/2
e-(x-〈x〉α)2. (69)

As 〈x〉α(t) = A cos ω t  oscillates in time, the probability distribution of the coherent state will be a
oscillating Gaussian wave packet with constant width, i.e. the wave packet of the coherent state is
not spreading and remains the minimal uncertainty.

These  properties  make  the  coherent  state  a  quantum  state  in  closest  analogy  to  the  classical
oscillator. 

◼ Baker-Campbell-Hausdorff Formula*

Operator expansion formula: let A, B be two operators

eA B e-A = e[A,•] B

= B + [A, B] +
1

2!
[A, [A, B]] +

1

3!
[A, [A, [A, B]]] +….

(70)

To prove this, we first define

B(λ) = eλA B e-λA. (71)

It can be shown that B(λ) must satisfy the differential equation

(72)
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∂λB(λ) = ∂λ eλA B e-λA

= ∂λeλAB e-λA + eλA B ∂λe-λA

= A eλA B e-λA + eλA B e-λA(-A)

= A B(λ) -B(λ)A

= [A, B(λ)],

(72)

starting with the initial condition that B(λ = 0) = B. Then we propose the solution of this differen-
tial equation is given as follows

B(λ) = B + λ[A, B] +
λ2

2!
[A, [A, B]] +

λ3

3!
[A, [A, [A, B]]] +…. (73)

To verify this claim, we check that

∂λB(λ) = [A, B] + λ [A, [A, B]] +
λ2

2!
[A, [A, [A, B]]] +… = [A, B(λ)],

B(λ = 0) = B + 0+ 0+ 0+… = B,
(74)

therefore  Eq.  (73)  is  indeed  the  solution  of  Eq.  (72).  Then  combining  Eq.  (71)  and  Eq.  (73)  at
λ = 1, we obtain the operator expansion in Eq. (70).

If  [A, B] = const  is  a  constant operator  (i.e.  a  constant number times the identity  operator
F), the operator expansion in Eq. (70) can be reduced to

eA B e-A = e[A,•] B = B + [A, B], (75)

because [A, [A, B]] = 0 and hence all the higher order commutators vanish.

With  this,  we  can  prove  a  weak  version  of  the  Baker-Campbell-Hausdorff  (BCH)
Formula.

If [A, B] = const : eA+B = eA eB e[B,A]/2 = eB eA e[A,B]/2. (76)

To show this, let g(λ) = eλA eλB,

∂λg(λ) = ∂λ eλA eλB

= ∂λeλA eλB + eλA∂λeλB

= A eλA eλB + eλA B eλB

= A eλA eλB + eλA B e-λA eλA eλB

= A+ eλA B e-λA g(λ),

(77)

using Eq. (75),

∂λg(λ) = (A+B + λ[A, B]) g(λ), (78)

whose solution is (try to verify this)

g(λ) = eλ(A+B)+
λ2

2
[A,B]. (79)

At λ = 1, we have
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eA eB = eA+B+
1
2
[A,B] = eA+B e[A,B]/2, (80)

where the last equality holds because [A, B] is a constant. e[A,B]/2  is like a number, which can be
further moved to the other side of the equation, therefore the BCH formula in Eq. (76) is proved.

◼ Displacement Operator*

The displacement operator D(α) is defined by

D(α) = eα a†-α* a. (81)

" D(α) is unitary,

D(α)† = D(α)-1 = D(-α), (82)

which can be verified directly

D(α)† = eα a†-α* a
†
= eα* a-α a†

= eα a†-α* a
-1

= D(α)-1. (83)

" D(α) implements phase space displacement,

D(α)† a D(α) = a + α,

D(α)† a† D(α) = a† + α*.
(84)

To see this, let A = α* a - α a†. We can see

[A, a] = α* a - α a†, a = -αa†, a = α, (85)

which is a constant (operator). Then by the operator expansion in Eq. (75)

D(α)† a D(α) = eA a e-A = a + [A, a] = a + α. (86)

The case for a† follows by Hermitian conjugating both sides.

" Composition of displacements

D(α)D(β) = eⅈ Im α β* D(α + β). (87)

Let A = α a† - α* a, B = β a† - β* a, we can see

[A, B] = α a† - α* a, β a† - β* a

= -α β*a†, a - α* βa, a†

= α β* - α* β

= 2 ⅈ Im α β*,

(88)

which is a constant (operator). Then by the BCH formula in Eq. (76)
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D(α + β) = eA+B

= eA eB e-[A,B]/2

= D(α)D(β) e-ⅈ Im α β*.
(89)

All these heavy math is to get us prepared for a beautiful statement: the coherent state /α〉 is
displaced from the vacuum state /0〉 by the displacement operator D(α)

/α〉 = D(α) /0〉. (90)

" To prove this, we want to show that /α〉 obtain in this way is indeed an eigenstate of a with 
eigenvalue α.

a /α〉 = a D(α) /0〉

= D(α)D(α)† a D(α) /0〉

= D(α) (a + α) /0〉

= D(α) (a /0〉 + α /0〉)

= D(α) α /0〉

= αD(α) /0〉

= α /α〉.

(91)

Moreover, /α〉 obtained in this way is automatically normalized (given that /0〉 is normalized).

〈α α〉 = 〈0=D(α)† D(α) /0〉 = 〈0 0〉 = 1. (92)

" Another more explicit way to show Eq. (90) is to recall Eq. (23) and Eq. (46),

/n〉 =
1

n !
a†

n
/0〉,

/α〉 = e-
1
2
/α=2


n=0

∞ αn

n !
/n〉,

(93)

then we have

/α〉 = e-
1
2
/α=2


n=0

∞ α a†
n

n !
/0〉 = e-

1
2
/α=2 eα a†

/0〉. (94)

Since a /0〉 = 0, e-α* a /0〉 = /0〉, so Eq. (94) can be written as

/α〉 = e-
1
2
/α=2 eα a† e-α* a /0〉. (95)

Let A = α a† and B = -α* a, then [A, B] = /α=2, by the BCH formula in Eq. (76),

D(α) = eα a†-α* a = eA+B = eA eB e-[A,B]/2 = eα a† e-α* a e-
1
2
/α=2. (96)

Plugging Eq. (96) into Eq. (95), we obtain Eq. (90).
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◼ Overcomplete Basis*

Scalar product of two coherent states

〈β α〉 = e-
1
2
/α=2+/β=2+α β*. (97)

We use Eq. (96) to show that

〈β α〉 = 〈0=D(β)† D(α) /0〉

= 〈0= e-β a† eβ* a eα a† e-α* a /0〉 e-
1
2
/α=2+/β=2

= 〈0= eβ* a eα a†

/0〉 e-
1
2
/α=2+/β=2.

(98)

According to the BCH formula in Eq. (76),

eβ* a eα a†

= eα a† eβ* a eβ* a,α a† = eα a† eβ* a eα β*, (99)

therefore

〈β α〉 = 〈0= eα a† eβ* a /0〉 e-
1
2
/α=2+/β=2+α β*

= 〈0 0〉 e-
1
2
/α=2+/β=2+α β*

= e-
1
2
/α=2+/β=2+α β*.

(100)

The transition probability from state /α〉 to /β〉 is decays with their phase space distance
/α - β= as 

/〈β α〉=2 = e-/α-β=2. (101)

" The non-vanishing scalar product (or transition probability) indicates that the coherent states 
are not orthogonal.

" The transition probability only vanish in the limit of /α - β= ≫ 1.

Completeness relation for coherent states:

1

π

ℂ
ⅆα /α〉 〈α= = F. (102)

In fact, the coherent states are “overcomplete”, which means that, as a consequence of their non-
orthogonality,  any coherent  state  can be  expanded in  terms of  all  the  other  coherent  states,  i.e.
they are not linearly independent, e.g.

/α〉 =
1

π

ℂ
ⅆ β /β〉 〈β α〉 =

1

π

ℂ
ⅆ β /β〉 e-

1
2
/α=2+/β=2+α β*. (103)

We can prove Eq. (102) by recalling Eq. (46)
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/α〉 = e-
1
2
/α=2


n=0

∞ αn

n !
/n〉, (104)

so that

1

π

ℂ
ⅆα /α〉 〈α= =

1

π

m=0

∞


n=0

∞ 1

m ! n !

ℂ
ⅆα e-/α=2 αm α*n /m〉 〈n=. (105)

The complex plane integral can be solved using polar coordinates α = r eⅈ φ,


ℂ
ⅆα e-/α=2 αm α*n = 

0

∞

r ⅆr e-r2 rm+n


0

2 π

ⅆφ eⅈ (m-n) φ

= 2 π δmn 
0

∞

r ⅆr e-r2 rm+n

= π δmn 
0

∞

ⅆr2 e-r2 r2 n

= π δmn 
0

∞

ⅆ t e-t tn

= π δmn Γ(n + 1)

= π δmn n !.

(106)

We used some knowledge about the Gamma function.

Integrate[Exp[-t] t^n, {t, 0, ∞}, Assumptions → n > 0]

Gamma[1 + n]

Therefore we can finally write down

1

π

ℂ
ⅆα /α〉 〈α= = 

n=0

∞

/n〉 〈n= = F. (107)

◼ 3D Harmonic Oscillator

◼ Hamiltonian

Hamiltonian of a 3D harmonic oscillator

H =
ℏ ω

2
p2 + x2. (108)

" Coordinate x = (x1, x2, x3),

" Momentum p = (p1, p2, p3).

They satisfies 

[xa, pb] = ⅈ δab,

[xa, xb] = [pa, pb] = 0.
(109)
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The boson now has three polarizations (three oscillation directions)

" boson annihilation  a = (a1, a2, a3) and creation  a† = a1
†, a2

†, a3
† operators

a =
1

2
(x + ⅈ p), a† =

1

2
(x - ⅈ p). (110)

They satisfy the commutation relation 

aa, ab
† = δab,

[aa, ab] = aa
†, ab

† = 0.
(111)

In terms of the boson operators,

H = ℏ ω a† · a +
3

2

= ℏ ω a1
† a1 + a2

† a2 + a3
† a3 +

3

2
.

(112)

◼ Energy Level and Degeneracy

Each boson (regardless of polarization) carries the same energy ℏ ω, so the total energy is propor-
tional to the total number N  of bosons.

E = ℏ ω N +
3

2
,

N = n1 + n2 + n3.
(113)

" Eigen state: /n1 n2 n3〉

" Degeneracy


n1,n2,n3

δN=n1+n2+n3 =
1

2
(N + 1) (N + 2). (114)

Assuming[Ν ∈ Integers && Ν ≥ 0,
Factor@Sum[KroneckerDelta[n1 + n2 + n3, Ν], {n1, 0, ∞}, {n2, 0, ∞}, {n3, 0, ∞}]]

1

2
(1 + Ν) (2 + Ν)

0 1 2 3 4 5

E 3
2

5
2

7
2

9
2

11
2

13
2

deg. 1 3 6 10 15 21

Question: How are the degenerate states differed from each other?
Classical  picture:  they have the same energy ⇒  oscillation amplitude is  the same, but oscillation
direction  can  be  different  ⇒  rotational  degrees  of  freedom  may  help  to  explain  the  degeneracy
(but only partially).
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Classical  picture:  they have the same energy ⇒  oscillation amplitude is  the same, but oscillation
direction  can  be  different  ⇒  rotational  degrees  of  freedom  may  help  to  explain  the  degeneracy
(but only partially).

◼ Angular Momentum

The angular momentum L = (L1, L2, L3) operators

L = x × p. (115)

In  component  form,  La = ϵabc xb pc.  (ϵabc:  Levi-Civita  tensor,  totally  antisymmetric  tensor)  (Ei-
nstein summation is assumed hereinafter).

In terms of the boson operators,

La = -ⅈ ϵabc ab
† ac. (116)

" The angular momentum operator generates the SO(3) rotation among different polarization 
modes.

" The (quadratic) Casimir operator (the square of angular momentum) L2.

L2 = L1
2 +L2

2 +L3
2 = 

a≠b

n9 a(n
9
b + 1) - aa

† aa
† ab ab. (117)

To verify Eq. (117), (the following summations are implicit)

L2 = La La = -ϵabc ϵade ab
† ac ad

† ae

= -(δbd δce - δbe δcd) ab
† ac ad

† ae

= -ab
† ac ab

† ac + ab
† ac ac

† ab.
(118)

In the summation of b, c, the terms with b = c vanish, so we can restrict the summation to 
b ≠ c, (the following summation is explicit)

L2 = 
b≠c

ab
† ac ac

† ab - ab
† ac ab

† ac

= 
b≠c

ab
† abac

† ac + 1 - ab
† ab

† ac ac.
(119)

◼ Fock State Basis

Represent  the  angular  momentum  operator  in  each  subspace  of  fixed  total  boson  number
N = n1 + n2 + n3.

L1 = -ⅈ (n2 + 1) n3 /n1, n2 + 1, n3 - 1〉 〈n1 n2 n3= + h.c.,

L2 = -ⅈ (n3 + 1) n1 /n1 - 1, n2, n3 + 1〉 〈n1 n2 n3= + h.c.,

L3 = -ⅈ (n1 + 1) n2 /n1 + 1, n2 - 1, n3〉 〈n1 n2 n3= + h.c. .

(120)

For example in the N = 1 sector, we have 3 basis states
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{/100〉, /010〉, /001〉}. (121)

The angular momentum operators L1,2,3 are represented as 3× 3 matrices.

L1 ≏

0 0 0
0 0 -ⅈ

0 ⅈ 0
, L2 ≏

0 0 ⅈ

0 0 0
-ⅈ 0 0

, L3 ≏

0 -ⅈ 0
ⅈ 0 0
0 0 0

. (122)

The L2 = L1
2 +L2

2 +L3
2operator can be obtained by matrix square and summation,

L2 ≏

2 0 0
0 2 0
0 0 2

. (123)

Use the explicit matrix representation to verify the commutation relation

[La, Lb] = ⅈ ϵabc Lc. (124)

This  is  the  defining  relation  of  the  angular  momentum  operators  (which  applies  to  all  angular
momentum sectors).

Prove  [La, Lb] = ⅈ ϵabc Lc  using  La = -ⅈ ϵabc ab
† ac  and  the  commutation  relations  of  aa

and aa
†.

HW
3

◼ Angular Momentum Basis

Easy  to  see  that  L2  and  L3  commute  ⇒  their  simultaneous  eigenstates  span  the  degenerate
subspace. Introduce l and m to label the common eigenstates.

L2 /l, m〉 = l(l + 1) /l, m〉,

L3 /l, m〉 = m /l, m〉.
(125)

Diagonalize the matrices in Eq. (122),

/l = 1, m = ±1〉 =
1

2
 100 ± ⅈ 010,

/l = 1, m = 0〉 = 001.

(126)

" Classical picture:

" /l = 1, m = ±1〉 - uniform circular rotation in the xy-plane, ± sign corresponds to counterclock-
wise or clockwise.

" /l = 1, m = 0〉 - linear oscillation along the z-direction.

" Quantum wave function:

" Fock state basis
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ψn1 n2 n3(x1, x2, x3) = ψn1(x1) ψn2(x2) ψn3(x3), (127)

where ψn(x) is the wave function of a 1D harmonic oscillator, given by Eq. (28).

100 010 001

" Angular momentum basis

N = 1 sector
l m state

1 1
ⅈ 010+ 100

2

1 0 001

1 -1
-ⅈ 010+ 100

2

◻ More Examples

◼ U(3) Symmetry*

The SO(3) symmetry explains the 3-fold degeneracy of the first  excited state.  But the degen-
eracy of higher angular momentum states goes as 2 l + 1 (like 1, 3, 5, 7, …), which is smaller than
the  observed  degeneracies  (1, 3, 6, 10, …)  in  Eq.  (114).  This  suggest  the  3D  harmonic  oscillator
has larger symmetry!

In fact, the following U ∈U(3) transformation leaves the Hamiltonian invariant,

a → U a. (128)

So the 3D harmonic oscillator actually has U(3) symmetry.

" The Abelian U(1) subgroup does not lead to degeneracy.

" The non-Abelian SU(3) subgroup ⇒ irreducible representations Dpq are labeled by two 
quantum numbers p, q = 0, 1, 2, …

q p

and their dimensions are
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dim Dpq =
1

2
(p+ 1) (q + 1) (p+ q + 2). (129)

For  bosonic  systems,  only  q = 0  representations  can  appear,  the  corresponding  dimensions
dim Dp0 =

1
2
(p+ 1) (p+ 2)  (for p = 0, 1, 2, …) fully explain the degeneracies of the entire spectrum,

as in Eq. (114).

Angular Momentum

◼ Operator Algebra

◼ Definition

Motivation: classical mechanics: orbital  angular momentum L = (L1, L2, L3)

L = x × p. (130)

In  component  form,  La = ϵabc xb pc.  (ϵabc:  Levi-Civita  tensor,  totally  antisymmetric  tensor)  (Ei-
nstein summation is assumed here). From

[xa, pb] = ⅈ δab, (131)

(set ℏ = 1 for simplicity) ⇒ the angular momentum operators satisfy

[La, Lb] = ⅈ ϵabc Lc. (132)

We may treat this commutation relation as the definition for angular momentum.

Definition: the angular momentum operator J = (J1, J2, J3) consist of three Hermitian opera-
tors, satisfying

[Ja, Jb] = ⅈ ϵabc Jc. (133)

" Equivalently, in vector form, J ×J = ⅈ J.

" This general definition applies to orbital and spin angular momenta. The spin angular 
momentum goes beyond the classical definition of x × p.

" The Hermitian operators J generate a unitary group - the SU(2) group.

◼ Casimir Operator

A Casimir operator is a operator that commutes with all components of J. It turns out that
for SU(2) group, there is only one such operator: the squared angular momentum J2 = J ·J,

J2 = J1
2 + J2

2 + J3
2. (134)
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" J2 is Hermitian. 

" By Eq. (133), one can verify that (for a = 1, 2, 3)

J2, Ja = 0. (135)

◼ Common Eigenstates

J2  and  J3  commute  ⇒  they  share  the  same  set  of  eigenstates,  which  can  be  labeled  by  two
independent  quantum  number:  /j, m〉  ⇒  as  a  common  eigenstate,  /j, m〉  must  satisfy  the  eigen
equation for both operators

J2 /j, m〉 = λj /j, m〉,

J3 /j, m〉 = m /j, m〉,
(136)

where λj is a function of j (to be determined later).

" λj is the the eigenvalue of J2 on /j, m〉,

" m is the the eigenvalue of J3 on /j, m〉.

◼ Raising and Lowering Operators

Define the raising J+ and lowering J- operators

J± = J1 ± ⅈ J2. (137)

"  In analogy to e±ⅈ θ = cos θ ± ⅈ sin θ.

" J± are not Hermitian. Under Hermitian conjugate: J±
† = J∓.

By definition,

J3 J± = J±(J3 ± 1). (138)

To show this,

J3 J± = J3(J1 ± ⅈ J2)

= (J1 J3 + ⅈ J2) ± ⅈ (J2 J3 - ⅈ J1)

= (J1 ± ⅈ J2) (J3 ± 1)

= J±(J3 ± 1).

(139)

From Eq. (138), J3 J± /j, m〉 = J±(J3 ± 1) /j, m〉 = (m ± 1) J± /j, m〉 ⇒ the state J± /j, m〉 (as long as it
is  not  zero)  is  also  an  eigenstate  of  J3  but  with  the  eigenvalue  (m ± 1)  ⇒  J± /j, m〉  is  just  the
/j, m ± 1〉 state (up to overall coefficient)

J± /j, m〉 = cm
± /j, m ± 1〉. (140)

" Therefore J± is called the raising/lowering operator.

" Also note that, under the action of J±, the quantum number m can only change by 1 (not 
change continuously) ⇒ angular momentum quantization.
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◼ Bounds on Quantum Numbers

By definition in Eq. (137),

J+ J- = J2 - J3
2 + J3,

J- J+ = J2 - J3
2 - J3.

(141)

To show this,

J+ J- = (J1 + ⅈ J2) (J1 - ⅈ J2)

= J1
2 + ⅈ J2 J1 - ⅈ J1 J2 + J2

2

= J1
2 + J2

2 - ⅈ(J1 J2 - J2 J1)

= J2 - J3
2 + J3.

(142)

/j, m〉 is also the eigenstate of J+ J- and J- J+.

〈j, m= J+ J- /j, m〉 = λj -m2 +m,

〈j, m= J- J+ /j, m〉 = λj -m2 -m.
(143)

On the other hand, using Eq. (140),

〈j, m= J+ J- /j, m〉 = 〈j, m= J-
† J- /j, m〉 = /cm

- =2 ≥ 0,

〈j, m= J- J+ /j, m〉 = 〈j, m= J+
† J+ /j, m〉 = /cm

+ =2 ≥ 0.
(144)

Combining Eq. (143) and Eq. (144),

λj -m(m ± 1) ≥ 0 ⇒

-
1

2
 1+ 4 λj - 1 ≤ m ≤

1

2
 1+ 4 λj - 1.

(145)

So m is bounded from both above and below ⇒ denote the upper (lower) bound as mmax (mmin).

-1.0 -0.5 0.5 1.0
m

0.5
1.0
1.5
2.0
2.5

λj

mmaxmmin

◼ Representation Theory

◼ Highest and Lowest Weight State

Denote:
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" Highest weight state: /j, mmax〉, corresponds to m = mmax. It can not be further raised by J+ ⇒ 
J+ /j, mmax〉 = 0.

" Lowest weight state: /j, mmin〉, corresponds to m = mmin. It can not be further lowered by J- 
⇒ J- /j, mmin〉 = 0.

Therefore

0 = 〈j, mmin= J+ J- /j, mmin〉 = λj -mmin
2 +mmin,

0 = 〈j, mmax= J- J+ /j, mmax〉 = λj -mmax
2 -mmax.

(146)

Eliminate λj,

(mmax +mmin) (mmax -mmin + 1) = 0, (147)

As mmax ≥ mmin  ⇒  mmax -mmin + 1 ≥ 1 > 0  ⇒  to  satisfy  Eq.  (147),  we  must  have  mmax +mmin = 0,
i.e. mmax = -mmin.

We have not specify the meaning of the quantum number j  yet. According to the convention,
we give j such a physical meaning that j is the maximal value that /m= can take, i.e.

mmax = j, mmin = - j ⇒ - j ≤ m ≤ j. (148)

Then by Eq. (146)

λj = j(j + 1). (149)

This also makes Eq. (148) consistent with Eq. (145).

◼ Angular Momentum Quantization

Because m can only change by ±1 ⇒ the difference between mmax and mmin must be an integer
⇒ mmax -mmin = 2 j = 0, 1, 2, …, therefore

" j can only be integer or half-integer: j = 0, 1 / 2, 1, 3 / 2, 2, …

" m takes values in m = - j, - j + 1, …, j - 1, j.

" For orbital angular momentum j takes integer values. For spin angular momentum j can also 
be half-integer.

-2 -1 1 2
m

1
2
3
4
5
6

λj = j (j + 1)

◼ Representation

Now  we  want  to  determine  the  coefficients  cm
±  in  Eq.  (140).  From  Eq.  (143)  and  Eq.  (144),

/cm
± =2 = j(j + 1) -m(m ± 1). It is a gauge choice to fix cm

± to be real and positive, so we take
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cm
± = j(j + 1) -m(m ± 1) . (150)

In  conclusion,  we  have  obtained  the  following  representations  for  angular  momentum  operators
(from Eq. (136) and Eq. (140))

J2 /j, m〉 = j(j + 1) /j, m〉,

J3 /j, m〉 = m /j, m〉,

J± /j, m〉 = j(j + 1) -m(m ± 1) /j, m ± 1〉.

(151)

Induction implies that all basis states can be

" either raised from the lowest weight state,

/j, m〉 =
(j -m)!

(2 j)! (j +m)!

1/2

J+
j+m

/j, - j〉, (152)

" or lowered from the highest weight state,

/j, m〉 =
(j +m)!

(2 j)! (j -m)!

1/2

J-
j-m /j, j〉. (153)

This is just like the Harmonic oscillator.

To make the analogy more precise, take the large-j limit,

J+

2 j
/j, - j + n〉 = n + 1 /j, - j + n + 1〉 + jj-1/2,

J-

2 j
/j, - j + n〉 = n /j, - j + n - 1〉 + jj-1/2.

(154)

Under the following correspondence

/j, - j + n〉 → /n〉,

(2 j)-1/2 J- → a, (2 j)-1/2 J+ → a†,
(155)

the boson creation/annihilation algebra Eq. (9) can be reproduced approximately (to the leading
order). In this sense, spin excitations can also be treated as bosons, called magnons.

◼ Spin-1/2

In the j = 1 / 2 subspace, the (spin) angular momentum operators S = (S1, S2, S3) can be repre-
sented as Pauli matrices,

S =
1

2
σ. (156)
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" Basis: {/↑〉 = /1 / 2, +1 / 2〉, /↓〉 = /1 / 2, -1 / 2〉}.

" Matrix representations:

S1 ≏
1

2
0 1
1 0

, S2 ≏
1

2
0 -ⅈ

ⅈ 0
, S3 ≏

1

2
1 0
0 -1

. (157)

" Eigenstates and eigenvalues

S1 :
1

2

1
1

→ +
1

2
,

1

2

1
-1

→ -
1

2
,

S2 :
1

2

1
ⅈ

→ +
1

2
,

1

2

1
-ⅈ

→ -
1

2
,

S1 :
1
0

→ +
1

2
,

0
1

→ -
1

2
.

(158)

◼ Spin-1

The  j = 1  subspace:  dimension  = 3  ⇒  3  basis  states,  and  angular  momentum operator  repre-
sented as 3×3 matrices.

" Basis: {/1, +1〉, /1, 0〉, /1, -1〉}.

" Matrix representations (the same matrices also represent spin-1)

L1 ≏
1

2

0 1 0
1 0 1
0 1 0

, L2 ≏
1

2 ⅈ

0 1 0
-1 0 1
0 -1 0

, L3 ≏

1 0 0
0 0 0
0 0 -1

. (159)

Switch to another set of basis (p-wave orbitals)

" Basis transformation

/1, +1〉
/1, 0〉
/1, -1〉

=

ⅈ

2
1
2

0

0 0 -ⅈ

-ⅈ

2
1
2

0

/x〉
/y〉
/z〉

. (160)

" Denote the transformation matrix by U , the operators transform as La → U † La U ,

L1 ≏

0 0 0
0 0 -ⅈ

0 ⅈ 0
, L2 ≏

0 0 ⅈ

0 0 0
-ⅈ 0 0

, L3 ≏

0 -ⅈ 0
ⅈ 0 0
0 0 0

. (161)

◼ Rotation Operators

Rotation operators are generated angular momentum operators by 
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R(θ) = e ⅈ θ ·J . (162)

The physical meaning of θ = (θ1, θ2, θ3)

" direction of θ: the direction of the rotational axis (following the right-handed rule),

" magnitude of θ: the amount of angle to rotate.

Examples: rotate along (0, 0, 1) axis by θ ⇒ θ = (0, 0, θ).

" Spin-1/2 representation, in the {/↑〉, /↓〉} basis,

R1/2(θ) ≏
eⅈ θ/2 0
0 e-ⅈ θ/2

. (163)

" Spin-1 representation, in the {/x〉, /y〉, /z〉} basis,

R1(θ) ≏
cos θ sin θ 0
-sin θ cos θ 0

0 0 1
. (164)

When θ = 2 π, a rotation by 2 π should do nothing,

" This is indeed the case for spin-1 representation

R1(0, 0, 2 π) ≏

1 0 0
0 1 0
0 0 1

≏ F. (165)

" But not for spin-1/2,

R1/2(0, 0, 2 π) ≏
-1 0
0 -1

≏ -F, (166)

The extra minus sign means that spin-1/2 is a projective representation of SO(3). Neverthe-
less, it is a linear representation of SU(2).

◼ Mathematical Interlude: Group and Group Representation

Symmetry group of a regular triangle: dihedral group D3

D3 = e, C3, C3
2, σ, σC3, σC3

2. (167)

" Each group element is a symmetry operation

" e: identity operation (do nothing)

" C3: three-fold rotation (clockwise)

" σ: reflection with respect to the vertical axis (x → -x)

" The group multiplication can be defined by multiplication table

(168)
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∘ e C3 C3
2 σ σC3 σC3

2

e e C3 C3
2 σ σC3 σC3

2

C3 C3 C3
2 e σC3

2 σ σC3

C3
2 C3

2 e C3 σC3 σC3
2 σ

σ σ σC3 σC3
2 e C3 C3

2

σC3 σC3 σC3
2 σ C3

2 e C3

σC3
2 σC3

2 σ σC3 C3 C3
2 e

(168)

In fact, the following definition relations are sufficient to specify all the multiplications in D3 
group

C3
3 = e, σ2 = e, σC3 σC3 = e. (169)

A group representation establishes a correspondence between every group element g ∈ G to a
matrix R(g), such that group multiplications are realized as corresponding matrix multiplications

g ∘h = gh ⇒ R(g)R(h) = R(g h). (170)

" Underlying each representation is a set of basis (on which group element can act as symmetry 
transformations). For example, the following vertex-labeled triangles form a set of basis


A

BC
,

AB

C
,

A

B

C
,

A

B C
,

A B

C
,

A

B

C
 (171)

They are related to each other by symmetry transformations (as unitary operators)

C3 =
AB

C


A

BC
+

A

B

C


AB

C
+

A

BC


A

B

C
+

A

B

C


A

B C
+

A

B C


A B

C
+

A B

C


A

B

C
,

σ =
A

B C


A

BC
+

A B

C


AB

C
+

A

B

C


A

B

C
+

A

BC


A

B C
+

AB

C


A B

C
+

A

B

C


A

B

C
,

(172)

which can be written in the matrix form

C3 ≏

0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

, σ ≏

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

. (173)
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This is called the canonical representation of D3.

" The canonical representation happens to be reducible, because we can find a new set of basis, 
related to the original ones by

/0〉
/s〉
/x〉
/y〉
/x′〉

/y′〉

=

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

-
1
6

-
1
6

-
1
6

1
3

-
1

2 3
-

1
2 3

1
3

-
1

2 3
-

1
2 3

0 1
2

-
1
2

0 -
1
2

1
2

0 -
1
2

1
2

0 -
1
2

1
2

1
3

-
1

2 3
-

1
2 3

-
1
3

1
2 3

1
2 3

A

BC


AB

C


A

B

C


A

B C


A B

C


A

B

C


. (174)

Let U  be the matrix in Eq. (174). Under the basis transformation,

C3 → U C3 U † ≏

1 0 0 0 0 0
0 1 0 0 0 0

0 0 -
1
2

-
3

2
0 0

0 0 3
2

-
1
2

0 0

0 0 0 0 -
1
2

-
3

2

0 0 0 0 3
2

-
1
2

,

σ → U σU † ≏

1 0 0 0 0 0
0 -1 0 0 0 0
0 0 1 0 0 0
0 0 0 -1 0 0
0 0 0 0 1 0
0 0 0 0 0 -1

,

(175)

The group elements can actually be represented as smaller matrices ⇒ irreducible representa-
tions. The canonical representation is reducible because it can be split into a direct sum of 
irreducible representations,

→ A1 ⊕A2 ⊕B ⊕B (176)

" A1 = span {/0〉}: trivial representation, one-dimensional.

" A2 = span {/s〉}: signed representation, one-dimensional.
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" B = span {/x〉, /y〉}: standard (isomorphic) representation, two-dimensional.

◼ Addition of Angular Momentum

◼ Example: Fusion of Spins

Combine two spin-1/2 systems together,

" State tensor products:

{/↑〉, /↓〉}A × {/↑〉, /↓〉}B = {/↑ ↑〉, /↑ ↓〉, /↓ ↑〉, /↓ ↓〉}. (177)

" Angular momentum adds:

S = SA +SB, (178)

where SA and SB are represented as

SA =
1

2
σA ⊗ FB ≏

1

2
σ10, σ20, σ30,

SB =
1

2
FA ⊗σB ≏

1

2
σ01, σ02 σ03.

(179)

The  operator  S  qualifies  as  an  angular  momentum  operator,  because   it  satisfies  the  defining
relation S ×S = ⅈ S  ⇒ In fact, S  corresponds to the total angular momentum of the combined
system. ⇒ They are generators of the global SU(2) symmetry.

S2 = (SA +SB)
2 = SA

2 +SB
2 + 2 SA ·SB

=
3

2
F + 2 SA ·SB.

(180)

The operator SA ·SB describes the spin coupling.

SA ·SB ≏
1

4
σ11 +σ22 +σ33 =

1

4

1 0 0 0
0 -1 2 0
0 2 -1 0
0 0 0 1

. (181)

Diagonalize SA ·SB:

" Spin singlet state, SA ·SB = -3 / 4 ⇒ S2 = 0 (s = 0):

/0, 0〉 =
1

2
(/↑ ↓〉 - /↓ ↑〉). (182)

" Spin triplet states, SA ·SB = 1 / 4 ⇒ S2 = 2 (s = 1):

/1, +1〉 = /↑ ↑〉,

, (183)
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/1, 0〉 =
1

2
(/↑ ↓〉 + /↓ ↑〉),

/1, -1〉 = /↓ ↓〉.

(183)

Under the basis transformation S is block diagonalized,

space: 1
2
⊗

1
2

0⊕ 1

basis: /↑ ↑〉, /↑ ↓〉, /↓ ↑〉, /↓ ↓〉 /0, 0〉; /1, +1〉, /1, 0〉, /1, -1〉

S1 ≏

0 1
2

1
2

0
1
2

0 0 1
2

1
2

0 0 1
2

0 1
2

1
2

0

0 0 0 0

0 0 1
2

0

0 1
2

0 1
2

0 0 1
2

0

S2 ≏

0 -
ⅈ

2
-

ⅈ

2
0

ⅈ

2
0 0 -

ⅈ

2
ⅈ

2
0 0 -

ⅈ

2

0 ⅈ

2
ⅈ

2
0

0 0 0 0

0 0 -
ⅈ

2
0

0 ⅈ

2
0 -

ⅈ

2

0 0 ⅈ

2
0

S3 ≏

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 -1

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 -1

S2 ≏

2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

0 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

" The original basis {/↑ ↑〉, /↑ ↓〉, /↓ ↑〉, /↓ ↓〉} form a reducible representation of SU(2).

" The new basis {/0, 0〉} and {/1, +1〉, /1, 0〉, /1, -1〉} respectively form irreducible representa-
tions of SU(2).

The two bases are related by basis transformations:

" 1 / 2⊗ 1 / 2 → 0 channel:

(/0, 0〉) =  0 1
2

-
1
2

0 

/↑ ↑〉

/↑ ↓〉

/↓ ↑〉

/↓ ↓〉

. (184)

" 1 / 2⊗ 1 / 2 → 1 channel:
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/1, +1〉
/1, 0〉
/1, -1〉

=

1 0 0 0

0 1
2

1
2

0

0 0 0 1

/↑ ↑〉

/↑ ↓〉

/↓ ↑〉

/↓ ↓〉

. (185)

The matrix elements are called Clebsch-Gordan coefficients. They tell us how the composition
of two spin-1/2 systems splits into a spin-0 and a spin-1 system. 

◼ Fusion Rules

Spins  are  irreducible  representations  of  the  SU(2)  group.  They  are  building  blocks  for  more
general (reducible) representations. All representations of SU(2) form a category:

" Irreducible representations are simple objects in the category, labeled by their spin 
quantum numbers j = 0, 1 / 2, 1, …

" Other reducible representations are not simple. They can be considered as spin systems.

" Semisimple property: each reducible representation (spin system) can split in to direct 
sum of irreducible representations (spins).

Each representation can be associated with a representation space  (which is a Hilbert space).
For example, spin-1/2 has a 2-dim representation space, spanned by {/↑〉, /↓〉}.  For an irreducible
representation of spin-j, the representation dimension is 2 j + 1.

" Matrix representation of group element g ∈ SU(2) in representation j can be depicted as 

j j
g

Example: rotation θ = (0, 0, θ), c.f. Eq. (163) and Eq. (164)

1
2

1
2

R (θ) =
eⅈ θ/2 0
0 e-ⅈ θ/2

,

1 1
R (θ) =

cos θ sin θ 0
-sin θ cos θ 0

0 0 1
.

(186)

The representation category of SU(2) is actually a tensor category,  i.e. a category equipped
with  tensor product  structures,  meaning  that  the  tensor  product  two representations  is  still  a
representation (which can then be further decomposed into irreducible representations).

j1
⊗

j2
=

j1

j2

" The tensor structure specifies the fusion rule:

j1 ⊗ j2 → /j1 - j2= ⊕ (/j1 - j2= + 1) ⊕…⊕ (j1 + j2 - 1) ⊕ (j1 + j2). (187)
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" Composition of a spin-j1 and a spin-j2 systems is a spin system that contains irreducible 
representations ranging from /j1 - j2= to j1 + j2 (each of them appear once).

" Example: 1 / 2⊗ 1 / 2 → 0⊕ 1.

" Notice that the representation dimensions add up correctly

dim ℋj1⊗j2 = 
j3=/j1-j2=

j1+j2
(2 j3 + 1) = (2 j1 + 1) (2 j2 + 1). (188)

" The decomposition is implemented by the fusion vertex (a projective morphism), which can 
be viewed as three-leg tensors preserving the SU(2) symmetry.

j1

j2
j3

π

such that ∀ g ∈ SU(2):

j1
g

j2
g j3

π = j1

j2
j3

gπ

" Example: fusion of two spin-1/2s, c.f. Eq. (184) and Eq. (185)

π0 : 1 / 2⊗ 1 / 2 → 0,

π0 ≏  0 1
2

-
1
2

0 ,

π1 : 1 / 2⊗1 / 2 → 1,

π1 ≏

1 0 0 0

0 1
2

1
2

0

0 0 0 1

.

(189)

Tensor elements of the fusion vertex are Clebsch-Gordan coefficients (CG coefficients).

j1 j2 j3
m1 m2 m3

= 〈j3, m3 j1, m1; j2, m2〉. (190)

They can be used to implement basis transformations

π(j1 ⊗ j2 → j3) = 
m1,m2,m3

/j3, m3〉
j1 j2 j3
m1 m2 m3

〈j1, m1; j2, m2=. (191)

To obtain the CG coefficient,

" either look up in Mathematica:

ClebschGordan[{1 / 2, -1 / 2}, {1 / 2, 1 / 2}, {1, 0}]
1

2
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" or calculate as eigenbasis of the Casimir operator J2:

j1 j1

j2 j2

J2 = 
j3

j3 j3
λ

j1

j2

π*
j1

j2

π

" Represent J2 in the j1 ⊗ j2 space.

" Diagonalize J2, group eigenvectors by eigenvalues.

" Within each degenerated subspace: the eigenvalue λj3 = j3(j3 + 1) or the degeneracy 2 j3 + 1 
infers the spin quantum number j3, the eigenvectors form the fusion vertex π(j1 ⊗ j2 → j3).

◻ Code Example

Representation of J on spin-j space.



0 1
2

0

1
2

0 1
2

0 1
2

0

,

0 - ⅈ
2

0

ⅈ
2

0 - ⅈ
2

0 ⅈ
2

0

,
1 0 0
0 0 0
0 0 -1



Given j1 = 1 / 2 and j2 = 1, construct the representation of J2 in the 1 / 2⊗ 1 space.
15
4

0 0 0 0 0

0 11
4

0 2 0 0

0 0 7
4

0 2 0

0 2 0 7
4

0 0

0 0 2 0 11
4

0

0 0 0 0 0 15
4

Find the eigenvalues of J2


15

4
,
15

4
,
15

4
,
15

4
,
3

4
,
3

4


λj = j(j + 1) deg. = 2 j + 1 j

3 / 4 2 1 / 2
15 / 4 4 3 / 2

(192)

This indicates that 1 / 2⊗ 1 → 1 / 2⊕ 3 / 2. Group the eigenvectors by their eigenvalues. Each degen-
erated  subspace  corresponds  to  a  irreducible  representation.  The  corresponding  eigenbasis  form
the fusion vertex.
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15

4
→

0 0 0 0 0 1

0 0 1
3

0 2
3

0

0 2
3

0 1
3

0 0

1 0 0 0 0 0

,
3

4
→

0 0 - 2
3

0 1
3

0

0 - 1
3

0 2
3

0 0


One can check the representation of J3 in the spin-1/2 subspace

- 1
2

0

0 1
2

It is not guaranteed that the basis vectors will be the canonical ones. We may further diagonalize
this matrix and rearrange its basis vectors.

In conclusion, the fusion vertex of 1 / 2⊗ 1 → 1 / 2 is given by

π(1 / 2⊗ 1 → 1 / 2) =
0 -

1
3

0 2
3

0 0

0 0 -
2
3

0 1
3

0
. (193)

One can also obtain the fusion vertex of 1⊗ 1 / 2 → 1 / 2 simply by rearranging the columns of the
matrix in Eq. (193)

π(1⊗ 1 / 2 → 1 / 2) =
0 2

3
-

1
3

0 0 0

0 0 0 1
3

-
2
3

0
, (194)

since their basis states are related by:

1 / 2⊗ 1 basis 1⊗ 1 / 2 basis
/1 / 2, +1 / 2; 1, +1〉 /1, +1; 1 / 2, +1 / 2〉
/1 / 2, +1 / 2; 1, 0〉 /1, +1; 1 / 2, -1 / 2〉
/1 / 2, +1 / 2; 1, -1〉 /1, 0; 1 / 2, +1 / 2〉
/1 / 2, -1 / 2; 1, +1〉 /1, 0; 1 / 2, -1 / 2〉
/1 / 2, -1 / 2; 1, 0〉 /1, -1; 1 / 2, +1 / 2〉
/1 / 2, -1 / 2; 1, +1〉 /1, -1; 1 / 2, -1 / 2〉

(195)

Consider a spin-1 particle A interacting with a spin-1/2 particle B via the Hamiltonian
H = -J SA ·SB.
(i) Find the eigenvalues of H
(ii) Define the projection operator onto the spin-1/2 and spin-3/2 subspaces as
P1/2 = π(1 / 2⊗ 1 → 1 / 2)† π(1 / 2⊗ 1 → 1 / 2)
P3/2 = π(1 / 2⊗ 1 → 3 / 2)† π(1 / 2⊗ 1 → 3 / 2)
Show that
P1/2 = -

2
3
(SA ·SB - F / 2)

P3/2 =
2
3
(SA ·SB + F)

HW
4
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Consider a spin-1 particle A interacting with a spin-1/2 particle B via the Hamiltonian
H = -J SA ·SB.
(i) Find the eigenvalues of H
(ii) Define the projection operator onto the spin-1/2 and spin-3/2 subspaces as
P1/2 = π(1 / 2⊗ 1 → 1 / 2)† π(1 / 2⊗ 1 → 1 / 2)
P3/2 = π(1 / 2⊗ 1 → 3 / 2)† π(1 / 2⊗ 1 → 3 / 2)
Show that
P1/2 = -

2
3
(SA ·SB - F / 2)

P3/2 =
2
3
(SA ·SB + F)

HW
4

◼ F-Symbols

Fusion vertices can be composed to fuse multiple spins.

π

π

j1 j2 j3

j4
j6

" The composition follows from the tensor network contraction.

Given  incoming  representations  j1, j2, j3  and  the  outgoing  representation  j6,  there  could  still  be
multiple fusion channels, depending on the choice of j4.

Example: (1 / 2⊗ 1 / 2) ⊗ 1 / 2 → 1 / 2

" For j4 = 0,

α0 = π(1 / 2⊗ 1 / 2 → 0)∘π(0⊗ 1 / 2 → 1 / 2)

≏
1 0
0 1

 0 1
2

-
1
2

0  ⊗
1 0
0 1



=
1 0
0 1

0 0 1
2

0 -
1
2

0 0 0

0 0 0 1
2

0 -
1
2

0 0

=
0 0 1

2
0 -

1
2

0 0 0

0 0 0 1
2

0 -
1
2

0 0
,

(196)

" For j4 = 1,

α1 = π(1 / 2⊗ 1 / 2 → 1)∘π(1⊗ 1 / 2 → 1 / 2)

≏
0 2

3
-

1
3

0 0 0

0 0 0 1
3

-
2
3

0


1 0 0 0

0 1
2

1
2

0

0 0 0 1

⊗
1 0
0 1



=
0 2

3
-

1
3

0 0 0

0 0 0 1
3

-
2
3

0

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0 1
2

0 1
2

0 0 0

0 0 0 1
2

0 1
2

0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

(197)
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=
0 2

3
-

1
6

0 -
1
6

0 0 0

0 0 0 1
6

0 1
6

-
2
3

0
.

(197)

However, we can also fuse the spin in a different order.

π

π

j1 j2 j3

j5
j6

Now depending on j5, there could be multiple fusion channels.

Example: 1 / 2⊗ (1 / 2⊗ 1 / 2) → 1 / 2

" For j5 = 0,

β0 = π(1 / 2⊗ 1 / 2 → 0)∘π(1 / 2⊗ 0 → 1 / 2)

≏
1 0
0 1


1 0
0 1

⊗  0 1
2

-
1
2

0 

=
1 0
0 1

0 1
2

-
1
2

0 0 0 0 0

0 0 0 0 0 1
2

-
1
2

0

=
0 1

2
-

1
2

0 0 0 0 0

0 0 0 0 0 1
2

-
1
2

0
,

(198)

" For j5 = 1,

β1 = π(1 / 2⊗ 1 / 2 → 1)∘π(1 / 2⊗ 1 → 1 / 2)

≏
0 -

1
3

0 2
3

0 0

0 0 -
2
3

0 1
3

0


1 0
0 1

⊗

1 0 0 0

0 1
2

1
2

0

0 0 0 1



=
0 -

1
3

0 2
3

0 0

0 0 -
2
3

0 1
3

0

1 0 0 0 0 0 0 0

0 1
2

1
2

0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

0 0 0 0 0 1
2

1
2

0

0 0 0 0 0 0 0 1

(199)
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=
0 -

1
6

-
1
6

0 2
3

0 0 0

0 0 0 -
2
3

0 1
6

1
6

0
.

(199)

The incoming and outgoing  representation  remains  the  same,  just  by  changing  the  fusion  order,
the resulting fusion tensors are different. For consistency, the two different fusion trees must be
related. The relation is a natural transformation in category theory, which is a linear transforma-
tion among fusion trees,

π

π

j1 j2 j3

j4
j6

= 
j5

Fj6
j1 j2 j3

j5

j4

π

π

j1 j2 j3

j5
j6

. (200)

In the example of 1 / 2⊗ 1 / 2⊗ 1 / 2 → 1 / 2

α0

α1
=

-
1
2

-
3

2
3

2
-

1
2

β0

β1
. (201)

" The matrix Fj6
j1 j2 j3 is called F-matrix, whose elements are called F-symbols. The F-matrix is 

unitary.

" F-symbol is related to Wigner 6 j-symbol by a normalization factor

Fj6
j1 j2 j3

j5

j4
= (-)j1+j2+j3+j6 (2 j4 + 1) (2 j5 + 1) 

j1 j2 j4
j3 j6 j5

. (202)

Mathematica knows how to calculate the 6 j-symbol.

SixJSymbol[{1 / 2, 1 / 2, 0}, {1 / 2, 1 / 2, 0}]

-
1

2

Pentagon  Relation:  the  consistency  equation  of  F-symbols.  The  left-most  and  right-most
fusion trees of four spins can be related to each other by F-moves in two different sequences. The
diagram must commute.
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j1 j2 j3 j4

j5

j10j9

j1 j2 j3 j4

j5
j9

j8

j1 j2 j3 j4

j5

j6 j8

j1 j2 j3 j4

j5

j6 j7

j1 j2 j3 j4

j5

j10j7

F F

F

F

F

Fj5
j6 j3 j4

j8

j7
Fj5

j1 j2 j8
j9

j6
= 

j10

Fj7
j1 j2 j3

j10

j6
Fj5

j1 j10 j4
j9

j7
Fj9

j2 j3 j4
j8

j10. (203)

Fortunately, a mathematical theorem guarantees that the pentagon relations are all that need to
be satisfied, i.e. all other consistencies are consequences of the pentagon relations.

Hydrogen Atom

◼ Classical Mechanical Background

◼ Classical Equation of Motion

" A hydrogen atom is a bound state of a single electron and a single proton.

" The proton is much heavier than the electron (mass ratio mp me ≈ 1836), it is essentially 
pinned at the center of mass.

" Consider electron moving in the electric static potential created by the proton.

V (r) = -
k

r
, (204)

where k = e2  (4 π ϵ0) describes the strength of the Coulomb force.

" The Energy (Hamiltonian) of the electron is given by

E =
p2

2 m
-

k

r
, (205)

" r is the displacement from the proton and r = /r= is the electron-proton distance.

" p = m r|  is the momentum.
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" m is the mass of electron (or more precisely the reduced mass of the electron in this two-
body problem).

" The angular momentum

L = r × p. (206)

" The classical equation of motion:

r| =
p

m
, p| = -

k r

r3
. (207)

" L
|
= r| × p + r × p| = 0 from Eq. (207) ⇒ the angular momentum is conserved. (∵ the Hamilto-

nian has the SO(3) rotation symmetry)

◼ Laplace-Runge-Lenz (LRL) Vector

" The Laplace-Runge-Lenz (LRL) vector is defined to be

A = p ×L-m k
r

r
. (208)

A:

θ:

r

m k r9 p ×L

A

θ

" The LRL vector is conserved (there must be an symmetry associate to it, what is it?)

A
|
= 0. (209)

Using Eq. (207), 

A
|
= p| ×L-m k

r|

r
+m k

r

r2
r|

= -
k

r3
r × (r × p) -

k

r
p +m k

r

r2
r|
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= -
k

r3
r (r · p) - r2 p -

k

r
p +m k

r

r2
r|

= -m k
r

r3
(r · r| ) +m k

r

r2
r| = 0

This conservation law can be used to derive the Kepler orbit. Consider

A · r = A r cos θ = r · (p ×L) -m k r, (210)

where  θ  is  the  angle  between  r  and  A.  Permuting  the  scalar  triple  product
r · (p ×L) = L · (r × p) = L2, Eq. (210) ⇒ the orbit equation

1

r
=

m k

L2
1+

A

m k
cos θ . (211)

" Conservation of the magnitude A = /A= ⇒ conservation of the eccentricity of the orbit (in fact 
e ≡ c / a = A /m k).

" Conservation of the direction of A ⇒ conservation of the periapsis (the point of closest 
approach) with respect to the force center.

So the LRL vector is conserved.

" L and A are always perpendicular (L ·A = 0), they fully specifies a unique Kepler orbit (shape 
and orientation are both determined).

" As the orbit is specified, its energy must be determined too ⇒ so the energy E is not an indepen-
dent conserved quantity, in fact

A2 = 2 m E L2 +m2 k2. (212)

" Given the magnitude of L and A,

" All orbits of different orientations are degenerated in energy ⇒ they are related by 
symmetry.

" Each orbit orientation ⇔ a pair of perpendicular unit vectors (L /L, A /A) ⇔ a particular 
rotation in 3D space, i.e., a group element of SO(3) ⇔ a point on (half of) a 4D sphere! 
(more precisely a point on RP3)

" An explicit construction: every 4-dim unit vector (n1, n2 n3, n4) ⇔ two orthogonal 3-dim 
unit vectors

L /L = n1
2 + n2

2 - n3
2 - n4

2, 2 (n2 n3 - n1 n4), 2 (n1 n3 + n2 n4),

A /A = 2 (n2 n3 + n1 n4), n1
2 - n2

2 + n3
2 - n4

2, 2 (n3 n4 - n1 n2).
(213)

" The symmetry that keeps the 4D sphere invariant is SO(4) (more precisely, to keep RP3 
invariant, the symmetry is actually SO(4) / ℤ2).

" SO(4) group has six generators, all of them must be conserved ⇒ corresponding to the conser-
vation of both L and A.

Let us represent the SO(4) group as 4×4 orthogonal matrices. (a) Show that orthogonal
matrices  O = eⅈ θ A  are  generated  by  imaginary  antisymmetric  matrices  A  (i.e.,  if
OÄO = F and O ∈ ℝ, then AÄ = -A and A ∈ Ç). (b) Verify that the following six matrices
form  a  complete  basis  of  generators  (i.e.  any  imaginary  antisymmetric  matrix  can  be
represented as a linear combination of them with real coefficient)

T1 =
1
2

0 0 0 -ⅈ

0 0 ⅈ 0
0 -ⅈ 0 0
ⅈ 0 0 0

, T2 =
1
2

0 0 -ⅈ 0
0 0 0 -ⅈ

ⅈ 0 0 0
0 ⅈ 0 0

, T3 =
1
2

0 -ⅈ 0 0
ⅈ 0 0 0
0 0 0 ⅈ

0 0 -ⅈ 0

;

S1 =
1
2

0 0 0 -ⅈ

0 0 -ⅈ 0
0 ⅈ 0 0
ⅈ 0 0 0

, S2 =
1
2

0 -ⅈ 0 0
ⅈ 0 0 0
0 0 0 -ⅈ

0 0 ⅈ 0

, S3 =
1
2

0 0 -ⅈ 0
0 0 0 ⅈ

ⅈ 0 0 0
0 -ⅈ 0 0

.

(c) Verify the following commutation relations
Ti, Tj = ⅈ ϵi jk Tk, Si, Sj = ⅈ ϵi jk Sk, Ti, Sj = 0.
Compare with Eq. (133), we learn that so(4) ≅ su(2) × su(2).

HW
5
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◼ Quantum Mechanical Treatment

◼ Operator Algebra

We promote classical observables to Hermitian operators:

" Coordinate r and momentum p operators, satisfying [ra, pb] = ⅈ δab. See Eq. (131).

" Angular momentum operator L = r × p. See Eq. (130).

" Quantum LRL operator

A =
1

2
(p ×L-L× p) -m k

r

r
. (214)

Compared with the classical case Eq. (208), the additional “anti-symmetrization” is to ensure A 
to be Hermitian.

" Hamiltonian operator

H =
p2

2 m
-

k

r
. (215)

One can verify the following commutation relations

[H , La] = 0,

[H , Aa] = 0,

[La, Lb] = ⅈ ϵabc Lc,

[La, Ab] = ⅈ ϵabc Ac,

[Aa, Ab] = -ⅈ 2 m ϵabc Lc H ,

(216)

and the following operator equations
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A ·L = L ·A = 0,

A2 = 2 m H L2 + 1 +m2 k2.
(217)

◼ SO(4) Generators

Suppose there exist bound states with energy E < 0. In the subspace of a fixed eigen energy E
(i.e. replacing H → E), it makes sense to rescale the quantum LRL operator A by a scalar

A

=

1

-2 m E
A, (218)

then Eq. (216) is simplified to

[H , La] = 0,

[H , Aa] = 0,

[La, Lb] = ⅈ ϵabc Lc,

La, A


b = ⅈ ϵabc A


c,

A


a, A


b = ⅈ ϵabc Lc.

(219)

Define the SO(4) generators

T =
1

2
L+A


, S =

1

2
L-A


. (220)

" How do we know they form SO(4) generators? We check their commutation relations

[H , Ta] = 0,

[H , Sa] = 0,

[Ta, Tb] = ⅈ ϵabc Tc,

[Sa, Sb] = ⅈ ϵabc Sc,

[Ta, Sb] = 0.

(221)

" A ·L = L ·A = 0 further implies T2 = S2. 

" T and S are two sets of independent “angular-momentum-like” operators.

" Common eigen states of T and S are labeled by three quantum numbers t, mt, ms:

T2 /t, mt, ms〉 = S2 /t, mt, ms〉 = t(t + 1) /t, mt, ms〉,

T3 /t, mt, ms〉 = mt /t, mt, ms〉,

S3 /t, mt, ms〉 = ms /t, mt, ms〉,
(222)

" t = 0, 1
2
, 1, 3

2
, 2, …. For each fixed t ⇒ (2 t + 1)2 degeneracy.

" mt, ms = -t, -t + 1, …, t - 1, t.
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◼ Energy Levels

From Eq. (217), Eq. (218), Eq. (220),

4T2 = L2 +A
 2

= L2 +
1

-2 m E
A2

= L2 -
1

2 m E
2 m EL2 + 1 +m2 k2

= -1-
m k2

2 E
.

(223)

" Acting on the state /t, mt, ms〉, T2 /t, mt, ms〉 = t(t + 1) /t, mt, ms〉,

E = -
m k2

2 4T2 + 1
= -

m k2

2 (4 t(t + 1) + 1)
= -

m k2

2 (2 t + 1)2
. (224)

" Given t = 0, 1
2
, 1, 3

2
, 2, …, define the principal quantum number

n = 2 t + 1 = 1, 2, 3, 4, 5, … (225)

The energy levels are given by n ∈ ℤ+

En = -
m k2

2 n2
. (226)

" The corresponding eigenstates /t, mt, ms〉 (with t = (n - 1) / 2) are labeled by 
mt, ms = -t, -t + 1, …, t - 1, t ⇒ level degeneracy: (2 t + 1)2 = n2.

◼ Ground State

Which state is the ground state?

" The energy En = -m k2  2 n2 is minimized when n = 1 (or t = 0).

" When t = 0, mt and ms has only one choice, i.e. mt = ms = 0.

" So the ground state corresponds to the /0, 0, 0〉 state.

How  to  find  its  wave  function  ψ1 s(r)?  This  amount  to  solve  the  differential  equation
T2 ψ1 s = 0, which is equivalent to

H ψ1 s = E1 ψ1 s, (227)

or more explicitly as

p2

2 m
-

k

r
ψ1 s = -

m k2

2
ψ1 s. (228)

We guess a trial wave function
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ψ1 s(r) ∝ e-r/a, (229)

Eq. (228) implies a k m - 1 = 0, i.e. a = 1 / (k m).

In conclusion, the (normalized) ground state wave function of the electron in the hydrogen
atom reads

ψ1 s(r) =
2

a3/2
e-r/a, (230)

" a = 1 / (k m) is called the Bohr radius.

" The ground state energy is given by

E1 = -
k

2 a
, (231)

as if the electron in orbiting the proton in a circular orbital of radius a (the classical picture).

" The electron is observed randomly in a probability cloud, called the electron cloud.

p(r) = /ψ(r)=2 ∝ e-2 r/a. (232)

◼ Excited States

Excited states are labeled by higher principal quantum numbers n = 2, 3, … (or t = 1
2
, 1, …). 

" States with the same principal quantum numbers are degenerated in energy.

" Within each degenerated sectors, the states /t, mt, ms〉 form a complete set of basis (with 
mt, ms = -t, …, t), which can be viewed as a combined system of two “spins” of the same 
angular momentum t.

The orbital angular momentum L of electron is the total angular momentum of the fictitious spins,

L = T +S. (233)

According  to  the  fusion  rules  of  spins,  we  anticipate  their  total  angular  momentum  to  take
l = 0, 1, …, 2 t (each representation will appear once). So the excited states may as well be labeled
by

/n, l, m〉 (234)

" n - principal quantum number (n = 1, 2, …),

" l - angular quantum number (l = 0, 1, …, n - 1)

" m - magnetic quantum number (m = - l, - l + 1, …, l - 1, l)

/n, l, m〉  and /t, mt, ms〉  are  just  differed  by  a  basis  transformation,  but  the  former  basis  is  more
commonly  used  as  atomic  orbitals,  because  the  electron-electron  interaction  will  break  the
SO(4) symmetry down to SO(3).
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