
Condensed Matter Physics
Part 2. Electronic System

Electrons in Solids

◼ Quantum Mechanics of Electrons

◼ Schrödinger Equation of Electron

An electron is a quantum particle described by the Schrödinger equation 

-
ℏ2 ∇2

2 m
+V (x) ψ(x) = E ψ(x). (1)

" m - electron mass,

" V (x) - electronic potential at position x,

" ψ(x) - electron wave function (eigenstate), s.t. the probability (density) to observe an electron 
at position x is )ψ(x)*2,

" E - the corresponding eigen energy of the eigenstate.

◼ A Toy Atom in 1D

Consider an electron in 1D. An atomic nucleus (or a positively-charged ion) at the origin can
be modeled by an attractive Dirac potential (with -γ < 0)

V (x) = -γ δ(x), (2)

V (x)
0

→ → →

The Dirac potential viewed as the limit of square potential wells, where the potential is infinitely
narrow  and infinitely  deep  but keeps the width ×  depth = γ  constant.  The constant γ  effectively
describes the strength of the potential (which has to do with the nucleus charge etc.).

Schrödinger equation
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-
ℏ2

2 m
∂x

2ψ(x) - γ δ(x) ψ(x) = E ψ(x). (3)

" Bound state (E < 0)

" Wave function decays exponentially near the origin, 

ψ(x) = ξ-1/2 ⅇ-)x*/ξ, (4)

with a decay length

ξ =
ℏ2

m γ
. (5)

x

ψ (x)

0 ξ-ξ

In the bound state, the electron is trapped around the potential within the length scale ξ. ⇒ 
The model mimics an atom (in 1D), where ξ can be viewed as the atomic radius (Bohr 
radius).

" The eigen energy is negative (with respect to the potential zero)

E = -
ℏ2

2 m ξ2
= -

m γ2

2 ℏ2
. (6)

" This is the unique bound state in the system, which is also the lowest-energy ground state 
of the electron.

Verify that Eq. (4) is a normalized solution of Eq. (3).Exc
1

" Scattering states (E > 0)

" There are infinitely many scattering state solutions (forming a continuum in the spectrum). 
Each scattering state is associated with an positive eigen energy E > 0, which also sets a 
wave number 

k =
2 m E

ℏ
. (14)

" Wave function

ψ(x) =
ⅇⅈ k x +Ar ⅇ-ⅈ k x x < 0
At ⅇⅈ k x x > 0

, (15)

with the reflection and transmission amplitudes
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Ar = -
1

1+ ⅈ k ξ
,

At =
1

1- ⅈ / (k ξ)
.

(16)

-30-20-10 0 10 20 30
-2

-1

0

1

2

x

ψ
(x
)

" In the scattering state, the electron has high enough energy to scatter off the potential. ⇒ 
The atom ionize into dissociated electron and nucleus.

" In the following, we will be interested in bound states of electrons (in atomic orbitals), which 
are relevant to the solid state physics.

◼ Two Toy Atoms in 1D

Place  two  nuclei  from  each  other  by  distance  d.  An  electron  will  experience  two  attractive
Dirac potentials

V (x) = -γ δ(x - d / 2) - γ δ(x + d / 2). (17)

Define the atomic radius

ξ =
ℏ2

m γ
. (18)

" Bound state (E < 0) wave functions

" Even parity solution

ψ(x) =
A ⅇκ x x < -d / 2,
cosh κ x -d / 2 < x < d / 2,
A ⅇ-κ x x > d / 2.

(19)

" Odd parity solution

ψ(x) =
-A ⅇκ x x < -d / 2,
sinh κ x -d / 2 < x < d / 2,
A ⅇ-κ x x > d / 2.

(20)

" The amplitude A is given by (continuity of wave function)
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A =
1
2
ⅇκ d + 1 even parity,

1
2
ⅇκ d - 1 odd parity.

(21)

" Substitute Eq. (19), Eq. (20) into the Schrödinger equation, the imaginary wave number κ is 
determined by

eκ d(κ ξ - 1) =
+1 even parity,
-1 odd parity, (22)

Derive Eq. (22).Exc
2

The number of solutions of Eq. (22) depends on the inter-atomic distance d and the atomic 
radius ξ,

" d > ξ: two bound states of both parities,

" d < ξ: one bound state of even parity.

: even parity solution,
: odd parity solution.

" Based on the solutions of κ, the eigen energies are given by

E = -
ℏ2 κ2

2 m
. (39)
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" The energy E is plotted in unit of the ground state energy E0 of a single atom given in Eq. 
(6)

E0 = -
ℏ2

2 m ξ2
. (40)

" The even parity state is always the ground state of the two-atom system.

" Assuming electrons always occupy the ground state, as the atoms merge together (from 
d → ∞ to d → 0), the binding energy Eb = Ed→∞ -Ed=0 = 3 )E0* will be released (per electron).

" Force between atoms are given by

F = -
∂E

∂d
(41)

Inter-atomic force can be mediated by exchanging electron ⇒ valence bond.

" Molecular orbitals of valence σ-bond

" Bonding orbital: electron in even parity state, atoms attract each other.

" Anti-bonding orbital: electron in odd parity state, atoms repel each other.

◼ Tight Biding Approximation

Tight binding (atomic) limit: When the inter-atomic distance d is sufficiently large compared
to the atomic radius ξ  (i.e. d ≫ ξ) ⇒ the electron tightly binds the atomic nucleus, such that the
molecular orbital can be approximated by superpositions of atomic orbitals.

" Atomic orbitals

〈x 1〉 = ψ1(x) = ξ-1/2 ⅇ-)x-x1*/ξ,

〈x 2〉 = ψ2(x) = ξ-1/2 ⅇ-)x-x2*/ξ,
(42)

where x1 and x2 are the positions of two nuclei respectively.

" )1〉 and )2〉 are not orthogonal, but close to orthogonal in the tight binding limit

〈1 2〉 = 
-∞

∞
ψ1
*(x) ψ2(x) ⅆx

= ξ-1 
-∞

∞
ⅇ-)x-x1*/ξ ⅇ-)x-x2*/ξ ⅆx (43)
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= ⅇ-d/ξ(1+ d / ξ)
d≫ξ

0,

(43)

where d = )x1 - x2*.

" Tight binding basis: orthogonalized atomic orbitals

)i

〉 = 

i

Si

i )i〉, (44)

such that .

" The transformation matrix is given by

S =
S1

1 S1


2

S2

1 S2


2

= cosh 2 ε
cosh ε -sinh ε
-sinh ε cosh ε

. (45)

where ε is defined by

tanh 2 ε = ⅇ-d/ξ(1+ d / ξ). (46)

" ε is expected to vanish in the tight biding limit. To the leading order in ε,

)1

〉 ≃ )1〉 - ε )2〉,

)2

〉 ≃ )2〉 - ε )1〉,

(47)

with ε ≃ 1
2
ⅇ-d/ξ(1+ d / ξ).

" Hamiltonian operator

H = -
ℏ2

2 m
∂x

2+V (x)

= -
ℏ2

2 m
∂x

2-γ δ(x - x1) - γ δ(x - x2).

(48)

It is assumed that γ and ξ are always related by ξ = ℏ2  (m γ), such that )1〉 and )2〉 are eigen-
states of the Hamiltonian when only one potential is present, i.e.

-
ℏ2

2 m
∂x

2-γ δ(x - xi) ψi(x) = E0 ψi(x), (49)

with the atomic orbital eigen energy

E0 = -
ℏ2

2 m ξ2
. (50)

" Tight binding Hamiltonian: the effective Hamiltonian in the tight binding basis

Heff = 
i,j=1,2

)i

〉H


ij 〈j

*, (51)
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where H


ij ≡ 〈i

*H )j


〉.

" The matrix element H


ij can be obtained from

Hij ≡ 〈i*H )j〉

= 
-∞

∞
ψi
*(x) -

ℏ2

2 m
∂x

2-γ δ(x - x1) - γ δ(x - x2) ψj(x) ⅆx,
(52)

via basis transformation Eq. (44)

H


ij = 
ij

Si

i Hij Sj


j, (53)

or written in terms of matrix multiplication H

= S H SH.

" Substitute Eq. (42) into Eq. (52), one finds

H =
H11 H12

H21 H22
= E0

1+ 2 ⅇ-2 d/ξ ⅇ-d/ξ(3+ d / ξ)
ⅇ-d/ξ(3+ d / ξ) 1+ 2 ⅇ-2 d/ξ

, (54)

where E0 is the atomic orbital energy.

Derive Eq. (54).Exc
3

" Substitute Eq. (45) and Eq. (54) into Eq. (53), to the leading order of ⅇ-d/ξ (in the tight 
binding limit), the effective Hamiltonian reads

H

= S H SH

= E0
1 2 ⅇ-d/ξ

2 ⅇ-d/ξ 1
+I ⅇ-2 d/ξ.

(60)

or written in the tight binding basis as

Heff = E0)1

〉 〈1


* + )2


〉 〈2


* + 2 E0 ⅇ-d/ξ)1


〉 〈2


* + )2


〉 〈1


*. (61)

" The diagonal term )1

〉 〈1


* + )2


〉 〈2


* describes that the electron trapped around an atom will 

experience the on-site energy E0.

" The off-diagonal term )1

〉 〈2


* + )2


〉 〈1


* describes that the electron can tunnel from one atom to 

another, and the process is associated with an energy scale 2 E0 ⅇ-d/ξ, which is also called the 
hopping energy.

" Molecular orbitals (tight binding model)

" In the tight biding basis, the Schrödinger equation reduces from a differential equation to a 
matrix equation

Heff )ψ〉 = E )ψ〉, (62)

or explicitly
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E0
1 2 ⅇ-d/ξ

2 ⅇ-d/ξ 1

ψ1


ψ2


= E
ψ1



ψ2


. (63)

" Solving the eigen problem, one finds two eigen states  with the eigen energy E±

E± = E01± 2 ⅇ-d/ξ,

)ψ±〉 =
1

2
)1

〉 ± )2


〉 ∝ )1〉 ± )2〉.

(64)

" - Solid curve: exact energy. 
- Dashed curve: approximate energy to the 1st order in ⅇ-d/ξ (given by the tight binding 
model).

" : even parity, bonding orbital )ψ+〉,
: odd parity, anti-bonding orbital )ψ-〉

◼ 1D Electronic Systems

◼ Electron on 1D Lattice

A electron moving on the background of a lattice of positive ions.

H = -
ℏ2

2 m
∂x

2+V (x) (65)

" Periodic potential: V (x + a) = V (x), i.e. the potential is invariant under  lattice translation 
x → x + a.

x

V (x)
+ + + + + + + + +

Define a set of tight binding basis

〈x i〉 = ψi(x) ∝ ⅇ-)x-xi */ξ + (orthogonality corrections ...), (66)

where xi = i a is the position of the ith ion (i - site index, labels the lattice site).
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" The lattice translation correspond to )i〉 → )i+1〉 for tight binding basis.

Expand the Hamiltonian H  on the tight binding basis,

H = 
ij

)i〉Hij 〈j*, (67)

where Hij ≡ 〈i*H )j〉.

" The lattice translation symmetry implies

〈i+1*H )j+1〉 = 〈i*H )j〉, (68)

i.e. Hij only depends on the index difference i - j.

" Hermiticity of the Hamiltonian requires

Hij = Hji
* . (69)

" The Hamiltonian matrix must take the form of

Hij =

-ti-j i > j
ϵ0 i ⩵ j
-tj-i

* i < j
, (70)

or in the matrix form as

H =

⋱ ⋱ ⋱ ⋱
⋱ ϵ0 -t1

* -t2
*

⋱ -t1 ϵ0 -t1
* ⋱

-t2 -t1 ϵ0 ⋱
⋱ ⋱ ⋱ ⋱

. (71)

" ϵ0 - on-site potential energy.

" tn - nth neighbor hopping parameter (kinetic energy). tn is expected to decay exponentially

tn ~ ⅇ-)xn-x0*/ξ = ⅇ-n a /ξ, (72)

therefore tn is often truncated to the first few leading ones (the few nearest neighbors hop-
ping parameters). 

◼ Tight Binding Model and Energy Band

Truncate to 2nd nearest neighbor hopping. Assuming t1, t2 ∈ ℝ,  the tight binding Hamilto-
nian reads

H = ϵ0 
i

)i〉 〈i* - t1 
i

()i+1〉 〈i* + h.c.) - t2 
i

()i+2〉 〈i* + h.c.), (73)
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where h.c. stands for the omitted term related by Hermitian conjugation.
Goal:  solve  the  Schrödinger  equation  ,  find  the  eigen  states  and  the  corresponding
eigen energies of the electron.

It  turns  out  that  the  Hamiltonian  can  be  simply  diagonalized  by  transforming  to  the  quasi-
momentum basis .

" The quasi-momentum basis and the tight binding basis are related Fourier / inverse Fourier 
transforms

)i〉 = N-1/2 
k

ⅇ-ⅈ k xi )k〉,

)k〉 = N-1/2 
i

ⅇⅈ k xi )i〉,
(74)

where N  is the total number of sites in the lattice.

" Assuming N  is even, ∑k sums over

k = 0, ±
2 π

N a
, …, ±

2 πm

N a
, …, ±

2 π (N / 2- 1)

N a
,
π

a
. (75)

" ∑i sums over i = 1, 2, ..., N - 1, N .

" Substitute Eq. (74) into Eq. (73), the Hamiltonian is diagonalized

H = 
k

ϵk )k〉 〈k*,

ϵk = ϵ0 - 2 t1 cos(k a) - 2 t2 cos(2 k a).
(76)

Derive Eq. (76).Exc
4

" Dispersion relation ϵk of the electron (also called band structure, band dispersion)

-π - π
2

0 π
2

π
-4

-2

0

2

4

k a

ϵ k

" The dispersion relation ϵk is periodic in the quasi-momentum, i.e.

ϵk+ 2 π

a
= ϵk, (79)

so the quasi-momentum k of electron can be taken to be in the first Brillouin zone 
k ∈ (-π / a, π / a].

ElectronicSystem.nb 10



so the quasi-momentum k of electron can be taken to be in the first Brillouin zone 
k ∈ (-π / a, π / a].

" Energy band: the allowed energy range of the electron. The electron can not take an energy 
outside the energy band (as there is no state outside the energy band for the electron to 
occupied).

" Eigenstates (quasi-momentum basis states) in real space representation

〈x k〉 = N-1/2 
i

ⅇⅈ k xi 〈x i〉

= N-1/2 
i

ⅇⅈ k a i ψi(x).
(80)

Tight binding basis ψi enveloped by a plane wave.

-4 -2 0 2 4
-2

-1

0

1

2

x

〈x
k〉

" Group velocity of the electron

vk =
1

ℏ

∂ϵk
∂k

. (81)

Take the dispersion relation ϵk in Eq. (76),

vk =
2 a t1
ℏ

sin(k a) +
4 a t2
ℏ

sin(2 k a). (82)

-π - π
2

0 π
2

π
-4

-2

0

2

4

k a

ℏ
v k

/a

" The group velocity always vanishes (vk = 0) at both the Brillouin zone center (k = 0) and 
zone boundary (k = π / a), because they are inversion symmetric points (i.e. k ≅ -k) in the 
Brillouin zone. Since velocity is odd under inversion
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v-k = -vk, (83)

it must vanish at inversion symmetric momentum points.

" The quasi-momentum basis states )k〉 are standing wave states at k = 0 and k = π / a, i.e. 
the electron wave does not propagate and the group velocity vanishes. The standing wave at 
k = π / a is caused by the strong back-scattering (Bragg scattering) of electron by the lattice.

" Effective mass meff of the electron

meff
-1 =

1

ℏ

∂vk

∂k
=

1

ℏ2

∂2 ϵk

∂k2
. (84)

Take the dispersion relation ϵk in Eq. (76),

meff
-1 =

2 a2 t1
ℏ2

cos(k a) +
8 a2 t2
ℏ2

cos(2 k a). (85)

" At band bottom (k = 0), the effective mass is positive

meff =
ℏ2

2 a2(t1 + 4 t2)
. (86)

" At band top, the effective mass is negative. For example, for t2 < t1 / 4, the band top is at 
k = π / a, where the effective mass is

meff =
ℏ2

2 a2(-t1 + 4 t2)
. (87)

When the effective mass is negative, the electron velocity decreases with increasing 
momentum. The negative effective mass is a peculiar feature of electron on the lattice.

◼ Thermodynamic Limit and Density of State

The total number N  of lattice sites was introduced to regularize the Fourier transform. How-
ever,  the  physical  results  (intensive  properties  of  the  system) should have be  well-defined in  the
thermodynamic limit N → ∞.

In  particular,  the  momentum summation  can  be  replaced  by  a  momentum integration  in  the
thermodynamic limit N → ∞, as the momentum grid spacing 2 π / (N a) → 0,


k

= N a 
-π

π ⅆk

2 π
= V 

-π

π ⅆk

2 π
, (88)

where V = N a is the (1D) volume of the system.

" Extensive property that involves summation ∑k of states will be proportional to the volume V .

" Intensive property (extensive property per volume) eliminates the volume dependence, and has 
well-defined thermodynamic limit.

The momentum integration can be further converted to an energy integration,
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
k

= V  ⅆϵ 
ϵk=ϵ

1

2 π ∂k ϵk
= V  ⅆϵ 

ϵk=ϵ

1

2 π ℏ vk
. (89)

Define the density of state g(ϵ) via


k

= V  ⅆϵ g(ϵ). (90)

For 1D system,

g(ϵ) = 
ϵk=ϵ

1

2 π ℏ vk
. (91)

" For ϵk = -2 t cos(k a), we have ℏ vk = 2 a t sin(k a),

g(ϵ) = 
-2 t cos(k a)=ϵ

1

4 π a t sin(k a)

=
1

2 π a t sinarccos ϵ
2 t


=
1

π a (2 t)2 - ϵ2
.

(92)

" The divergences of density of state near band edges are examples of van Hove 
singularities.

" The mid-band density of state saturates to g(0) = 1 / (2 π a t).

Consider  adding  a  stagger  potential  u  to  the  1D  tight  biding  model  (assuming  the
nearest neighboring bond length to be 1, as the length unit) 
H = -t ∑i ()i+1〉 〈i* + h.c.) - u ∑i (-1)i )i〉 〈i*. 
For u ≠ 0, the primitive unit cell is enlarged from one site to two sites. The first Bril-
louin zone correspondingly shrinks to [π / 2, -π / 2). 
(i) How many bands do you expect?
(ii) Calculate the band dispersion for each band.

HW
1

◼ Fermi Statistics and Band Filling

By  diagonalizing  the  electron  Hamiltonian,  we  have  just  solved  a  single-particle  problem,
and obtained the eigenstates that an electron can occupied. When there is many electrons in the
system, each eigenstate of the eigenenergy ϵ will  have an occupation probability given by the
Fermi-Dirac distribution 
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By  diagonalizing  the  electron  Hamiltonian,  we  have  just  solved  a  single-particle  problem,
and obtained the eigenstates that an electron can occupied. When there is many electrons in the
system, each eigenstate of the eigenenergy ϵ will  have an occupation probability given by the
Fermi-Dirac distribution 

nF (ϵ) =
1

eβ (ϵ-μ) + 1
, (93)

" β = 1 / kB T , where T is the temperature.

" μ is the chemical potential (Fermi energy).

-4 -2 0 2 4
0.0
0.2
0.4
0.6
0.8
1.0

ϵ - μ

n F
(ϵ
)

" The chemical potential is set by the total number Ne of electrons

Ne = 2 
k

nF (ϵk) = 2 
k

1

eβ (ϵk-μ) + 1
. (94)

The factor 2 in front of the summation takes into account the fact that each electron has two 
degenerated spin states.

" Then the total internal energy E of the electronic system is

E = 2 
k

ϵk nF (ϵk) = 2 
k

ϵk
eβ (ϵk-μ) + 1

. (95)

In the low-temperature  (T → 0) limit,  electrons will  simply occupy all  states  below the Fermi
energy μ, such that Eq. (94) and Eq. (95) simplifies to

Ne = 2 
ϵk<μ

1, E = 2 
ϵk<μ

ϵk. (96)

" For ϵk = -2 t cos(k a), use the density of state g(ϵ) in Eq. (92), the total number of electrons 
increases with μ from 0 to 2 as

Ne = 2 V 
-2 t

μ
ⅆϵ g(ϵ)

(97)
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=
2 V

π a

-2 t

μ
ⅆϵ

1

(2 t)2 - ϵ2

=
2 N

π
arcsin

μ

2 t
+

π

2
.

(97)

-2 -1 0 1 2
0.0
0.5
1.0
1.5
2.0

μ / t

N
e
/N

and the total internal energy varies with μ as

E = 2 V 
-2 t

μ
ⅆϵ ϵ g(ϵ)

=
2 V

π a

-2 t

μ
ⅆϵ

ϵ

(2 t)2 - ϵ2

= -
2 N

π
(2 t)2 - μ2 .

(98)

-2 -1 0 1 2
-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0.0

μ / t

E
/N

" Filling fraction: the fraction of a energy band filled by electrons

ν =
Ne

2 N
, (99)

where 2 N  is the number of states (including 2-fold spin degeneracy) in the energy band. N  is 
the number of sites in the lattice.

" When 0 < ν < 1, the many-body system of electrons forms a metal (in the non-interacting 
limit).
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k

ϵk
ν = 1 / 2, 〈j〉 = 0

ground state

k

ϵk
ν = 1 / 2, 〈j〉 ≠ 0

current-carrying

" In the many-body ground state: electrons occupy all states from the band bottom up to 
the designated filling fraction ⇒ total energy E is minimized.

" A current-carrying excited state can be created by an imbalanced occupation of electrons, 
such that there are more electrons on the vk > 0 side than those on the vk < 0 side. ⇒ 
〈j〉 = e ∑k 〈vk〉 ≠ 0. ⇒ Metal can conduct electricity.

" However, if the band if empty (ν = 0) or fully filled (ν = 1), the current-carrying state can not 
be constructed. ⇒ The system can not conduct electricity, hence an insulator (also called 
band insulator).

k

ϵk
ν = 0, 〈j〉 = 0

empty band

k

ϵk
ν = 1, 〈j〉 = 0

fully-filled band

" Metallic bond: N  atoms can gain energy jointly by allowing their electrons to delocalize and 
hybridize across the whole system. This energy gain binds all atoms together forming a metallic 
state.

0.0 0.2 0.4 0.6 0.8 1.0
-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0.0

ν = Ne / 2 N

E
/N

" Given ϵk, one can calculate E v.s. Ne by tuning μ in Eq. (96).

" The total energy E is typically minimized at a some ν ∈ (0, 1) ⇒ electrons forming a metallic 
state.

◼ Su-Schrieffer-Heeger Model

The Su-Schrieffer-Heeger (SSH) model is the simplest model of symmetry protected topolog-
ical (SPT) state of electrons. It describes electrons in a poly-acetylene structure 
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The Su-Schrieffer-Heeger (SSH) model is the simplest model of symmetry protected topolog-
ical (SPT) state of electrons. It describes electrons in a poly-acetylene structure 

A

B

v
w

" Each unit cell (gray shaded) now contains two atoms (labeled by A and B). Each lattice site is 
labeled jointly by the unit cell index i and the sublattice label A /B, such that a set of 
tight binding basis can be defined

…, )i,A〉, )i,B〉, )i+1,A〉, )i+1,B〉 … (100)

" The hopping parameters are different on the double bond and the single bond (double bond 
is shorter ⇒ larger hopping).

" v: intra-unit-cell hopping,

" w: inter-unit-cell hopping.

v
w (v > w)

v
w (v < w)

The tight binding Hamiltonian:

H = -v 
i

()i,B〉 〈i,A* + h.c.) -w 
i

()i+1,A〉 〈i,B* + h.c.) (101)

Assuming periodic boundary condition, the system respect lattice translation symmetry, such that
the quasi-momentum is a good quantum number. The Hamiltonian can be diagonalized by trans-
forming to the quasi-momentum basis (defined separately on each sublattice)

)k,A〉 = N-1/2 
i

ⅇⅈ k xi )i,A〉,

)k,B〉 = N-1/2 
i

ⅇⅈ k xi )i,B〉,
(102)

where xi = i (with unit cell size set to a = 1), and N  is the number of unit cells on the lattice. The
inverse transformation is given by

)i,A〉 = N-1/2 
k

ⅇ-ⅈ k xi )k,A〉,

)i,B〉 = N-1/2 
k

ⅇ-ⅈ k xi )k,B〉,
(103)

where ∑k sums over k ∈ (-π, π] in the first Brillouin zone with momentum step size 2 π /N .

The Hamiltonian in Eq. (101) becomes
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H = 
k

(fk )k,B〉 〈k,A* + fk
* )k,A〉 〈k,B*),

fk = -v -w ⅇⅈ k.
(104)

Derive Eq. (104).Exc
5

" Represent in the {)k,A〉, )k,B〉} basis, H  takes the matrix form

H ≏⊕
k

Hk, Hk ≏
0 fk

*

fk 0
, (106)

No mixing between different momentum sectors ⇒ the Hamiltonian can be diagonalized in each 
momentum sector independently.

" Goal: find eigen vectors

)k,m〉 = uk,m,A )k,A〉 + uk,m,B )k,B〉

≏
uk,m,A

uk,m,B
.

(107)

such that

Hk )k,m〉 = ϵk,m )k,m〉, (108)

or more explicitly

0 fk
*

fk 0
uk,m,A

uk,m,B
= ϵk,m

uk,m,A

uk,m,B
. (109)

Eigen energies ⇒ band dispersion

ϵk,± = ±)fk * = ± v2 +w2 + 2 v w cos k (110)

-π - π
2

0 π
2

π
-3
-2
-1
0
1
2
3

k

ϵ k
,±

(v, w) = (1.5, 0.5)

" There are two bands (labeled by ±), matching the number of sites in the unit cell.

" Band gap: the range of energy between two bands. Electrons are forbidden to appear in the 
band gap (there is no state for the electron to occupy within the gap).
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" Band gap opens at the Brillouin zone boundary, with the gap size

2 Δ = 2 )v -w*. (111)

" In the low-temperature (T → 0) limit, electrons will fully occupy the lower band, forming a 
band insulator.

-π - π
2

0 π
2

π
-3
-2
-1
0
1
2
3

k

ϵ k
,±

(v, w) = (0.5, 1.5)

-π - π
2

0 π
2

π
-3
-2
-1
0
1
2
3

k

ϵ k
,±

(v, w) = (1.5, 0.5)

" The band structure does not distinguish v > w from v < w, more information is contained in 
the eigenstates.

Eigenstates  corresponding  to  ϵk,±,  represented  as  two-component  state  vectors  in  the
{)k,A〉, )k,B〉} basis

)k,±〉 ≏
1

2

1
± fk / )fk *

. (112)

" fk / )fk * ∈ U(1) ≅ S1 is a phase factor, that can wind around as k ∈ S1 cycles over the first Bril-
louin zone.

" The map f : S1 → S1 is classified by the homotopy group π1S1 ≅ ℤ. Distinct homotopy 
classes are indexed by different winding number

ω =
1

2 π ⅈ

-π

π
ⅆk ∂k ln fk. (113)

" v > w (intra > inter): ω = 0 (trivial insulator),

" v < w (intra < inter): ω = 1 (topological insulator).
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Refk

Imfk

v
w

ω = 0.5
(v, w) = (0.5, 0.5)

" A topological phase transition happens at v = w, where the system transition between the 
trivial insulator and the topological insulator, via gap closing and reopening.

More  generally,  the  winding  number  can  be  defined  for  a  vector  bundle  )k,±〉  over  the
Brillouin zone

ω± =
1

2 π

-π

π
ⅆk ck,±,

ck,± = -ⅈ 〈k,±* ∂k )k,±〉,
(114)

" ck,± is the Berry connection of the vector bundle,

" 2 π ω± is the Berry phase accumulated along the Brillouin zone cycle, which is also called the 
Zak phase for the 1D case.

Topological  edge mode.  When v < w  (topological),  there  is  a  zero-energy  dangling  electron
mode on each end of the chain (altogether two edge modes on both ends).

v
w (v > w)

v
w (v < w)

They can be observe in the spectrum. Put the tight binding Hamiltonian H  Eq. (101) on a open
chain  (open  boundary  condition).  The  lattice  translation  symmetry  is  broken  by  the  open  ends,
the quasi-momentum is no longer a good quantum number. One should diagonalize the Hamilto-
nian directly in tight binding basis Eq. (100)

H ≏

0 v
v 0 w

w ⋱ ⋱
⋱ ⋱ v

v 0

. (115)

" Energy spectrum:
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0
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mode index n

ϵ n
(v, w) = (1, 2)

" When v < w (topological), two zero-energy modes are left in the energy gap.

" Edge states (zero-energy model): assuming the states take the form of

)L/R〉 = 
i

ui,A
L/R )i,A〉 + ui,B

L/R )i,B〉. (116)

The wave amplitude ui,A/B
±  (  on A sublattice,  on B sublattice) are plotted for both zero 

modes:

site index

" The wave amplitude decays exponentially from the edge with an localization length ξ, e.g.

ui,A
±  ~ ⅇ-xi/ξ. (117)

Summary:
parameters v > w v < w

phase trivial insulator topological insulator
winding number 0 1
dimmerization intra-unit-cell inter-unit-cell

edge mode no yes (one / edge)
ground state deg. 1 2 (fix filling)
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(i) Determine the edge mode localization length ξ  as a function of hopping parameters
v and w in the SSH model (assuming w > v > 0). 
(ii)  Show  that  near  the  critical  point  v -w → 0-,  the  localization  length  ξ  is  inversely
proportional to the band gap Δ = )v -w*.

HW
2

◼ Chiral Symmetry

Question: No matter how we tune v, w, the energy spectrum is always symmetric with respect to
E → -E, why?

" Sublattice projection operators

PA = 
i

)i,A〉 〈i,A*,

PB = 
i

)i,B〉 〈i,B*.
(118)

" For any state )ψ〉 of an electron, 
〈ψ*PA )ψ〉 = probability to find the electron on sublattice A, 
〈ψ*PB )ψ〉 = probability to find the electron on sublattice B. 

" Chiral operator

S = PA -PB = 
i

()i,A〉 〈i,A* - )i,B〉 〈i,B*), (119)

or, in the momentum space,

S = 
k

()k,A〉 〈k,A* - )k,B〉 〈k,B*), (120)

Represent in the {)k,A〉, )k,B〉} basis, S takes the matrix form

S ≏⊕
k

Sk, Sk ≏
1 0
0 -1

= σ3. (121)

" Under chiral transformation

S )i,A〉 = )i,A〉,
S )i,B〉 = -)i,B〉.

Sk )k,A〉 = )k,A〉,
Sk )k,B〉 = -)k,B〉. (122)

B sublattice state gets a minus sign.

" The chiral transformation forms a ℤ2 group, as S2 = f (where f stands for the identity 
operator).

" For any state )ψ〉 of an electron, 〈ψ* S )ψ〉 = sublattice polarization.
Such that
〈ψ* S )ψ〉 > 0: more likely to find the electron on sublattice A, 
〈ψ* S )ψ〉 < 0: more likely to find the electron on sublattice B.
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" Chiral symmetry: a unitary symmetry that anti-commutes with the Hamiltonian.

S H S = -H , (123)

or, in the momentum space,

∀ k : Sk Hk Sk = -Hk. (124)

Check Eq. (123) and Eq. (124).Exc
6

Using the property S2 = f, Eq. (123) is equivalent to S H = -H S.

Spectral consequence of chiral symmetry: Let )ψn〉 be any eigenstate of H  with eigen energy
En, s.t.

H )ψn〉 = En )ψn〉. (127)

Chiral symmetry implies

H S )ψn〉 = -S H )ψn〉 = -S (En )ψn〉) = -En S )ψn〉, (128)

meaning that S )ψn〉 is also an eigenstate of H  but of an opposite eigen energy -En.

" If En ≠ 0, )ψn〉 and S )ψn〉 are two distinct eigenstate of H  with opposite eigen energies En and 
-En ⇒ finite energy eigenstates always comes in ±En pairs.

" For example, in the momentum space, Hk )k,±〉 = ϵk,± )k,±〉, the eigen states indeed comes in 
pairs, related by the chiral transformation,

Sk )k,±〉 = )k,∓〉, (129)

and the corresponding eigen energies are opposite to each other ϵk,± = ±)fk *.

" However, even when the lattice translation symmetry is broken (e.g. on an open chain or in 
the presence of disorder) that quasi-momentum is not well-defined, the pairing of positive 
and negative energy states still holds through out the spectrum.

" If En = 0, )ψn〉 and S )ψn〉 are both zero-energy eigenstates of H , but they could be the same 
state. So there is no requirement for the zero energy states to come in pairs.

Sublattice polarization. The chiral symmetry S H = -H S implies

〈ψn*H S )ψn〉 = -〈ψn* S H )ψn〉

⇒ En 〈ψn* S )ψn〉 = -En 〈ψn* S )ψn〉

⇒ 2 En 〈ψn* S )ψn〉 = 0.
(130)

" If En ≠ 0, then 〈ψn* S )ψn〉 = 0, i.e. sublattice polarization should vanish for any finite energy 
eigenstate (the electron must appear on sublattice A and B with equal probability).

" This statement is manifest for momentum space eigenstates

)k,±〉 =
1

2
)k,A〉 ±

fk
)fk *

)k,B〉 . (131)
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" If En = 0, there is no restriction on 〈ψn* S )ψn〉. In fact, one can choose )ψn〉 to be the common 
eigenstate of S and H  (as they commute in the zero-energy sector). Given that S only has two 
eigenvalues ±1, the zero-energy eigenstates can all be classified by

〈ψn* S )ψn〉 = ±1, (132)

i.e. the electron in zero-energy state is either fully polarized to sublattice A or to sublattice B.

" The topological edge states are such examples.

◼ Topological Phases of Band Insulators

Definition of topological phases for band insulators:

" (No symmetry)* Two band insulator Hamiltonians H  and H ′ are in the same (invertible) 
topological phases, if they can be deformed into each other without closing the band gap.

* strictly speaking, band insulators already assumes the U(1) symmetry that corresponds to 
the electron number conservation. So “no symmetry” here means no additional symmetry 
apart form U(1).

" (With symmetry) Two band insulator Hamiltonians H  and H ′ are in the same symmetry 
protected topological (SPT) phases, if they can be deformed into each other without 
closing the band gap and without breaking the symmetry.

Assuming lattice translation symmetry, the most general Hamiltonian for 1D electronic system
with two-site unit cell takes the form of

H ≏⊕
k

Hk, Hk ≏ hμ(k) σμ, (133)

" As a 2×2 Hermitian matrix, Hk can always be decomposed to real combinations of Pauli 
matrices σμ

σ0 =
1 0
0 1

, σ1 =
0 1
1 0

, σ2 =
0 -ⅈ
ⅈ 0

, σ3 =
1 0
0 -1

, (134)

with the combination coefficients hμ(k) ∈ ℝ (μ = 0, 1, 2, 3). 

" For example, the SSH model:

h0(k) = 0, h1(k) = Re fk, h2(k) = Im fk, h3(k) = 0. (135)

" Deforming H  is to deform the hμ(k) functions, subject to the periodic condition 
hμ(k + 2 π) = hμ(k) (i.e. k ∈ S1).

The eigen energies of Hk is given by

ϵk,± = h0(k) ± )h(k)*, (136)

where h(k) = (h1(k), h2(k), h3(k)) and )h(k)* = h(k) · h(k) .

" Gapping condition. To maintain the band gap is to keep the vector h(k) finite length every-
where in the Brillouin zone
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∀ k : )h(k)* > 0. (137)

or h(k) ∈ ℝ3\{0}.

" Deformation without symmetry. All smooth deformations of the map h : S1 → ℝ3\{0} are classi-
fied by the homotopy group

π1ℝ3\{0} ≅ π1S2 ≅ 0, (138)

which is a trivial group, meaning that all maps h can be deformed into each other ⇒ Without 
additional symmetry (other than U(1)), all insulators in 1D are in the same phase (the trivial 
phase).

The chiral symmetry imposes additional constrains on the Hamiltonian.

∀ k : Sk Hk Sk = -Hk, (139)

given Sk = σ3, which requires 

h0(k) = h3(k) = 0. (140)

Derive Eq. (140) from Eq. (139), given Eq. (133).Exc
7

In the presence of the chiral symmetry, h(k) is restricted to the h1-h2 plane (excluding the origin),
i.e. h(k) ∈ ℝ2\{0}.

" Deformation under the chiral symmetry. All smooth deformation of the map h : S1 → ℝ2\{0} are 
classified by the homotopy group

π1ℝ2\{0} ≅ π1S1 ≅ ℤ, (144)

which is the integer addition group. Each class is labeled by an integer topological index ω, 
which corresponds to the winding number of h around the origin in the h1-h2 plane.

" Protected by the chiral symmetry, it is not possible to smoothly deform 1D insulators of 
different topological indices ⇒ topological insulators (ω ≠ 0) and the trivial insulator (ω = 0) 
must be separated by gap-closing topological phase transitions.

" However, if the chiral symmetry is broken, the symmetry protection is lifted, and it becomes 
possible to smoothly deforming among all 1D insulators.

In the SSH model, the chiral symmetry can be broken by adding a stagger potential term u

H = -v 
i

()i,B〉 〈i,A* + h.c.) -w 
i

()i+1,A〉 〈i,B* + h.c.) - u 
i

()i,A〉 〈i,A* - )i,B〉 〈i,B*). (145)

Correspondingly, the momentum space Hamiltonian becomes

H ≏⊕
k

Hk, Hk ≏
u fk

*

fk -u
= Re fk σ1 + Im fk σ2 + u σ3, (146)

" The energy dispersion becomes
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ϵk,± = ± )fk *2 + u2 = v2 +w2 + 2 v w cos k + u2 . (147)

-π - π
2

0 π
2

π
-3
-2
-1
0
1
2
3

k

ϵ k
,±

(v, w, u) = (1.5, 0.5, 0)

" Phase diagram. With the chiral symmetry, u = 0, the trivial and topological phases must be 
separated by phase transitions. However, when the chiral symmetry is broken by u ≠ 0, the 
topological transitions can be avoided / circumvented.

w / v

u / v

trivialtrivialtrivialtrivialtrivialtrivialtrivialtrivialtrivialtrivialtrivialtrivialtrivialtrivialtrivialtrivialtrivial topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.topo.

" Protected by the chiral symmetry, topological edge mode must exist on the boundary (the 
interface between trivial and topological states), otherwise one can proliferate the featureless 
boundary to avoid bulk transition (which contradict with the definition of SPT phases).

trivial topologicalboundary

" Interaction reduced classification. The band homotopy classification indicates that 1D 
band insulators with charge conservation and chiral symmetries are ℤ-classified. However, this 
is not the full story when interaction is taken into account. The stable classification is ℤ4 for 
1D interacting fermionic SPT states in symmetry class AIII, meaning that the ω = 4 insulator 
can be trivialized by interaction. [1]

Lukasz  Fidkowski,  Alexei  Kitaev.  The  effects  of  interactions  on  the  topological  classification  of
free fermion systems. arXiv:0904.2197.

[1]

◼ 2D Electronic Systems

◼ Electron on Square Lattice

Consider an electron hopping on a 2D square lattice (as in cuprate superconductors).
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xi = ni,1 a1 + ni,2 a2,
a1 = (1, 0)
a2 = (0, 1)

, (148)

where ni,1, ni,2 ∈ ℤ.

a1

a2

t

i j

" Define the nearest neighboring bond vectors (the vector that point from one site to its 
nearest neighboring site)

δ1 = a1 = (1, 0)
δ2 = a2 = (0, 1)
δ3 = -a1 = (-1, 0)
δ4 = -a2 = (0, -1)

. (149)

Tight binding Hamiltonian (nearest neighbor hopping)

H = -t 
〈i j〉

()i〉 〈j* + h.c.). (150)

" i, j are site indices, which also label the tight binding basis )i〉. 

" 〈i j〉 denotes i, j are adjacent on the lattice. ∑〈ij〉 sums over all such nearest neighbor links.

Switch to the quasi-momentum basis,

)k〉 = N-1/2 
i

ⅇⅈ k · xi )i〉,

)i〉 = N-1/2 
k

ⅇ-ⅈ k · xi )k〉.
(151)

" N = Lx ×Ly is the total number of unit cells (sites). Lx, Ly are the (linear) size of the lattice 
along x and y directions.

" ∑k sums over momentum k in the first Brillouin zone (-π, π]×2 on a grid with spacings 2 π /Lx 
and 2 π Ly along x and y directions.

The Hamiltonian Eq. (150) is diagonalized in the quasi-momentum basis

H = 
k

ϵk )k〉 〈k*,

(152)
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ϵk = -t 
a

ⅇⅈ k·δa = -2 t (cos k · a1 + cos k · a2).

(152)

Derive Eq. (152).Exc
8

Band dispersion ϵk in the first Brillouin zone.

-4

-2

0

2

4
ϵk / t

" High symmetry points of the Brillouin zone: Γ(0, 0), X(π, 0), Y (0, π), M (π, π).

" The band structure is often represented by plotting ϵk along straight line segments connecting 
high symmetry points.

The electron will fill up the band up to the Fermi surface. Let ν be the filling fraction, and ϵF
be the Fermi energy,

ν =
∑k∈BZ Θ(ϵF - ϵk)

∑k∈BZ 1
, (156)

the filling fraction is the fraction that the Fermi sea takes up in the Brillouin zone.
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" Symmetry and the general shape of Fermi surface. In the free space, electrons should have a 
circular Fermi surface, due to the SO(2) rotation symmetry. However, on a lattice, the full 
SO(2) rotation symmetry is broken to its discrete subgroup, such as ℤ4 for the square lattice. So 
the Fermi surface only have four-fold symmetry on a square lattice.

" Small Fermi surface remains circular. Because electrons are also waves, when the wave length is 
much larger than the lattice spacing (which is the case near the Γ point), the electron will not 
resolve the lattice structure (as the structure is below the diffraction limit of the electron 
wave), and will not experience the symmetry breaking effect caused by the lattice, hence the 
Fermi surface remains circular near the Γ point. 

" Expand the dispersion relation ϵk in Eq. (152) around the Γ point (k → 0) (here the lattice 
constant a = 1 has been restored)

ϵk = -4 t + t a2 k2 +Ik4

= -4 t +
ℏ2 k2

2 meff
+Ik4

(157)

with the effective mass meff = ℏ2  2 t a2 of the electron set by the hopping parameter t, 
similar to Eq. (86).

" Large Fermi surface can be distorted. As the Fermi surface approaches the Brillouin zone 
boundary, the lattice scattering effect gets more prominent, which distorts the Fermi surface to 
non-circular shape (such as the square shape at half filling).

" “Broken” Fermi surface. Beyond half filling, the Fermi surface can even touch the Brillouin zone 
boundary. 

" Note that whenever a Fermi surface touches the zone boundary, it must do so perpendicu-
larly, because the normal component of the group velocity must be zero at the zone boundary.

" The Fermi surface seems to be broken into segments, however, it is actually still continuous 
since the Brillouin zone is periodic.

ElectronicSystem.nb 29



" Electron v.s. hole Fermi surface. When the filling fraction approaches one, the Fermi surface 
looks circular again (if we look at the empty region). It can be viewed as filling full band with 
holes. Holes are anti-particles of electrons. High filling of electrons = low filling of holes ⇒ 
Fermi surface becomes circular as the hole filling is small.

Consider a nearest neighbor hopping tight-binding model on a triangular lattice. 

t

(i) Calculate the band dispersion.
(ii) Determine the effective mass at the band bottom.
(iii) Determine the shape of the Fermi surface at the Fermi energy ϵF = 2 t, and calcu-
late the filling fraction to reach this Fermi energy.

HW
3

◼ Electron on Honeycomb Lattice

Consider an electron hopping on a 2D honeycomb lattice (as in graphene).

a1

a2

δ1

δ2δ3 B

A

Each unit cell contains two sites. Define the site coordinates

xi = xn,s = n1 a1 + n2 a2 + rs, (158)

with n = (n1, n2) ∈ ℤ2, s = A, B, and

a1 =  3 , 0

a2 =  3
2

, 3
2

,

rA =  3 , 1

rB =  3
2

, 1
2

. (159)

" The site index i ↔ (n, s) contains the unit cell and sublattice labels jointly.

" Introduce the nearest neighboring displacement vectors for later convenience
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δ1 = (0, -1)

δ2 =  3
2

, 1
2


δ3 = - 3
2

, 1
2


. (160)

Tight binding Hamiltonian (nearest neighbor hopping)

H = -t 
〈i j〉

()i〉 〈j* + h.c.). (161)

" The tight binding basis )i〉 is defined on each site, which may also be written as )n,s〉 by the 
unit cell and sublattice labels.

" ∑〈i j〉 sums over nearest neighboring links 〈i j〉 on the honeycomb lattice.

Introduce the quasi-momentum basis, for each sublattice separately (s = A, B),

)k,s〉 = N-1/2 
n

ⅇⅈ k · xi )n,s〉,

)n,s〉 = N-1/2 
k

ⅇ-ⅈ k · xi )k,s〉.
(162)

" N  is the number of unit cells.

" The quasi-momentum is summed over the first Brillouin zone, which is a hexagon of side length 
4 π

3 3
.

Γ K

K'
M

Γb1

Γ
b2

4 π
3 3

" Recall that the first Brillouin zone is constructed as the Wigner-Seitz cell of the reciprocal 
lattice, spanned by the reciprocal basis

b1 =  2 π
3
, - 2 π

3


b2 = 0, 4 π
3


. (163)

" High symmetry points

Γ : (0, 0) +m1 b1 +m2 b2,

,

(164)
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K :
4 π

3 3
, 0 +m1 b1 +m2 b2,

K ' : -
4 π

3 3
, 0 +m1 b1 +m2 b2,

M : 0,
2 π

3
+m1 b1 +m2 b2.

(164)

For a tight binding Hamiltonian that respects the lattice translation symmetry, the transforma-
tion to the quasi-momentum basis is given by


i,j

)i〉Hij 〈j* = 
k


s,s′

Hk,ss′ )k,s〉 〈k,s′*,

Hk,ss′ = 
n

Hij ⅇⅈ k · xj-xi with i = (0, s), j = (n, s′).
(165)

Derive Eq. (165).Exc
9

Apply Eq. (165) to the tight binding Hamiltonian Eq. (161),

H = 
k

(fk )k,B〉 〈k,A* + fk
* )k,A〉 〈k,B*),

fk = -tⅇⅈ k · δ1 + ⅇⅈ k · δ2 + ⅇⅈ k · δ3.
(171)

" Represent in the {)k,A〉, )k,B〉} basis, H  takes the matrix form

H ≏⊕
k

Hk, Hk ≏
0 fk

*

fk 0
, (172)

There  are  two  bands  (matching  the  number  of  sites  in  a  unit  cell).  The  band dispersions  are
given by the eigenvalues of Hk

ϵk,± = ±)fk*. (173)
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" Two bands touch at the Brillouin zone corners (K and K ′ points).

Expand  the  Hamiltonian  around  the  band  touching  points  (to  the  leading  order  in  the  small
momentum deviation κ)

HK+κ ≏ vF
0 κx - ⅈ κy

κx + ⅈ κy 0
+Iκ2,

= vF κx σ1 + κy σ2 + Iκ2,
(174)

HK ′+κ ≏ vF
0 -κx - ⅈ κy

-κx + ⅈ κy 0
+Iκ2,

= vF -κx σ1 + κy σ2 + Iκ2,
(175)

" These effective Hamiltonians describe 2D Dirac fermions of opposite chirality. 

" When the chemical potential is set to the zero energy (at charge neutrality), the electronic 
system is in the Dirac semi-metal phase.

" Dirac cones (Dirac fermion dispersion). Near K and K ′ points, the energy is linear in the 
momentum deviation κ.

ϵK /K ′+κ,± = ±vF )κ*, (176)

mimicking a relativistic particle with Fermi velocity
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vF =
3 t

2
. (177)

" The points K and K ′ are also called Dirac points, where the Dirac cones locate and the 
band gap close linearly. There are always even number of Dirac points in the Brillouin zone, 
known as the Fermion doubling.

Consider the nearest neighbor hopping tight binding model on a Kagome lattice (figure
below).

t

(i) How many bands do you expect?
(ii) Write down the single-particle Hamiltonian in the momentum space.
(iii) Diagonalize the Hamiltonian to calculate the band dispersions (you can use Mathe-
matica), and show that there is an exact flat band.

HW
4

◼ Haldane Model

Adding  next  nearest  neighbor  hopping  term  λ  (Haldane  hopping),  with  purely  imaginary
amplitude,

H = -t 
〈i j〉

()i〉 〈j* + h.c.) + λ 
〈〈ij〉〉

(ⅈ )i〉 〈j* + h.c.). (178)

" Unlike real hopping, imaginary hopping is directional, as

(ⅈ )i〉 〈j*)† = -ⅈ )j〉 〈i*. (179)

Rule: the electron hopping from j to i (i.e. the )i〉 〈j* term) has a hopping coefficient +ⅈ if j to i 
is along the bond direction.

" The bond directions are assigned in the following pattern
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δ1

δ2δ3

Transform to the quasi-momentum basis specified in Eq. (162), the Hamiltonian reads

H = 
k

(fk )k,B〉 〈k,A* + fk
* )k,A〉 〈k,B* + gk )k,A〉 〈k,A* - gk )k,B〉 〈k,B*),

fk = -tⅇⅈ k · δ1 + ⅇⅈ k · δ2 + ⅇⅈ k · δ3,

gk = -2 λ (sin k · (δ1 - δ2) + sin k · (δ2 - δ3) + sin k · (δ3 - δ1)).

(180)

" Represent in the {)k,A〉, )k,B〉} basis, H  takes the matrix form

H ≏⊕
k

Hk, Hk ≏
gk fk

*

fk -gk
, (181)

" The band dispersions are modified to

ϵk,± = ± )fk*2 + gk
2 . (182)

" The Haldane hopping term λ opens a gap between the two bands, gapping out Dirac fermions 
at K and K ′.

Expand the Hamiltonian around Dirac points K and K ′

HK+κ ≏
m vF

2 vF κx - ⅈ κy

vF κx + ⅈ κy -m vF
2

+Iκ2,

= vF κx σ1 + κy σ2 +m vF
2 σ3 +Iκ2,

(183)
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HK ′+κ ≏
-m vF

2 vF -κx - ⅈ κy

vF -κx + ⅈ κy m vF
2

+Iκ2,

= vF -κx σ1 + κy σ2 -m vF
2 σ3 +Iκ2,

(184)

with the Fermi velocity vF and the Dirac mass m given by

vF =
3 t

2
, m =

3 3 λ

vF
2

. (185)

The dispersion relation is takes the form of a massive relativistic particle near Dirac points

ϵK /K ′+κ,± = ± vF
2 κ2 +m2 vF

4 . (186)

" When δk is small, the energy expands to

ϵK /K ′+κ,± = ± m vF
2 +

κ2

2 m
+… , (187)

which justifies the parameter m as the mass of the Dirac fermion (also the effective mass of 
electron/hole near the band edge).

" Even if starting from non-relativistic electrons in graphene, relativistic behaviors can emerge 
at low-energy. This provides opportunities to simulate certain aspects of fundamental particle 
physics in condensed matter systems.

◼ Chern Insulator and Integer Quantum Hall Effect

The band gap closes and reopens as u  goes across λ = 0, signifying a phase transition between
two insulators. Is there any difference between the λ > 0 insulator and the λ < 0 insulator?

Band structure does not tell  the difference,  need to look at wave functions (eigen states).  Let
)k,±〉 be the eigen states of Hk with eigen energies ϵk,±, i.e.

Hk )k,±〉 = ϵk,± )k,±〉. (188)

" Berry connection of the vector bundle )k,±〉, like a gauge potential in the momentum space,

ck,± = -ⅈ 〈k,±* ∇k )k,±〉. (189)
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At each momentum point k, the Berry connection has two components

ck,±
x = -ⅈ 〈k,±* ∂kx )k,±〉,

ck,±
y = -ⅈ 〈k,±* ∂ky )k,±〉.

(190)

" Berry curvature: curl of Berry connection (taking the z component), like a magnetic field in 
the momentum space,

ℱk,± = zs · ∇k ×ck,±, (191)

or in term of components

ℱk,± = ∂kx ck,±
y - ∂ky ck,±

x . (192)

" For 2× 2 Hamiltonian of the form Hk ≏ h(k) ·σ, the Berry curvature is given by

ℱk,± = ±
1

2 )h(k)*3
h(k) · ∂kx h(k) × ∂kyh(k). (193)

Prove Eq. (193).Exc
10

" Apply Eq. (193) to the Haldane model, one can show the distribution of Berry curvature in 
the Brillouin zone (for both upper and lower bands) as a function of λ

λ / t = -0.1 λ / t = 0.1

" What is the physical effect of magnetic field in the momentum space? Recall: magnetic field 
B in the real space → electron will experience a Lorentz force

ⅆk

ⅆ t
∝ -v ×B = -

ⅆx

ⅆ t
×B. (204)

By analogy, switching from real space to momentum space effectively exchanges coordinate 
and momentum,
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ⅆx

ⅆ t
= -

ⅆk

ⅆ t
×ℱ . (205)

In the presence of an external electric field E

ℏ ⅆk

ⅆ t
= -eE, (206)

this will contribute to the current J by

J = -e
ⅆx

ⅆ t
=

e2

ℏ
ℱ ×E. (207)

So e2  ℏ ℱk,α is the contribution to the Hall conductance from a single state )k,α〉.

" Chern number: integration of Berry curvature over the first Brillouin zone (in unit of 2 π), 
like the total magnetic flux through the Brillouin zone,

u± =
1

2 π


BZ
ⅆ2k ℱk,±. (208)

" The Chern number u± is separately define for each band (labeled by ±). For two-band 
system, Chern numbers are opposite between upper and lower bands, u+ = -u-.

" It turns out that u± ∈ ℤ is always an integer. For Haldane model, 

u± = ± sgn λ. (209)

" As λ is tuned across λ = 0, the Chern number exchanges between the upper and lower bands.
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u

u+

u- u+

u-

" The Chern number is a topological number of the vector bundle )k,±〉. The 2D insulators with 
non-trivial Chern numbers in occupied bands are called Chern insulators. The jump of 
Chern number at λ = 0 signifies a topological transition between two distinct Chern 
insulators.

" The Hall conductance of the Chern insulator (at the low-temperature limit) equals the 
total the Chern numbers uα of all occupied bands (bands below the Fermi level) times the 
quantum conductance e2  h.

σH =
e2

h


α∈occ.

uα. (210)

Argument: the Hall conductance of a band averages the contribution from all states in the 
band
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Argument: the Hall conductance of a band averages the contribution from all states in the 
band

σH =
e2

ℏ


ⅆ2k

(2 π)2
ℱk,α =

e2

h

1

2 π
 ⅆ2k ℱk,α =

e2

h
uα. (211)

" The phenomenon that the Hall conductance quantize to integer multiplies of e2  h is called 
the integer quantum Hall effect.

Near the phase transition, the Berry curvature concentrated at the Dirac points. Around each
Dirac point, the effective Hamiltonian reads (setting vF = 1 for simplicity)

HK +κ ≏ κx σ1 + κy σ2 +m σ3,

HK ′ +κ ≏ -κx σ1 + κy σ2 -m σ3,
(212)

" Using Eq. (193), the Berry curvature can be evaluated

ℱK +κ,± = ℱK ′ +κ,± = ±
m

2 κ2 +m23/2
(213)

" Each massive Dirac fermion contribute ±1 / 2 to the band Chern number. For example, around 
K point

uK ,± =
1

2 π
 ⅆ2κ ℱK +κ,± = ±

1

2

m

)m*
= ±

1

2
sgn m. (214)

Same result will be obtained around K ′, uK ,± = uK ′,± = ± 1
2

sgn m, such that the Chern number 
follows

u± = uK ,± + uK ′,± = ± sgn m, (215)

confirming the observation in Eq. (209).

◼ Classifying Topological Insulators in 2D

Two  band  insulators  can  belong  to  the  same  or  different  topological  phases,  depending  on
whether or not there exist a smooth deformation of the Hamiltonian that connects the two insula-
tors without closing the gap.

Assuming translation symmetry, any 2D band insulator can be described by an effective Hamil-
tonian that focus on the upper and lower bands across the Fermi level

H ≏⊕
k

Hk, Hk ≏ h(k) ·σ. (216)

" The band gap is set by )h(k)*. To keep the gap open, must have

∀ k : )h(k)* > 0, (217)

meaning that h(k) ∈ ℝ3\{0}. For 2D system, k ∈ T2 (2D torus).

" All smooth deformations of the function h : T2 → ℝ3\{0} are classified by the homotopy group
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π2ℝ3\{0} ≅ π2S2 ≅ ℤ, (218)

which is the integer addition group. Each class is labeled by an integer topological index ω, 
which corresponds to the winding number of h in the 2D Brillouin zone

ω =
1

4 π


BZ
ⅆ2k

1

)h(k)*3
h(k) · ∂kx h(k) × ∂kyh(k). (219)

" By Eq. (193), the winding number is the same as the Chern number. Thus topological insula-
tors (with no additional symmetry other than U(1)) is classified by the band Chern number.

Both λ > 0 and λ < 0 insulators are non-trivial topological insulators with Chern number ∓1 in
the lower band. The trivial insulator in this system can be achieved by adding a staggered on-
site potential δ

H = -t 
〈i j〉

()i〉 〈j* + h.c.) + λ 
〈〈ij〉〉

(ⅈ )i〉 〈j* + h.c.) + δ
i

(-)i )i〉 〈i*, (220)

where (-)i = +1 if i ∈ A and (-)i = -1 if i ∈ B.

" In the momentum space, the Hamiltonian still takes the form of

H ≏⊕
k

Hk, Hk ≏
gk fk

*

fk -gk
, (221)

but the function gk is updated to

gk = δ - 2 λ (sin k · (δ1 - δ2) + sin k · (δ2 - δ3) + sin k · (δ3 - δ1)). (222)

" Expanding around K and K ′,

HK+κ ≏ vF κx σ1 + κy σ2 +mK vF
2 σ3 +Iκ2,

HK ′+κ ≏ vF -κx σ1 + κy σ2 -mK ′ vF
2 σ3 +Iκ2,

(223)

the Dirac masses are different

mK =
1

vF
2
3 3 λ + δ,

mK ′ =
1

vF
2
3 3 λ - δ.

(224)

" The band Chern numbers

u± = uK ,± + uK ′,± = ±
1

2
(sgn mK + sgn mK ′ ). (225)

If λ = 0 and δ ≠ 0, the masses are opposite between K and K ′ valleys ⇒ the Chern number from 
both valleys cancels, i.e. u± = 0 ⇒ the insulator is in the trivial phase.

◼ Chiral Edge Mode

A  prominent  feature  of  the  Chern  insulators  lies  in  the  robust  chiral  edge  modes.  Consider
placing the Haldane model on a honeycomb lattice with
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A  prominent  feature  of  the  Chern  insulators  lies  in  the  robust  chiral  edge  modes.  Consider
placing the Haldane model on a honeycomb lattice with

" periodic boundary condition along x-direction (preserving translation symmetry along x-direc-
tion, kx is still well-defined),

" open boundary condition along y-direction (top and bottom edges breaks translation symmetry 
along y-direction, can not define ky),

a1

a2

Use mixed basis (transform to the momentum space only in the x-direction)

)kx,yi,s〉 = 
xi

ⅇ-ⅈ kx xi )i〉. (226)

" The Hamiltonian is diagonal in kx (because kx is a good quantum number)

H = 
kx

)kx〉H (kx) 〈kx *, (227)

where

H (kx) = Ht(kx) +Hλ(kx) +Hδ(kx)

Ht(kx) = -t 
y

)y,B〉 〈y,A* + 2 cos
3 kx

2
y+ay,A 〈y,B* + h.c.

Hλ(kx) = -2 λ 
kx ,y

sin 3 kx ()y,A〉 〈y,A* - )y,B〉 〈y,B*) -

sin
3 kx

2
y+ay,A 〈y,A* - y+ay,B 〈y,B* + h.c.

Hδ = δ 
kx ,y

()y,A〉 〈y,A* - )y,B〉 〈y,B*),

(228)

with ay = 3 / 2 being the inter-layer spacing.

" Further diagonalize H (kx) for every kx

H (kx) )un(kx)〉 = ϵn(kx) )un(kx)〉 (229)

Bulk modes (in black) and edge modes (in red)
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k x
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t
λ / t = 0.0, δ / t = 0.0

" Edge mode wave function (y-dependence). Edge modes are confined on the boundary. The wave 
functions decay exponentially into the bulk.

kx = 0.0

yi  ay

" Color every point (kx, ϵn(kx)) by the weight of the corresponding mode )un(kx)〉 on a given site. 
Define the spectral function Ay,s on layer y sublattice s,

Ay,s(kx, ϵ) = 
n

)〈y,s un(kx)〉*2 δ(ϵ - ϵn(kx)). (230)

" Bottom boundary (y = 1, s = A)
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" Effective dispersion of boundary modes: ϵ(kx) ≃ -v kx ⇒ Left-moving modes.

" Edge modes merge into bulk modes as the dispersion touches the bulk band.

" Top boundary (y = Ly, s = B)

" Effective dispersion of boundary modes: ϵ(kx) ≃ +v kx ⇒ Right-moving modes.

" Edge modes merge into bulk modes as the dispersion touches the bulk band.

" Chiral edge mode: The edge mode circulates around the material in a chiral manner.

μtop

μbtm

top edge

bottom edge

" Quantized Hall conductance. An electric field Ey creates electrostatic potential difference 
Vy between top and bottom boundaries ⇒ difference in electron chemical potentials μtop and 
μbtm

-e Ey Ly = -e Vy = μtop - μbtm, (231)
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μtop

μbtm

top edge

bottom edge

Ey

jx

more electrons occupy the top edge modes compared to bottom edge modes

Ntop -Nbtm =
kx,top - kx,btm

(2 π /Lx)
=

μtop - μbtm

v ℏ (2 π /Lx)
=

-e Ey Lx Ly

v h
, (232)

more right-moving electrons than left-moving electrons contributes to a net current

Ix = jx Ly = -e v
Ntop -Nbtm

Lx
=

e2 Ey Ly

h
. (233)

Hall conductance σH  is defined by

jx = σH Ey, (234)

Eq. (233) implies

σH =
e2

h
. (235)

which is indeed quantized (integer) in unit of the quantum conductance e2  h. 

" Bulk-boundary correspondence. The number of chiral edge modes (boundary property) ⇔ 
the quantized Hall conductance / the band Chern number (bulk property).

◼ General Theory of Electrons in Crystals

◼ Nearly Free Electron Model

The  tight  binding  models  provides  a  real-space  perspective  to  understand  electrons  in  a
crystal.  An  alternative  approach  is  the  nearly  free  electron  model,  which  provides  a
momentum-space perspective to the same problem.

Start  with  free  electron  in  the  empty  space,  the  Hamiltonian  is  diagonal  in  momentum  eigen
basis

H0 = 
k

)k〉
ℏ2 k2

2 m
〈k*. (236)

" )k〉: plane wave state of electron ψk(x) ~ ⅇⅈ k·x, labeled by the wave vector k.

)k〉 =  ⅆx ψk(x) )x〉 =
1

V 1/2  ⅆx ⅇⅈ k·x )x〉. (237)
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" V  - volume of the system, to provide appropriate normalization for the wave function.

When the electron is moving in a crystal, it also experience the potential energy from the lat-
tice background

H = H0 + ⅆx )x〉V (x) 〈x*. (238)

" A key feature is that V (x) is periodic

V (x) = V (x +R), (239)

where R is any lattice vector. Because atoms are arranged on a periodic lattice in the crystal.

" Transform the potential energy to the momentum space

 ⅆx )x〉V (x) 〈x* = 
k,k′

)k′〉Vk′-k 〈k*, (240)

with Vq being the Fourier transform of V (x)

Vq =
1

V
 ⅆx V (x) ⅇ-ⅈ q·x. (241)

Derive Eq. (240).Exc
11

" However, the periodicity of V (x) in Eq. (239) puts a strong constraint on its Fourier transform 
Vq in Eq. (241) that

Vq = ⅇ-ⅈ q·R Vq, (243)

for any lattice vector R. For this equation to hold,

" Either q satisfies the condition ∀ R : ⅇ-ⅈ q·R = 1, i.e. q =G ∈ reciprocal lattice.

" Or q is not on the reciprocal lattice, then Vq = 0 must vanish.

This means

Vq = 
G

VG δ(q -G). (244)

Then the full Hamiltonian reads

H = 
k

)k〉
ℏ2 k2

2 m
〈k* +

G

)k +G〉VG 〈k* . (245)

with

" G is summed over all reciprocal vectors on the reciprocal lattice,

" VG describes the scattering strength that an electron is scattered from momentum ℏ k to 
ℏ(k +G) on the lattice, and is given by
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VG =
1

V
 ⅆx V (x) ⅇ-ⅈG·x. (246)

" The )k〉 state can only be mixed with )k+G〉 states related by the lattice momentum. This is a 
manifestation of the Laue condition (the conservation of quasi-momentum).

◼ Electron in 1D Periodic Potential

Consider a 1D periodic potential

V (x) = V0 + 2 V1 cos(2 π x) + 2 V2 cos(4 π x). (247)

-2 -1 0 1 2
-15
-10
-5
0
5

10

x

V
(x
)

" Lattice constant a = 1 ⇒ Reciprocal lattice constant b = 2 π / a = 2 π ⇒ Reciprocal lattice vectors 
Gm = m b = 2 πm (m ∈ ℤ - the Miller index, not the electron mass)

" Scattering strength

VG =

V0 G = 0
V1 G = ±2 π
V2 G = ±4 π
0 otherwise

, (248)

" Takes the set of basis states given a momentum k ∈ BZ in the first Brillouin zone

…, )k-4 π〉, )k-2 π〉, )k〉, )k+2 π〉, )k+4 π〉, … (249)

the Hamiltonian can be represented as a matrix 

Hk =

⋱ ⋱ ⋱
⋱ ξk-4 π V1 V2

⋱ V1 ξk-2 π V1 V2

V2 V1 ξk V1 V2

V2 V1 ξk+2 π V1 ⋱
V2 V1 ξk+4 π ⋱

⋱ ⋱ ⋱

, (250)

where the diagonal energy is given by

ξk =
ℏ2 k2

2 m
+V0. (251)

" Diagonalize the Hamiltonian to fine the eigen energies and eigenstates
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Hk )α,k〉 = ϵα,k )α,k〉. (252)

" α - band index, labels the nth eigen state of Hk at each k

" k - quasi-momentum, there is no need to take k out side the first Brillouin zone as that do 
not leads to a new set of basis states.

" ϵα,k - dispersion relation of the αth energy band (corresponds to the nth eigenvalue of Hk)
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" Band gap opens at the Brillouin zone boundary.

" The dispersion can be unfolded to extended Brillouin zones following 
ϵα,k → ϵk - 2 π (-)α  α

2
 sgn(k).

" )α,k〉 - eigenstate, as a linear combination of basis states

)α,k〉 = 
m∈ℤ

u α, k, 2 πm )k+2 πm〉, (253)

in real space basis

ψα,k(x) = 〈x α,k〉 = 
m∈ℤ

u α,k,2 πm ⅇⅈ (k+2 πm) x, (254)
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n = 1, k = 0.2 π

Re
Im

" Every eigenstate is a plane wave ⅇⅈ k x modulated by a periodic function uα,k(x) (in response to 
the periodic potential). uα,k(x) is called the Bloch function, defined as

uα,k(x) = 
m∈ℤ

u α,k,2 πm ⅇⅈ 2 πm x, (255)

such that Eq. (254) explicitly takes the form of

ψα,k(x) = uα,k(x) ⅇⅈ k x. (256)
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x

u α
,k
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)

n = 1, k = 0.2 π

Re
Im

" The Bloch function is periodic in x. Because if x is shifted by a lattice vector x → x + n 
(n ∈ ℤ), by definition, we have

uα,k(x + n) = 
m∈ℤ

u α,k,2 πm ⅇⅈ 2 πm x ⅇⅈ 2 πm n

= 
m∈ℤ

u α,k,2 πm ⅇⅈ 2 πm x = uα,k(x).
(257)

In the near free electron model, calculate the effective mass of electron at the boundary
between the mth and (m + 1)th Brillouin zone (where the band gap opens). [Hint: focus
on the )k=±mπ〉 states and apply the 2nd order perturbation theory]. 

HW
5

◼ Bloch Theorem

Bloch  theorem:  An  electron  in  a  periodic  potential  V (x) = V (x +R)  has  eigenstates  of  the
form
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ψα,k(x) = 〈x α,k〉 = uα,k(x) ⅇⅈ k·x, (258)

where  the  Bloch  function  uα,k(x) = uα,k(x +R)  is  periodic  in  x  (with  the  same  periodicity  as  the
potential), and the quasi-momentum k is chosen within the first Brillouin zone.

" Proof: in the Hamiltonian Eq. (245), because the scattering term ∑G )k +G〉VG 〈k* only con-
nects momentum eigenstates )k〉 and )k+G〉 that are related by the reciprocal lattice vector G. 
So the energy eigenstates (eigenstates of H) must be a linear combination of these momentum 
eigenstates, with some combination coefficients u α,k,G

)α,k〉 = 
G

u α,k,G )k+G〉, (259)

where α is the band index (labeling the αth eigenstate of H). In real space basis,

〈x α,k〉 = 
G

u α,k,G 〈x k+G〉

= 
G

u α,k,G ⅇⅈ (k+G)·x

= uα,k(x) ⅇⅈ k·x,

(260)

where the Bloch function uα,k(x) is introduced as the Fourier transform of the coefficients u α,k,G,

uα,k(x) = 
G

u α,G ⅇⅈG·x, (261)

which must be periodic in x, as

uα,k(x +R) = 
G

u α,G ⅇⅈG·x ⅇⅈG·R = uα,k(x), (262)

given that ⅇⅈG·R = 1 by definition of the reciprocal lattice.

" k is called the quasi-momentum because )α,k〉 state is a superposition of different momentum 
eigenstates, that does not has a definite momentum, but it labels a equivalent class of momenta 
that are all related by the Laue condition.

)α,k〉 = ∑G u α,k,G )k+G〉

quasi-momentum true momentum
(263)

" The electron still propagate in the form of a (modulated) plane wave in the crystal, with a 
quasi-momentum, similar to the plane wave state of a free electron.
Even though the potential that the electron feels from each atom is extremely strong, the elec-
trons will still behave almost as if they do not see the atoms at all!

When  I  started  to  think  about  it,  I  felt  that  the  main  problem  was  to
explain  how  the  electrons  could  sneak  by  all  the  ions  in  a  metal  so  as  to
avoid a mean free path of the order of atomic distance ... By straight Fourier
analysis I found to my delight that the wave differed from the plane wave of
free electrons only by a periodic modulation.
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When  I  started  to  think  about  it,  I  felt  that  the  main  problem  was  to
explain  how  the  electrons  could  sneak  by  all  the  ions  in  a  metal  so  as  to
avoid a mean free path of the order of atomic distance ... By straight Fourier
analysis I found to my delight that the wave differed from the plane wave of
free electrons only by a periodic modulation.

— Felix Bloch (1952 Nobel Prize)

◼ Equation of Motion for Bloch Electron

A free electron in an electric field

" Classical mechanics (Newton’s 2nd law)

ⅆp

ⅆ t
= F = -eE. (264)

" Quantum mechanics (Schrödinger equation)

ⅈ ℏ ∂tψ = H ψ, (265)

formal solution:

ψ → ⅇ-
ⅈ

ℏ
H t ψ, (266)

the electron matter wave will accumulate the phase in time in the rate that is set by the 
energy. 
The potential energy of an electron in the electric field is

V (x) = eE · x. (267)

A plane wave state )k〉 will evolve in the electric field as

ⅇⅈ k·x → ⅇ-
ⅈ

ℏ
V (x) t ⅇⅈ k·x = ⅇⅈ k-

1
ℏ
eE t·x, (268)

meaning that the momentum ℏ k of the electron will change in time as

ℏ k → ℏ k - eE t, (269)

or described by 

ⅆ(ℏ k)

ⅆ t
= -eE, (270)

matching the classical mechanics result.

For a Bloch electron (electron in a crystal)

)α,k〉 = 
G

u α,k,G )k+G〉, (271)

in the presence of the electric field E, every (actual) momentum eigenstate )k〉 will evolve in time
as

)k〉 → )k - (e/ℏ) E t〉. (272)

Therefore the Bloch state evolves as (assuming (e / ℏ)E t ≪ 2 π , such that u α,k,G  remains approxi-
mately the same)

)α,k〉 → 
G

u α,k,G )k - (e/ℏ) E t + G〉

(273)
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≃ 
G

u α,k - (e/ℏ)E t,G )k - (e/ℏ) E t + G〉

= )α,k - (e/ℏ) E t〉,

(273)

meaning that the quasi-momentum also satisfies Newton’s 2nd law

ⅆ(ℏ k)

ⅆ t
= -eE = F. (274)

Metal (Fermi Gas) Phase

◼ Thermodynamic Properties

◼ Fermi-Dirac Distribution

Electron  is  a  fermion.  Its  finite-temperature  behavior  is  determined  by  the  Fermi-Dirac
distribution.

" Pauli exclusion principle. A fermion mode can either be empty or occupied by one fermion, 
but not occupied by multiple fermions.

Consider  a  system containing  only  one  fermion  mode.  Let  n  be  the  occupation number  of
the fermion mode

n =
0 empty
1 occupied

. (275)

" Total energy of the system

E = ϵ n =
0 empty
ϵ occupied

. (276)

" Total fermion number of the system

N = n =
0 empty
1 occupied

. (277)

" Probability to observe the system in the state with occupation number n is

pn =
1

Z
ⅇ-β (E-μN ) =

1

Z
ⅇ-β (ϵ-μ) n, (278)

where Z is the partition function (quantum, grand canonical ensemble)

Z = 
n=0,1

ⅇ-β (ϵ-μ) n = 1+ ⅇ-β (ϵ-μ). (279)

" β = 1 / (kB T ): kB - Boltzmann constant, T - temperature.
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" μ - chemical potential.

More explicitly

p0 =
1

1+ ⅇ-β (ϵ-μ)
, p1 =

1

ⅇβ (ϵ-μ) + 1
. (280)

" Average occupation number

〈n〉 = 
n=0,1

n pn = p1 = nF(β(ϵ - μ)), (281)

where nF is the Fermi-Dirac distribution function

nF(β(ϵ - μ)) =
1

ⅇβ(ϵ-μ) + 1
. (282)

describing the average number of fermions occupying the mode of energy ϵ.

" Average energy

〈E〉 = 
n=0,1

E pn

= ϵ nF(β(ϵ - μ)).
(283)

" Average fermion (electron) number

〈N 〉 = 
n=0,1

N pn

= nF(β(ϵ - μ)).
(284)

Note: Here 〈N 〉 = 〈n〉 because the system has only one single mode.

◼ Fermi Energy

Metal  phase  is  formed  by  many  (weakly  interacting)  electrons  that  partially  fill  a  band.  The
band structure (near the Γ point) can be described by the quadratic dispersion
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ϵk =
ℏ2 k2

2 meff
, (285)

" meff - effective mass of electron in the crystal.

" k - quasi-momentum. Each k labels a mode )k〉 that can be occupied by the electron. More 
precisely, the electron also carries spin, that can be in one of the two degenerated spin states, 
so the electronic mode is jointly labeled by )k,σ〉 (σ = ↑, ↓ ).

The average total number of electron

N = 2 
k

nF(β(ϵk - μ))

= 2
V

(2 π)D
 ⅆDk nF(β(ϵk - μ)).

(286)

" Prefactor of 2 accounts for the two degenerated spin states (the ways that electrons occupy 
both spins states are identical).

" D - dimension of space.

" V  - volume of the system. Such that the discretization unit in the momentum space is (2 π)D V .

Define: Fermi energy (or Fermi level) ϵF of the electronic system to be the chemical potential
at zero temperature T = 0 limit, given the number of electrons in the system.

" Fermi temperature TF

kB TF = ϵF. (287)

" Fermi momentum kF

ℏ2 kF
2

2 meff
= ϵF. (288)

" Fermi velocity vF

vF =
ℏ kF

meff
, (289)

hence ϵF = 1
2
meff vF

2 .

" Number of electrons at T = 0. At zero temperature, the Fermi-Dirac distribution function 
reduces to a step function (written as Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for x < 0), such that Eq. 
(286) becomes

N = 2
V

(2 π)D
 ⅆDk Θ(ϵF - ϵk),

= 2
V

(2 π)D


k<kF

ⅆDk

(290)
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= 2
V

(2 π)D


k<kF

AD kD-1 ⅆk

= 2
V AD kF

D

D (2 π)D
,

(290)

" AD = 2 πD/2  ΓD
2
 - area of a (D - 1)-dimensional unit sphere (in the D-dimensional space). 

AD kF
D D is the volume of a ball of radius kF.

" At T = 0, the electrons simply fill a ball in the momentum space of radius kF. The surface is 
the ball is called the Fermi surface.

" From Eq. (290), we can solve for the Fermi momentum kF

kF = 2 π
D

2 AD

N

V

1/D
(291)

or more explicitly (let n = N /V )

kF =

π n / 2 D = 1
(2 π n)1/2 D = 2

3 π2 n1/3 D = 3
… …

. (292)

" Correspondingly the Fermi energy

ϵF =
(2 π)2 ℏ2

2 meff

D

2 AD

N

V

2/D

. (293)

or more explicitly (let n = N /V )

ϵF =
ℏ2

2 meff

(π n / 2)2 D = 1
2 π n D = 2

3 π2 n2/3 D = 3
… …

. (294)

" For typical metals, the Fermi energy is of the order ϵF ~ 10 eV, which corresponds to a Fermi 
temperature of the order TF ~ 105K, much higher than the room temperature (also much higher 
than the melting temperature of metals).
Therefore, most electrons in the metal are deep in the Fermi sea and do not participate in 
thermodynamic or transport process. Such many-body state of electrons is also called degen-
erate Fermi gas, which also happens in other fermion systems as long as T ≪ TF (cold 
atomic gas TF ~ 10-6K, white dwarf star TF ~ 109K).
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" For typical metals, the Fermi velocity can be as large as vF~0.01 c (c - the speed of light). The 
high velocity of electron originated from the Pauli exclusion principle — all low momentum 
(low velocity) states are filled, and the active electrons around the Fermi surface has to move 
with high velocity.

◼ Density of States

At finite temperature, the average total energy E and total number N  of electrons is given by

E = 2 
k

ϵk nF(β(ϵk - μ)),

N = 2 
k

nF(β(ϵk - μ)).
(295)

The momentum summation can be converted to an energy integration


k

=
V

(2 π)D
 ⅆDk = V  ⅆϵk g(ϵk), (296)

 by introducing the density of states 

g(ϵ) =
D n

4 ϵF

ϵ

ϵF

D/2-1
Θ(ϵ), (297)

Derive Eq. (297).Exc
12

Using Eq. (296), Eq. (295) can be written as
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E = 2 V  ⅆϵ g(ϵ) ϵ nF(β(ϵ - μ)),

N = 2 V  ⅆϵ g(ϵ) nF(β(ϵ - μ)).
(301)

If  the  band  structure  has  a  linear  dispersion  (as  for  Dirac  fermions)  ϵk,± = ±ℏ vF )k*,
calculate the density of state g(ϵ) in general D-dimensional space.

HW
6

◼ Low-Temperature Expansion

Both integrals in Eq. (301) are of the form

I = 
-∞

∞
ⅆϵ f (ϵ) nF(β(ϵ - μ)). (302)

which admits the low-temperature expansion (Sommerfeld expansion) as T → 0,

I = 
-∞

μ
ⅆϵ f (ϵ) +

n=1

∞ 2 (kB T )2 n

(2 n - 1)!
∂μ2 n-1 f (μ) I2 n-1, (303)

where the constants are given by

I2 n-1 = 
0

∞ x2 n-1

ex + 1
ⅆx = 1-

2

4n
Γ(2 n) ζ(2 n). (304)

Derive Eq. (303) and Eq. (304).Exc
13

The leading terms of the expansion reads


-∞

∞
ⅆϵ f (ϵ) nF(β(ϵ - μ)) = 

-∞

μ
ⅆϵ f (ϵ) +

(π kB T )2

6
f ′(μ) +… (309)

Using Eq. (309), Eq. (301) can be evaluated to the leading order of T

E(μ, T ) =
D

D + 2
N ϵF + 2 (μ - ϵF) g(ϵF) ϵF V +

(π kB T )2

3
(g(μ) + μ g′(μ))V +…,

N (μ, T ) = N + 2 (μ - ϵF) g(ϵF)V +
(π kB T )2

3
g′(μ)V +….

(310)

Derive Eq. (310).Exc
14

The second equation (regarding N) in Eq. (310) implies that the chemical potential μ must vary
with the temperature T in the following manner to keep the particle number fixed

μ = ϵF -
(π kB T )2

6

g′(ϵF)

g(ϵF)
. (315)

Substitute  Eq.  (315)  into  Eq.  (310),  we  obtain  the  energy  of  the  degenerate  Fermi  gas  at  low
temperature
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Substitute  Eq.  (315)  into  Eq.  (310),  we  obtain  the  energy  of  the  degenerate  Fermi  gas  at  low
temperature

E(T ) =
D

D + 2
N ϵF +

(π kB T )2

3
g(ϵF)V +…. (316)

If the density of state respects the particle-hole symmetry g(ϵ) = g(-ϵ) (as in graphene),
prove  that  if  at  zero  temperature  the  Fermi  energy  is  at  ϵF = 0,  then  the  chemical
potential is locked at zero μ(T ) = 0 for any finite temperature.

HW
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◼ Heat Capacity

" Heat capacity: the rate of energy E change with respect to the temperature T 

CV =
∂E

∂T
=

π2 kB
2 T

3
(2 g(ϵF)V ). (317)

For quadratic dispersion, the density of state g(ϵ) given in Eq. (297),

CV =
π2

3

D N kB

2

T

TF
. (318)

" Specific heat: heat capacity per electron

cV =
CV

N
=

π2 kB
2 T

3

2 g(ϵF)

n
. (319)

For quadratic dispersion

cV =
π2

3

D kB

2

T

TF
. (320)

" D kB / 2 is the classical result for specific heat of a gas, where every atom in the gas can 
exchange energy with the heat bath. However, in metals, on those electrons near the Fermi 
surface can absorb/release energy, so the specific heat of such degenerate Fermi gas is 
smaller than the classical gas by a factor of T /TF, which is a tiny ratio T /TF ~ 0.01 in 
typical metals. 

" At low-temperature, the specific heat of electrons in metals grows with temperature linearly 
cV ~ T (regardless of the spatial dimension D of the system).

Further taken into account the specific  heat of phonons,  which scales as cV ~ TD,  the total  spe-
cific heat should take the form of

cV = γ T + αTD, (321)

for D-dimensional metal at low-temperature.
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Show  that  the  electronic  contribution  to  the  specific  heat  in  a  single-layer  graphene
scales  as  cV ~ T2  at  low  temperature.  [Hint:  consider  the  low-energy  electrons  in
graphene as 2D Dirac fermions with linear dispersion.]

HW
8

◼ Charge Compressibility

" Charge compressibility (quantum capacitance): the rate of charge  Q changes with respect 
to the electric potential U

CQ =
∂Q

∂U
= e2 ∂N

∂μ
. (322)

" e - electric charge of electron.

" In the presence of electric potential U , the electron chemical potential shifts by

μ → μ - e U . (323)

As a result the number of electron changes by

N → N +
∂N

∂μ
(-e U ), (324)

and the total charge Q = -e N  changes by

Q → Q + e2 ∂N

∂μ
U . (325)

" Using the result in Eq. (310),

N (μ, T ) = N + 2 (μ - ϵF) g(ϵF)V +…, (326)

we have

∂N

∂μ
= 2 g(ϵF)V . (327)

So the charge compressibility is given by

CQ = e2 ∂N

∂μ
= e2(2 g(ϵF)V ). (328)

For quadratic dispersion, the density of state g(ϵ) given in Eq. (297),

CQ =
e2 D N

2 ϵF
(329)

" Specific charge compressibility

cQ =
CQ

N
= e2 2 g (ϵF)

n
. (330)
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For quadratic dispersion,

cQ =
e2 D

2 ϵF
. (331)

◼ Spin Susceptibility

" Spin susceptibility: the rate of magnetization M  changes with respect to the external magnetic 
field B

χ =
∂M

∂B
(332)

" μB = e ℏ / (2 me) - Bohr magneton, the magnetic moment carried by the electron.

" In the presence of a magnetic field B, the up-spin and down-spin electron energy split

ϵk,↑ = ϵk + μB B,

ϵk,↓ = ϵk - μB B.
(333)

Magnetization (average magnetic moment per electron) responds to the magnetic field as

M = μB
N↑ -N↓

N

=
μB

N

∂N↑

∂μ↑
(μB B) -

∂N↓

∂μ↓
(-μB B)

=
μB

2

N

∂N↑

∂μ↑
+

∂N↓

∂μ↓
B

=
μB

2

N

∂N

∂μ
B.

(334)

So the spin susceptibility can be calculated as

χ =
μB

2

N

∂N

∂μ
= μB

2 2 g(ϵF)

n
. (335)

For quadratic dispersion, the density of state g(ϵ) given in Eq. (297),

χ =
μB

2 D

2 ϵF
. (336)

This constant spin susceptibility of the electron gas is also called the Pauli susceptibility, which
(partially) explains the paramagnetism of metal.

◼ Wilson Ratio

Specific  heat  cV ,  charge  compressibility  cQ,  and  spin  susceptibility  χ  are  all  proportional  to
2 g(ϵF) / n:

(337)
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cV =
π2 kB

2 T

3

2 g (ϵF)

n
,

cQ = e2 2 g (ϵF)

n
,

χ = μB
2 2 g (ϵF)

n
.

(337)

By taking ratios among them, the non-universal property 2 g(ϵF) / n can be canceled. The resulting
universal ratio is called the Wilson ratio,

RW =
cQ T

cV

π2 kB
2

3 e2
=

χT

cV

π2 kB
2

3 μB
2

= 1. (338)

" For non-interacting electrons, the Wilson ratio should be 1, which is expected to hold for typ-
ical metals.

" Deviation of the Wilson ratio from unity signifies the interaction effect between electrons is 
important in the material.

◼ Transport Properties

◼ Boltzmann Transport

Transport  properties  concern  how  metal  conduct  electricity  and  heat.  In  order  to  generate
electric/heat current in the system, the electrons must deviate from their equilibrium distribution. 

Boltzmann  transport  theory  is  a  semiclassical  theory  for  near-equilibrium  electrons.  The
basic quantity of interest is the distribution function f (x, k, t) of electron in the phase space (x, k)
as a function of time t.

" Equilibrium distribution. Without external perturbations, electrons relax to the equilibrium 
distribution

feq(x, k) = nF(β(ϵk - μ)) =
1

ⅇβ(ϵk-μ) + 1
. (339)

At the low-temperature limit (T → 0),

feq(x, k) = Θ(ϵF - ϵk)

⇒
∂ f

∂ϵk
= -δ(ϵF - ϵk).

(340)

" Relaxation of near equilibrium distribution. If f  deviated from feq, it will relax to feq in a charac-
teristic time scale τ, called the relaxation time,

f (t) = feq + f (0) - feq ⅇ-t/τ. (341)

The relaxation dynamics can be described by the following differential equation
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ⅆ f

ⅆ t
= -

f - feq
τ

. (342)

" On the other hand, by the chain rule of differentiation

ⅆ f

ⅆ t
=

∂ f

∂t
+

∂ f

∂x
·
ⅆx

ⅆ t
+

∂ f

∂k
·
ⅆk

ⅆ t
. (343)

By semiclassical equation of motion

ⅆx

ⅆ t
= vk =

1

ℏ
∂k ϵk,

ⅆk

ⅆ t
=

1

ℏ
F,

(344)

" vk - group velocity of the electron at momentum k,

" F - external force acting on the electron.

Eq. (343) can be written as

ⅆ f

ⅆ t
= ∂t f + vk · ∂x f +

1

ℏ
F · ∂k f . (345)

Combine Eq. (342) and Eq. (345), we obtain the Boltzmann equation

∂t f + vk · ∂x f +
1

ℏ
F · ∂k f = -

f - feq
τ

. (346)

The stationary solution is defined to be the solution that ∂ f / ∂t = 0, which is given by

vk · ∂x f +
1

ℏ
F · ∂k f = -

f - feq
τ

. (347)

◼ Electrical Conductivity

Metal  can  conduct  electricity  in  the  presence  of  electric  field  E.  Electrons  experience  an
external force

F = -eE. (348)

Stationary solution should be given by Eq. (347)

-
e

ℏ
E · ∂k f = -

f - feq
τ

, (349)

or written as a self-consistent equation

f = feq +
e τ

ℏ
E · ∂k f . (350)

Assuming f  is close to feq, we can take f ≃ feq as an initial approximation, and substitute it to Eq.
(350) iteratively to find the self-consistent solution.
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" To the first order in E (linear response),

f ≃ feq +
e τ

ℏ
E · ∂k feq

= feq + e τE · vk ∂ϵ feq.
(351)

" f  is deviated from feq. The main effect is to shift the Fermi sea in the momentum space by the 
amount of -(e τ / ℏ)E.

+ =

This can induced an electric current density

J = -2 e 
ⅆDk

(2 π)D
vk f

= -2 e 
ⅆDk

(2 π)D
vk feq - 2 e2 τ 

ⅆDk

(2 π)D
vk E · vk ∂ϵ feq.

(352)

" The prefactor 2 comes from the spin degeneracy

" The first term will vanish because there is no current when the system is at equilibrium.

" Switch the integral from the momentum space to the energy domain

J = -2 e2 τ  ⅆϵk g(ϵk) vk E · vk ∂ϵ feq

= -
2 e2 τ vF

2

3
E  ⅆϵ g(ϵ) ∂ϵ feq.

(353)

The integral admits the following low-temperature expansion

 ⅆϵ g(ϵ) ∂ϵ feq = -g(μ) -
π2

6

∂μ2 g(μ)

β2
+…, (354)

Derive Eq. (354).Exc
15

Take the low-temperature limit and use μ = ϵF as T → 0,

J =
2 e2 τ vF

2

3
g(ϵF)E . (359)

The electrical conductivity σ is defined via

J = σE. (360)

Compare with Eq. (359), we can identify
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σ =
2 e2 τ vF

2

3
g(ϵF). (361)

Using the density of state g(ϵ) given in Eq. (297),

σ =
D

3

e2 n τ

meff
. (362)

◼ Thermal Conductivity

Metal  can  conduct  heat  in  the  presence  of  temperature gradient  ∂xT  (heat  will  flow from
the  high  temperature  side  to  the  low  temperature  side).  The  temperature  gradient  enters  the
Boltzmann equation by creating a spatial gradient of the distribution function

∂x f = ∂T f ∂xT . (363)

Stationary solution should be given by Eq. (347)

vk · ∂xT ∂T f = -
f - feq

τ
, (364)

or written as a self-consistent equation

f = feq - τ vk · ∂xT ∂T f . (365)

Again, solving the self-consistent equation iteratively, starting from f ≃ feq.

" To the first order in ∂xT (linear response),

f ≃ feq - τ vk · ∂xT ∂T feq. (366)

Given feq = ⅇ(ϵ-μ)/T + 1-1, ∂T feq and ∂ϵ feq are related by

∂T feq = -
ϵ - μ

T
∂ϵ feq, (367)

therefore

f ≃ feq +
ϵk - μ

T
τ vk · ∂xT ∂ϵ feq. (368)

This can induced an energy current density

JQ = 2 
ⅆDk

(2 π)D
(ϵk - μ) vk f

= 2 
ⅆDk

(2 π)D
(ϵk - μ) vk feq + 2 

ⅆDk

(2 π)D
(ϵk - μ)2 τ

T
vk vk · ∂xT ∂ϵ feq.

(369)

" The prefactor 2 comes from the spin degeneracy

" The first term will vanish because there is no current when the system is at equilibrium.

ElectronicSystem.nb 63



" Switch the integral from the momentum space to the energy domain

JQ =
2 τ

T


ⅆDk

(2 π)D
(ϵk - μ)2 vk vk · ∂xT ∂ϵ feq

=
2 τ

T
 ⅆϵk g(ϵk) (ϵk - μ)2 vk vk · ∂xT ∂ϵ feq

=
2 τ vF

2

3

∂xT

T
 ⅆϵ g(ϵ) (ϵ - μ)2 ∂ϵ feq.

(370)

Use the low-temperature expansion in Eq. (354)

 ⅆϵ g(ϵ) (ϵ - μ)2 ∂ϵ feq = -
π2

3

g(μ)

β2
+…, (371)

therefore

JQ = -
2 τ vF

2

3
g(ϵF)

π2 kB
2 T

3
∂xT . (372)

The thermal conductivity κ is defined via

JQ = -κ ∂xT . (373)

Compare with Eq. (372), we can identify

κ =
2 τ vF

2

3
g(ϵF)

π2 kB
2 T

3

=
π2 kB

2

3 e2
σT

=
D

3

π2 kB
2 n τ

3 meff
T ,

(374)

where σ is the electrical conductivity given in Eq. (361). 

◼ Lorenz Number

Eq. (374) reveals a proportionality between the thermal conductivity and the electrical conduc-
tivity, such that the ratio

L ≡
κ

σT
=

π2

3

kB

e

2

≈ 2.443× 10-8 W · Ω ·K-2, (375)

is a universal constant, known as the Lorenz number.

Material L× 108

Sodium (Na) 2.12
Magnesium (Mg) 2.14
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Copper (Cu) 2.20
Lithium (Li) 2.22

Zinc (Zn) 2.33
Silver (Ag) 2.37
Gold (Au) 2.40

Cadmium (Cd) 2.43
Lead (Pb) 2.56

Platinum (Pt) 2.60
Iron (Fe) 2.61

Tungsten (W) 3.20
Bismuth (Bi) 3.53

" The fact that many metals have roughly the same κ / (σT ) ratio is also known as the Wiede-
mann-Franz law.

" Significance deviation of the Lorenz number of this value is an indication of the importance of 
electron interaction in the material.

Interacting Electrons

◼ Interacting Two-Electron Systems

◼ Warmup: Classical Interacting Particles

Consider  two  classical  particles  restricted  in  a  1D system,  described  by  a  pair  of  coordinates
(x1, x2).

xx1 x2

" Suppose there is some uncertainty about the positions → should think about the probability 
distribution of the particles p(x1) and p(x2)

Or more precisely, the joint probability distribution

p(x1, x2) = p(x1) p(x2). (376)
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" Suppose the interaction between the two particles is described by the interaction potential 
U (x1 - x2) (assuming translation symmetry and inversion symmetry), the average interaction 
energy is

EU =  ⅆx1 ⅆx2 U (x1 - x2) p(x1, x2). (377)

(illustration of the integrand)

x1

x 2

U (xi)

×

x1

x 2

p (xi)

=

x1

x 2

U (xi) p (xi)

◼ Interacting Fermions

However,  the  classical  probability  description  does  not  apply  to  quantum  particles,  such  as
fermions (electrons).

" First, fermions are identical particles. There is no way to distinguish which electron is the 
first/second one. This implies that the probability distribution must be invariant under the 
exchange of the two fermions, i.e.

p(x1, x2) = p(x2, x1). (378)

" Secondly, fermions are quantum particles. The probability p(x1, x2) should be modeled by the 
underlying probability amplitude (the wave function) ψ(x1, x2) as

p(x1, x2) = )ψ(x1, x2)*2. (379)

Then Eq. (378) requires

)ψ(x1, x2)*2 = )ψ(x2, x1)*2. (380)

There are two options

ψ(x1, x2) =
+ψ(x2, x1) bosons,
-ψ(x2, x1) fermions. (381)

Definition: Bosons/Fermions are identical quantum particles, whose many-body wave functions
are symmetric/antisymmetric under particle exchange.
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Definition: Bosons/Fermions are identical quantum particles, whose many-body wave functions
are symmetric/antisymmetric under particle exchange.

Consider  two  fermions  occupying  ψA(x)  and  ψB(x)  orbitals  respectively,  the  two-body  wave
function must take the following form (to respect the fermion antisymmetry)

ψ(x1, x2) =
1

2
(ψA(x1) ψB(x2) - ψB(x1) ψA(x2)). (382)

" One can already see, if ψA = ψB are the same state, the two-body wave function vanishes auto-
matically ⇒ Pauli exclusion principle: fermions can not double occupy the same state.

" Consider two localized orbitals

ψA(x) ∝ exp -
(x - xA)2

2
,

ψB(x) ∝ exp -
(x - xB)2

2
.

(383)

xA xB

-4 -2 0 2 4
0.0
0.1
0.2
0.3
0.4

x

ψ
(x
) ψA (x) ψB (x)

The two-body wave function can be constructed by antisymmetrization.

x1

x 2

ψA ψB

-

x1

x 2

ψB ψA

=

x1

x 2

ψ (x1, x2)

" Probability distribution

p(x1, x2) = )ψ(x1, x2)*2

=
1

2
)ψA(x1) ψB(x2) - ψB(x1) ψA(x2)*2

=
1

2
)ψA(x1)*2 )ψB(x2)*2 + )ψB(x1)*2 )ψA(x2)*2 -

1

2
(ψA

* (x1) ψB
* (x2) ψB(x1) ψA(x2) + ψB

* (x1) ψA
* (x2) ψA(x1) ψB(x2)),

(384)

ElectronicSystem.nb 67



which contains two contributions

p(x1, x2) = pcl(x1, x2) - pqu(x1, x2), (385)

" the classical part is just the symmetrized product distribution

pcl(x1, x2) =
1

2
(pA(x1) pB(x2) + pB(x1) pA(x2)), (386)

where pA/B(x) = )ψA/B(x)*2.

" the quantum part is a correction that originates from quantum interference between 
fermions

pqu(x1, x2) =
1

2
(ψA

* (x1) ψB
* (x2) ψB(x1) ψA(x2) + ψB

* (x1) ψA
* (x2) ψA(x1) ψB(x2)). (387)

x1

x 2

pcl (x1, x2)

x1

x 2

pqu (x1, x2)

x1

x 2
p (x1, x2)

" The average interaction energy

EU =  ⅆx1 ⅆx2 U (x1 - x2) p(x1, x2) (388)

will also contain two terms

EU = EHart -EFock, (389)

" the Hartree energy (direct energy) from the classical contribution

EHart =  ⅆx1 ⅆx2 U (x1 - x2) pcl(x1, x2)

=  ⅆx1 ⅆx2 U (x1 - x2) )ψA(x1)*2 )ψB(x2)*2.
(390)

In terms of the Dirac notation

EHart = 〈ψA ψB*U )ψA ψB〉. (391)
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x1

x 2
U

×

x1
x 2

pcl

=

x1

x 2

U pcl

" the Fock energy (exchange energy) from the quantum correction

EFock =  ⅆx1 ⅆx2 U (x1 - x2) pqu(x1, x2)

=  ⅆx1 ⅆx2 U (x1 - x2) ψA
* (x1) ψB

* (x2) ψB(x1) ψA(x2).
(392)

In terms of the Dirac notation

EFock = 〈ψA ψB*U )ψB ψA〉. (393)

x1

x 2

U

×

x1

x 2

pqu

=

x1

x 2

U pqu

◼ Hartree-Fock Approximation

Hartree-Fock  approximation  is  a  variational  approach  to  solve  for  the  ground  state  of  inter-
acting fermion systems.

H = 
i

pi
2

2 m
+V (xi)

H0

+
i≠j

U xi - xj. (394)

" It assumes that the N -body ground state can be approximated by the state of N  fermions sepa-
rately occupying N  single-particle orbitals. 

" By optimizing the orbital wave functions to minimize the energy, one can estimate the ground 
state energy as well as the approximate ground state wave function.

For example, consider a two-body system (N = 2) in 1D

H = H0(p1, x1) +H0(p2, x2) +U (x1 - x2) (395)

Two  orthonormal  orbitals  will  be  introduced,  denoted  as  ψA(x)  and  ψB(x),  and  the  variational
state is taken to be
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ψ(x1, x2) =
1

2
(ψA(x1) ψB(x2) - ψB(x1) ψA(x2)). (396)

The energy expectation value is given by

〈ψ*H )ψ〉 = 〈ψA*H0 )ψA〉 + 〈ψB*H0 )ψB〉 + 〈ψA ψB*U )ψA ψB〉
Hartree

-〈ψA ψB*U )ψB ψA〉
Fock

. (397)

where

" the A orbital energy is (similar for B orbital)

〈ψA*H0 )ψA〉 =  ⅆx ψA
* (x) -

ℏ2

2 m
∂x

2+V (x) ψA(x). (398)

" the Hartree energy

〈ψA ψB*U )ψA ψB〉 =  ⅆx1 ⅆx2 U (x1 - x2) )ψA(x1)*2 )ψB(x2)*2, (399)

" the Fock energy

〈ψA ψB*U )ψB ψA〉 =  ⅆx1 ⅆx2 U (x1 - x2) ψA
* (x1) ψB

* (x2) ψB(x1) ψA(x2). (400)

Objective: optimize the functions ψA(x) and ψB(x) to minimize 〈ψ*H )ψ〉.

" The minimal value of 〈ψ*H )ψ〉 provides an estimation of the ground state energy.

" The optimal orbitals can be used to construct the many-body state ψ(x1, x2), which is a varia-
tional approximation of the ground state.

◻ Two Electrons in a Box

Consider  two  (spinless)  electrons  confined  in  a  1D  box  (infinite  square  potential  x ∈ [0, 1])
interacting with each other via an repulsive potential

U (x) = g sech
x

ξ
, (401)

-4 -2 0 2 4
0.0
0.2
0.4
0.6
0.8
1.0

x / ξ

U
(x
)/

g

" Non-interacting limit (g = 0): the electrons will occupy the lowest two orbitals in the square 
well. The single-electron density distribution can be calculated from

ρ(x) =  )ψ(x, x′)*2 ⅆx′ = )ψA(x)*2 + )ψB(x)*2. (402)
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" The electrons are repelled from the infinite walls ⇒ density vanishes approaching both walls.

" The electrons do not want to stay with each other (Pauli exclusion) ⇒ a small dip in the 
middle part of the density distribution.

" Strong-interacting limit (g → ∞): the electrons will further repel each other ⇒ a deeper suppress 
of density in the middle, breaking the distribution into two peaks.

0.0 0.2 0.4 0.6 0.8 1.0
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-1.0
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x

ψ
(x
)

g = 50.0, EGS = 19.69

0.0 0.2 0.4 0.6 0.8 1.0
0
1
2
3
4
5

x

ρ
(x
)

" Two localized orbitals emerges. Each electron occupies one localized orbital, and does not 
want to travel to the other side of the box.

" For more electrons (and in higher dimensions), this will lead to crystallization of electrons ⇒ 
Wigner crystal. 

◼ Quantum Origin of Magnetism

◼ Exchange Interaction (Ferromagnetism)

The above discussion has not included the internal spin state of the electron. The many-body
state of electrons must be totally antisymmetric upon exchanging electrons in the orbital and the
spin Hilbert spaces jointly: if the spin state is already symmetric/antisymmetric, the orbital state
must be antisymmetric/symmetric.
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For two electrons, each carries spin-1/2 (two states )↑〉 and )↓〉)

" Antisymmetric spin state → spin singlet state (s = 0)

s ms

0 0 1
2
()↑↓〉 - )↓↑〉). (403)

Spins are anti-aligned as 〈S1 ·S2〉 = -3 ℏ2  4 < 0 ⇒ antiferromagnetic.

" Symmetric spin states → spin triplet states (s = 1)

s ms

1 +1 )↑↑〉

1 0 1
2
()↑↓〉 + )↓↑〉)

1 -1 )↓↓〉

(404)

Spins are aligned as 〈S1 ·S2〉 = ℏ2  4 > 0 ⇒ ferromagnetic.
Suppose  there  are  two  energetically-degenerated  orbitals  ψA(x)  and  ψB(x)  to  occupied,  the  elec-
trons can be either of the following states:

" Orbital symmetric, Spin antisymmetric (antiferromagnetic)

1

2
()ψA ψB〉 + )ψB ψA〉)

1

2
()↑↓〉 - )↓↑〉) (405)

→ Interaction energy

EU = 〈ψA ψB*U )ψA ψB〉 + 〈ψA ψB*U )ψB ψA〉. (406)

" Orbital antisymmetric, Spin symmetric (ferromagnetic)

1

2
()ψA ψB〉 - )ψB ψA〉)

1

2
()↑↓〉 + )↓↑〉) (407)

→ Interaction energy

EU = 〈ψA ψB*U )ψA ψB〉 - 〈ψA ψB*U )ψB ψA〉. (408)

Assuming  the  Fock  energy  is  positive  〈ψA ψB*U )ψB ψA〉 > 0  (e.g.  the  repulsive  Coulomb  interac-
tion), then the ferromagnetic state is lower in energy. 

" Spin exchange interaction: the ferromagnetic spin-spin interaction between two electrons 
occupying two degenerated orbitals. 

" This magnetic (spin) interaction originates from the quantum effect of the electric (charge) 
interaction (the exchange energy of Coulomb interaction). The fermionic nature of electron 
plays a key role in this mechanism.
[If the spin interaction was originated from the magnetic dipole interaction (electromagnetic 
force), the spins should tend to anti-align with each other, which makes it hard to explain the 
existence of ferromagnets.]
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" Hund’s rule: atomic orbitals in the same energy shell tend to be singly occupied by electrons 
of the same spin (to maximize the total spin). 
This is a result of the spin exchange interaction between electrons on these orbitals.

" Magnetic interaction in molecules and solids. The spin exchange interaction is less effective 
between electrons from different atoms, because the overlap 〈ψA ψB〉 between orbital wave 
functions is small, and the exchange interaction is also small in general. There is a competing 
effect in this case: both electrons tends to occupy the bonding orbital )ψA〉 + )ψB〉 to lower the 
kinetic energy, then the spin must be anti-aligned due to the Pauli exclusion principle → 
leading to the antiferromagnetic interaction between electrons in a covalent bond.

mechanism type origin
covalent bond antiferro kinetic energy
spin exchange ferro interaction energy

It is quit subtle to determine whether electron spins on neighboring atoms want to be aligned 
or anti-aligned. Generally either behavior is possible.

◼ Super-Exchange Interaction (Antiferromagnetism)

Hubbard model: tight binding model + on-site interaction (Hubbard interaction). It provides
a  good  explanation  for  the  antiferromagnetic  interaction  between  electrons  from  neighboring
atoms.

" Consider two sites (atoms) A and B adjacent to each other, with a total of two electrons. 

" For each electron, there are four possible states

)A↑〉, )A↓〉, )B↑〉, )B↓〉. (409)

" Two electrons together has six possible states (C4
2 = 6)

)A↑ B↑〉 = -)B↑ A↑〉,

)A↑ B↓〉 = -)B↓ A↑〉,

)A↓ B↑〉 = -)B↑ A↓〉,

)A↓ B↓〉 = -)B↓ A↓〉,

)A↑ A↓〉 = -)A↓ A↑〉,

)B↑ B↓〉 = -)B↓ B↑〉.

(410)

" Hopping term Hhop turns a A↑ orbital to a B↑ orbital and vice versa, and similarly turns a A↓ 
orbital to a B↓ orbital and vice versa (electron hopping is independent of spin). 

" For example, starting from )A↑ B↓〉,

〈A↑ A↓*Hhop )A↑ B↓〉 = -t,

〈B↑ B↓*Hhop )A↑ B↓〉 = -t;
(411)

starting from )A↓ B↑〉,
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〈A↓ A↑*Hhop )A↓ B↑〉 = -t,

〈B↓ B↑*Hhop )A↓ B↑〉 = -t,
(412)

which can also be written as

〈A↑ A↓*Hhop )A↓ B↑〉 = t,

〈B↑ B↓*Hhop )A↓ B↑〉 = t,
(413)

given the basis relations in Eq. (410).

" If the electron spins are aligned, no hopping can occur. As hopping processes like

)A↑ B↑〉 → )B↑ B↑〉 = 0,

)A↑ B↑〉 → )A↑ A↑〉 = 0,
(414)

are forbidden by the Pauli exclusion principle.

" The hopping Hamiltonian can be represented as a matrix

Hhop ≏

0 0 0 0 0 0
0 0 0 0 -t -t
0 0 0 0 t t
0 0 0 0 0 0
0 -t t 0 0 0
0 -t t 0 0 0

. (415)

" Interaction term Hint gives energy penalty U > 0 when two electrons are on the same site (such 
that they repel strongly)

〈A↑ A↓*Hint )A↑ A↓〉 = U ,

〈B↑ B↓*Hint )B↑ B↓〉 = U ,
(416)

which can be represented as a diagonal matrix for the last two states

Hint ≏

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 U 0
0 0 0 0 0 U

. (417)

Put together the two-site Hubbard model Hamiltonian H = Hhop +Hint can be written as

H ≏

0 0 0 0 0 0
0 0 0 0 -t -t
0 0 0 0 t t
0 0 0 0 0 0
0 -t t 0 U 0
0 -t t 0 0 U

. (418)
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" The spin-triplet states are eigenstates of H  of the eigen energy E = 0

energy state
0 )A↑ B↑〉

0 1
2
()A↑ B↓〉 + )A↓ B↑〉)

0 )A↓ B↓〉

. (419)

" The following double occupied (anti-bonding) state is “dark” to hopping, which is also an eigen-
state of H  of energy E = U ,

energy state

U 1
2
()A↑ A↓〉 - )B↑ B↓〉)

. (420)

" The spin-singlet state and the double occupied (bonding) states can turn into each other via 
hopping,

)s〉 =
1

2
()A↑ B↓〉 - )A↓ B↑〉),

)d〉 =
1

2
()A↑ A↓〉 + )B↑ B↓〉).

(421)

The Hamiltonian projected to the )s〉, )d〉 basis will be represented as

H ≏
0 -2 t

-2 t U
. (422)

" Strong interaction limit U ≫ t, the ground state )s〉 + I(t /U ) is very close to the spin-singlet 
state )s〉 with the eigen energy

E = -
4 t2

U
, (423)

which is also the energy splitting between singlet and triplet state. In a spin model 
H = J S1 ·S2, the energy splitting between the singlet (E = -3 J / 4) and triplet (E = J / 4) 
states is simply J . 
Therefore Eq. (423) implies that the electronic system can be effectively viewed as a spin 
system in the strong interaction regime with an antiferromagnetic spin coupling

J =
4 t2

U
, (424)

which is also known as the super-exchange interaction.

" Weak interaction limit U ≪ t, the ground state is 

1

2
()s〉 + )d〉)

(425)
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=
1

2
()A↑ A↓〉 + )A↑ B↓〉 - )A↓ B↑〉 + )B↑ B↓〉)

=
1

2
()A↑ A↓〉 + )A↑ B↓〉 + )B↓ A↑〉 + )B↑ B↓〉)

=
1

2
()A↑〉 + )B↑〉) ⊗

1

2
()A↓〉 + )B↓〉),

(425)

with eigen energy -2 t. This describes two electrons with opposite spins occupying the single-
particle bonding state together. Each electron gains the energy t as the kinetic energy is 
reduced by hybridizing the two atomic orbitals.

" In both limits, the ground state is a spin-singlet state (antiferromagnetic). As the interaction 
is turned on it simply suppress the component of the double occupied state )d〉 in the ground 
state.

◼ Instabilities of Metallic State

◼ Itinerant Ferromagnetism

For  free  electron  system,  it  is  always  energetically  favorable  to  have  the  same  number  of  up
and down spins (N↑ = N↓), than to have the number differ.

" Because creating the spin imbalance (say N↑ > N↓) corresponds to transferring some of the ↓ 
spin electrons from below the Fermi energy to ↑ spin electrons above the Fermi energy, which 
will always increase the energy.

ϵF

ϵ

↑ ↓

ϵF

ϵ

↑ ↓

" This can also be seen from the positive spin susceptibility χ of electron gas calculated in Eq. 
(335),

χ =
∂M

∂B
= μB

2 2 g(ϵF)

n
, (426)

meaning that the total energy E0 of a free electron system must grow with the magnetization 
M  as

E0

N
=

1

2 χ
M2 -M B, (427)

such that the minimal energy solution is always given by M = χB (matching the paramagnetic 
behavior characterized by χ).

This  would predict  that metals  do not want to spontaneously magnetize in the absence of  mag-
netic field.  But how to explain the existence of  ferromagnetic metals,  like iron (Fe),  nickel  (Ni),
cobalt (Co) etc.?
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This would predict  that metals  do not want to spontaneously magnetize in the absence of  mag-
netic field.  But how to explain the existence of  ferromagnetic metals,  like iron (Fe),  nickel  (Ni),
cobalt (Co) etc.?

Electron interaction plays a central role in explaining the magnetism in materials. 

" Consider a short-range interaction between electrons modeled by an interaction potential

U (x - x′) = U0 δ(x - x′). (428)

Electron repels (assuming g > 0) each other when they are in contact at a point. This mimics 
the behavior of (screened) Coulomb interaction.

" For electrons of the same spin, 

" the Hartree energy

EHartree = 
ϵk,ϵk′<μ↑

〈ψk↑ ψk′↑ *U )ψk↑ ψk′↑〉

= U0 
ϵk,ϵk′<μ↑

 ⅆx1 ⅆx2 δ(x1 - x2) )ψk(x1)*2 )ψk′ (x2)*2

= U0 
ϵk,ϵk′<μ↑

 ⅆx )ψk(x)*2 )ψk′ (x)*2

= U0 
ϵk,ϵk′<μ↑

1

V

=
U0 N↑

2

V
,

(429)

" the Fock energy is

EFock = 
ϵk,ϵk′<μ↑

〈ψk↑ ψk′↑ *U )ψk′↑ ψk↑〉

= U0 
ϵk,ϵk′<μ↑

 ⅆx1 ⅆx2 δ(x1 - x2) ψk
* (x1) ψk′

* (x2) ψk′ (x1) ψk(x2)

= U0 
ϵk,ϵk′<μ↑

 ⅆx )ψk(x)*2 )ψk′ (x)*2

= U0 
ϵk,ϵk′<μ↑

1

V

=
U0 N↑

2

V
,

(430)

" the Hartree energy is precisely canceled by the Fock energy, and the total interaction energy 
vanishes for same-spin electrons under short-range interaction,

EU = EHartree -EFock = 0. (431)

This can be understood as a consequence of the Pauli exclusion principle that forbids the 
same-spin electrons to come to the same point to interact.
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" For electrons of opposite spins,

" the Hartree energy is similar

EHartree = 
ϵk<μ↑


ϵk′<μ↓

〈ψk↑ ψk′↓ *U )ψk↑ ψk′↓〉

= U0 
ϵk<μ↑


ϵk′<μ↓

 ⅆx1 ⅆx2 δ(x1 - x2) )ψk(x1)*2 )ψk′ (x2)*2

= U0 
ϵk<μ↑


ϵk′<μ↓

 ⅆx )ψk(x)*2 )ψk′ (x)*2

= U0 
ϵk<μ↑


ϵk′<μ↓

1

V

=
U0 N↑ N↓

V
.

(432)

" But there is no Fock energy contribution, because the orbital state can either be symmetric 
or antisymmetric (as the spin state can adjust accordingly), the two possibilities have oppo-
site signed in front of their Fock energies, which cancel out.

" So the total interaction energy for opposite-spin electrons is

EU = EHartree =
U0 N↑ N↓

V
. (433)

Put together, the interaction energy of the electronic system is

EU =
U0 N↑ N↓

V

=
U0

4 V
(N↑ +N↓)2 - (N↑ -N↓)2

=
U0 N 2

4 V
1-

M

μB

2

.

(434)

" N = N↑ +N↓: total number of electrons,

" M = μB
N↑-N↓

N
: magnetization, average magnetic moment per electron.

The total  energy E = E0 +EU  of  the system sums up contributions from both the kinetic  (band)
energy E0 and the interaction energy EU

E0 +EU

N
=

1

2 χ
M2 -

U0 n

4 μB
2

M2 + const

=
n

4 μB
2

1

g(ϵF)
-U0 M2 + const

(435)
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The stability of the system relies on the sign of the quadratic coefficient in front of M2.

" When g(ϵF)-1 -U0 > 0, the energy minimum is at zero magnetization M = 0. ⇒ The electronic 
system is stable in the spin-balanced state ⇒ paramagnetic metal.

" When g(ϵF)-1 -U0 < 0, the system can lower its energy by keep increasing the magnetization M  
(until some higher-order effects set in to determine the saturation value of M). ⇒ The spin-
balanced electronic system is unstable towards spontaneous magnetization ⇒ ferromagnetic 
metal.

Stoner Criterion: the condition for itinerant ferromagnetism to develop in electronic systems is

U0 g(ϵF) > 1, (436)

i.e. the interaction must be repulsive and must be strong enough to overcome the kinetic energy
loss.

◼ Spin/Charge Density Wave

In  the  lattice  system,  electron  interactions  can  lead  to  formation  of  density  waves.  Consider
spin-1/2 electrons hopping on a 1D lattice, with on-site Hubbard interaction

H = H0 +Hint,

H0 = -t 
i


σ=↑,↓

ci+1σ
† ciσ + h.c.,

Hint = U 
i

ni↑ ni↓.

(437)

" At half filling, on average there is one electron per site (a site can at most host two electrons of 
↑ and ↓ spins). Without interaction, the system is in the metallic phase.

" When U > 0 (repulsive interaction), ↑ and ↓ spin electrons do not want to stay on the same site 
to avoid repulsive interaction ⇒ different spins will spontaneously occupy alternative sites ⇒ 
spin density wave (SDW).

" When U < 0 (attractive interaction), ↑ and ↓ spin electrons wants to stay on the same site to 
gain attractive interaction ⇒ electrons will spontaneously doubly occupy half of the sites and 
empty the other half alternatively ⇒ charge density wave (CDW).

" Both SDW/CDW order spontaneously breaks the lattice translation symmetry and doubles 
the primitive unit cell.

To model the density wave state, consider a variational state as the ground state of a mean-field
Hamiltonian
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To model the density wave state, consider a variational state as the ground state of a mean-field
Hamiltonian

HMF = -
u

2

i

()i+1〉 〈i* + h.c.) - v 
i

(-1)i )i〉 〈i*. (438)

" u - hopping strength of the mean-field model, set to u = 1 in the end (HMF can always be 
rescaled by an overall factor without affecting the variational ground state). 

" v - stagger potential, serves as the variational parameter, controls the ordering strength.

Take the two-site unit-cell, transform to the momentum space

)k,A〉 = L-1/2 
i∈A

ⅇⅈ k xi )i〉,

)k,B〉 = L-1/2 
i∈B

ⅇⅈ k xi )i〉,
(439)

" A sublattice: i is even, B sublattice: i is odd. 

" L - number of unit cell (not using N  to avoid confusion with the total electron number).

" Site coordinate xi = i (unit cell volume = 2).

" First Brillouin zone: k ∈ [-π / 2, π / 2).

Focus on one spin species, the mean-field Hamiltonian reads

HMF = -
k

(u cos k )k,A〉 〈k,B* + h.c.) - v 
k

()k,A〉 〈k,A* - )k,B〉 〈k,B*), (440)

or in matrix representation as

H ≏⊕
k

Hk, Hk ≏ -
v u cos k

u cos k -v (441)

" Band dispersion

ϵk,± = ± (u cos k)2 + v2 (442)

The stagger potential v opens a gap, splitting spectrum into two bands. Half-filling the elec-
tronic system ⇒ fully occupies the lower band.

Total mean-field energy for the spin species (at T = 0)

〈HMF〉 = 
k∈BZ

ϵk,- = - 
k∈BZ

(u cos k)2 + v2

= -L 
-π/2

π/2 ⅆk

π
(u cos k)2 + v2 .

(443)

" Define the expected bonding strength (for single spin species)

γ = 2 ci+1
† ci + h.c., (444)

It can be evaluated from


∂HMF

∂u

u=1

= -L γ, (445)
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therefore

γ = 
-π/2

π/2 ⅆk

π

cos2 k

cos2 k + v2
. (446)
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0.0
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0.6

v

γ

" Define the expected density imbalance (for single spin species)

δ = 〈nA〉 - 〈nB〉. (447)

It can be evaluated from


∂HMF

∂v

u=1

= -L δ, (448)

therefore

δ = 
-π/2

π/2 ⅆk

π

v

cos2 k + v2
. (449)
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-1.0
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0.0
0.5
1.0

v

δ

Given that 〈nA〉 + 〈nB〉 = 1 (filling one band ⇔ one fermion per unit cell),

〈nA〉 =
1+ δ

2
, 〈nB〉 =

1- δ

2
. (450)

With these preparations,

" The expectation energy for the SDW state is

〈H 〉

L
= -2 t γ +U (2 〈nA〉 〈nB〉)

= -2 t γ +
U

2
1- δ2,

(451)

which has non-trivial minimum at v ≠ 0 when U > 0.
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v

〈H
〉/

(t
L)

U / t = 1

" The energy minimum is achieved at ∂v 〈H 〉 = 0 (excluding the v = 0 solution), which is given 
by the mean-field equation

1-
U

2 t

-π/2

π/2 ⅆk

π

1

cos2 k + v2
= 0. (452)

Derive Eq. (452).Exc
16

" For small U / t (hence small v) the equation can be approximated by

1-
U

2 t

2

π
ln

4

)v*
= 0, (459)

whose solution is 

)v* = 4 exp -
t π

U
. (460)

The SDW gap )v* opens with the repulsive interaction U  non-perturbatively.

-1 0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8

U / (t π)

)v
*/

4

" Correspondingly, the SDW order parameter δ is also induced non-perturbatively

)δ* =
t

2 U
exp -

t π

U
. (461)

" The expectation energy for the CDW state is
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〈H 〉

L
= -2 t γ +U 〈nA〉2 + 〈nB〉2

= -2 t γ +
U

2
1+ δ2,

(462)

which has non-trivial minimum at v ≠ 0 when U < 0.
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-1.78
-1.77
-1.76
-1.75
-1.74

v

〈H
〉/

(t
L)

U / t = -1

The energy minimum is achieved at ∂v 〈H 〉 = 0 (excluding the v = 0 solution), which is given by 
the mean-field equation

1-
(-U )

2 t

-π/2

π/2 ⅆk

π

1

cos2 k + v2
= 0. (463)

" For small U / t (hence small v) the equation can be approximated by

1-
(-U )

2 t

2

π
ln

4

)v*
= 0, (464)

whose solution is 

)v* = 4 exp -
t π

(-U )
. (465)

The CDW gap )v* opens with the attractive interaction (-U ) non-perturbatively.

-5 -4 -3 -2 -1 0 1
0.0
0.2
0.4
0.6
0.8

U / (t π)

)v
*/

4

" Correspondingly, the CDW order parameter δ is also induced non-perturbatively.

)δ* =
t

2 (-U )
exp -

t π

(-U )
. (466)

In conclusion, the 1D (half-filled) metallic state is unstable under interaction. Infinitesimal interac-
tion (no matter repulsive or attractive) will trigger the development of density wave order that
spontaneously  breaks  the  lattice  translation  symmetry.  Its  consequence  can  be  observed  by
scattering experiments, that new satellite peaks will appear due to the scattering with spin/charge
modulations.
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The same phenomenon also happens in higher dimension, when the Fermi surface is nested. 

" For example, half-filled square lattice hopping model has a square-shaped Fermi surface, where 
parallel edges coincide when shifted by the nesting momentum Q.

Q

Q

-π 0 π
-π

0

π

kx

k y

" The phenomenon of two finite segments of the Fermi surface are connected by the same 
moment shift is called Fermi surface nesting. In this case, the Fermi surface has an insta-
bility towards SDW/CDW ordering under interaction. The density wave vector is set by the 
nesting momentum.

" Density wave order generally leads to gap opening on the Fermi surface. At the low tempera-
ture limit (T = 0), the gap size Δ scales with interaction strength U  as

Δ ~ exp -
1

2 U g(ϵF)
, (467)

where g(ϵF) is the Fermi surface density of state.
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