
140B Statistical Physics
Part 1. Statistical Ensembles

Information Theory

◼ Probability Theory

◼ Why Information Theory?

We often think of physics as the quest of the ultimate truth of our universe, but is it really 
the case?

 Both humans and artificial intelligence (AI) face a fundamental limitation: our computa-
tional power (the ability to process information) is finite.

How do we use this limited computational power to comprehend an infinite universe? 

This is where Statistical Mechanics (StatMech) emerges,

 not with a thirst for exhaustive knowledge, 

 but with a strategy of selective ignorance.

Unlike other branches of physics that strive to know more, StatMech plays a different game: it 
focuses on what we can afford to forget! 

 It teaches us to disregard as many details as possible, concentrating our limited computational 
power on the most crucial information. 

 This seemingly passive approach is our most powerful tool to understand many-body sys-
tems, allowing us to unearth the patterns and regularities hidden behind the world of uncer-
tainty and randomness.

 In some sense, thermodynamics is the dynamics of ignorance (i.e. lack of information, i.e. 
entropy). 

This is why our journey of StatMech will start with information theory.

◼ Random Variable

In statistical physics, a system can take different states at random:

 The state of a spin (a classical bit): s = ↑, ↓ . 

 The state of a classical particle: (x, p), x ∈ 3 - position, p ∈ 3 - momentum.

 The state of a quantum harmonic oscillator: n ∈  - energy level.



 The state of an image: x ∈ W×H×3 - RGB values of each pixel in a W ×H  image.

Message: the state variable does not need to be a number, it can be as a vector, a tensor, or a 
field.

The mathematical language to describe a system is a random variable X , which is a vari-
able that can take random values x in a set  = {x1, x2,…} of all possible values.
Question: if X = a random image of dog, what are its possible states (values)?

◼ Probability

Each random variable X also comes with an assignment of a probability p(x) to each 
value x ∈ , quantifying the degree of belief or certainty to observe X taking on the value x.

 Probability assignment describes our current state of knowledge about the random variable. 
(It can be subjective.)

 The probability assignment will be updated, if our knowledge is changed by observations 
(providing new evidence).

Example:

Tossing a coin. x = head, tail.

 Prior probability before observation

x head tail

p(x) 1
2

1
2

(1)

 Posterior probability after observing head up.

x head tail
p(x) 1 0 (2)

Observation removes uncertainty and provides information.
Properties:

 Positivity:

p(x) ≥ 0. (3)

 Normalization:
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

x∈

p(x) = 1.
(4)

◼ Expectation Value

The expectation value (mean, average, first-moment) of a random variable X :

〈x〉 = [X] = 

x∈

x p(x).
(5)

Expectation value also can be defined for a function of the random variable f (X),

〈f (x)〉 = [f (X)] = 

x∈

f (x) p(x).
(6)

Properties:

 Double expectation

[[X]] = [X]. (7)

 Linearity (for two random variables X and Y  and a constant α)

[X +Y ] = [X] + [Y ],

[αX] = α [X].
(8)

More generally, for multiple random variables Xi (i = 1, 2,…) linearly combined together,



i

αi Xi = 

i

αi [Xi]. (9)

◼ Variance

The variance of a random variable X is the expectation of the squared deviation of X from 

its mean [X].

var(X) = (X - [X])2 = x2- 〈x〉2. (10)

It is a measure of fluctuation, i.e. how far the random variable is spread out from its average.

 x2 is the second-moment of X

x2 = 

x∈

x2 p(x).
(11)

 Positivity: var x ≥ 0 (because (X - [X])2  0).

The square root of variance defines the standard deviation

std(X) = var(X) = x2- 〈x〉2 . (12)
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Standard deviation measures the amount of fluctuation in linear scale of the random variable 
(i.e. std(αX) = α std(X) for any constant α).

◼ Information and Entropy

◼ Information

Answering every independent yes-or-no question provides 1 bit of information.
Example: Binary pooled testing

Among eight individuals, there is one (and only one) contracted COVID-19. How many tests are 
needed to identify the COVID-19 positive individual?

 Sample collection (encoding scheme)

1 2 3 4 5 6 7 8

 Test result analysis (decoding scheme)

- + - + - + - +

- + - +

- +

1 2 3 4 5 6 7 8

? ? ? ?

? ?

?

In a binary search, answering n independent yes-or-no questions will:

 Identify a unique outcome out of 2n equally-likely possibilities,

 Collapse the probability from p = 
1
2

n
 to p = 1 for the observed outcome,

 Provide n bits of information:

p =
1

2

n

 n = - log2 p = -
log p

log 2
. (13)

log 2 = 1 bit is treated as an information unit.

The amount of information I  gained from the observation of a probability p outcome is

I = - log p. (for a particular outcome) (14)

Example: average information

Observing a random variable X with the following (prior) probability
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x a b c d

p(x) 1
2
1
4
1
8
1
8
. (15)

 Information gain can be different for different observation outcomes

I (a) = - log(1 / 2) = log 2 = 1 bit,

I (b) = - log(1 / 4) = 2 log 2 = 2 bit,

I (c) = - log(1 / 8) = 3 log 2 = 3 bit,

I (d) = - log(1 / 8) = 3 log 2 = 3 bit.

(16)

 However, different outcome happens with different probability . What is average amount of 
information that we can obtain from observing X (regardless of its outcome)?

I (X) = I (a) p(a) + I (b) p(b) + I (c) p(c) + I (d) p(d)

= 1×
1

2
+ 2×

1

4
+ 3×

1

8
+ 3×

1

8
bit

= 1.75 bit.

(17)

In conclusion, given a random variable X , the expected information gained from a full observa-
tion of X is

I (X) = -〈log p(x)〉 = -

x∈

p(x) log p(x).
(18)

◼ Entropy

The entropy measures the uncertainty (lack of information, ignorance) remained in a 
random variable X , determined by the probability distribution p(x),

S(X) = -

x∈

p(x) log p(x).
(19)

 Entropy is always non-negative (follows from 0 ≤ p(x) ≤ 1)

S(X) ≥ 0. (20)

 S(X) = 0 means the value of X is known for certain (no randomness).

 Large S(X) indicates large uncertainty in X .

 Entropy can be changed by observation, as observation can remove/reduce uncertainty from a 
random variable.

Example:

 A binary random variable X (with  = {false, true})
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p(false) = 1- p,

p(true) = p,
(21)

where 0 ≤ p ≤ 1. Entropy of X

S(X) = -p log p - (1- p) log (1- p). (22)

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

p

S
(X

)
[b
it
]

 S(X) = 0 when p = 0 (X = false for sure) or p = 1 (X = true for sure).

 S(X) is maximized at p = 1 / 2, where X is most uncertain. The maximum entropy of a 
binary random variable is 1 bit.

◻ The Unit of Entropy

In statistical physics, the thermal entropy (heat-temperature ratio) is defined with an addi-
tional factor kB,

S(X) = -kB 

x∈

p(x) log p(x).
(23)

kB = 1.38065 × 10-23J/K is the Boltzmann constant, a conversion constant between the temper-
ature unit and the energy unit.

 In natural units (Planck units), kB = ℏ = c = G = 1.

Field of physics const. appeared in
Statistical mechanics kB E = kB T
Quantummechanics ℏ E = ℏ ω

Special relativity c E = c p

General relativity G E = -G M m
r

Fundamental constants are introduced to covert everything to energy.

◻ The Epistemological Nature of Entropy

Imagine a box partitioned into two sections. Each half have roughly the same amount of gray 
balls all bouncing around. [1]
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Ruben Verresen. Does entropy depend on observer? Physics StackExchange.[1]

 Remove, wait, and re-insert the partition - not much changed - there has been no increase of 
entropy:

Δ S = 0. (24)

 However, it turns out we were color blind. The balls are red and green, and initially all red 
(green) balls are on the left (right). Mixing will increase the entropy by (1 bit for each ball)

Δ S = N log 2. (25)

Which statement is correct?

 Both are correct.

 Entropy is not a property of the physical system. It depends on what we can (or choose to) 
measure, and how much details we are able (or willing) to look into. 

 Information can be used to extract work.

 Replace the partition with a semi-permeable membrane that only allows red balls to pass 
through (i.e., the membrane is not color-blind). It will experience an imbalanced pressure 
from the green side, known as the osmotic pressure, which can be used to do work.

 To us, as color-blind observers, this seems to violate the second law of thermody-
namics, that it is impossible to extract work from a maximal entropy system.

 However, observing such a work done would force us to reconsider our limitations, and to 
acknowledge that there must be some underlying difference among the balls, even if we 
cannot directly perceive it!

◼ Statistical Inference

◼ Maximum Entropy Estimation

Maximum entropy (MaxEnt) estimation is a cornerstone in the realm of statistical 
inference, offering a principle for estimating probability distributions of random variables. [2]

The probability distribution of a random variable X should be assigned to 
maximize the entropy of X , within the bounds of our existing knowledge 
about X.
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 Entropy serves as a metric for our ignorance. By maximizing entropy, we are maximizing 
our ignorance in a controlled way. 

 We should be honest about our ignorance. MaxEnt insists that our probabilistic beliefs should 
be calibrated such that they do not pretend a level of knowledge that exceeds what our evi-
dence or hypotheses justify.
E. T. Jaynes. Why do we Stand on Maximum Entropy. https://bayes.wustl.edu/etj/articles/s-
tand.on.entropy.pdf

[2]

Example: uniform distribution

Consider a random variable X with Ω possible values. Without further assumptions, the max-
imum entropy probability distribution is the uniform (equal probability) distribution:

∀ x ∈  : p(x) =
1

Ω
, (26)

which has entropy

S(X) = logΩ. (27)

Prove that the equal probability distribution is maximal entropy.Exc
1

◼ Gibbs Distribution

Let X be a random variable, with constraints on the expectation values for a series of func-
tions of x: f1(x), f2(x), …

〈fa(x)〉 = 

x∈

fa(x) p(x), (28)

the MaxEnt estimation can be formulated as a constrained optimization problem:

max
p(x)

S(X) = -

x∈

p(x) log p(x),

s.t. ∀ a :
x∈

fa(x) p(x) = 〈fa(x)〉.
(29)

the optimal probability distribution is the Gibbs distribution [3]

p(x) =
1

Z[λ]
exp -

a

λa fa(x) , (30)

Use the Lagrangian multiplier method to show that Eq. (30) is the optimal solution of 
Eq. (29).

Exc
2

E. T. Jaynes. Information Theory and Statistical Mechanics. https://bayes.wustl.edu/etj/arti-
cles/theory.1.pdf

[3]
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 p(x) takes an exponential form, where the exponent is a linear combination of all constraint 
functions fa(x) by corresponding Lagrangian multipliers λa

p(x) ∝ exp -

a

λa fa(x) . (31)

 Z[λ] is called the partition function, 

Z[λ] = 

x∈

exp -

a

λa fa(x) , (32)

serving as the normalization factor to ensure ∑x∈ p(x) = 1.

 λa are Lagrangian multipliers, which should be determined by solving the corresponding con-
straint equation

-
∂

∂λa
log Z [λ] = 〈fa(x)〉. (33)

Derive Eq. (33).Exc
3

 The entropy of the optimal distribution Eq. (30) is

S(X) = log Z [λ] +

a

λa 〈fa(x)〉

= 1-

a

∂

∂ log λa
log Z [λ],

(34)

which has been maximal under the constraints of 〈fa(x)〉.

Derive Eq. (34).Exc
4

Consider a six-sided dice (with face numbered 1 to 6). However, the dice may not be 
fair. You are given the knowledge that the expectation value of a roll is 4.5. Your 
task is to determine the probability distribution of outcome numbers using the max-
imal entropy estimation. 
(i) Define the random variable in the problem. Given its expectation value, formulate 
the constraint for the probabilities.
(ii) Use the maximal entropy principle to set up the constrained optimization 
problem. Solve the problem by the Lagrangian multiplier method or by a computer 
program. 
(iii) Make a table of the probability distributions you found (numerical values), like 
the following:
x 1 2 3 4 5 6
p(x)      

.

HW
1
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Statistical Ensembles

◼Microcanonical Ensemble

◼ Probability Distribution

The microcanonical ensemble describes isolated (closed) systems, with fixed energy E 

and number of particles N .

 All accessible microstates x ∈ E,N  of the system have the same energy E and particle 
number N . The ensemble of all such systems belongs to the same macrostate labeled by 
(E, N ).

 Without further constraints, the MaxEnt estimation asserts that the probability distribution 
is uniform, i.e., every microstate is equally likely

p(x) =
1

Ω(E, N )
, (35)

where

 Ω(E, N ) is the number of microstates in E,N  (the set of microstates with energy E and 
particle number N),

Ω(E, N ) = 

x∈E,N

1.
(36)

In microcanonical ensemble, Ω(E, N ) serves the role of the partition function.

◼ Thermodynamics

The entropy is given by [recall the entropy formula Eq. (34)] 

S(E, N ) = logΩ(E, N ). (37)
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 The entropy function enables us to define temperature T and chemical potential μ 
through its derivatives, [accept these definitions as historical conventions for now]

∂S

∂E N
=
1

T
,

∂S

∂N E
= -

μ

T
.

(38)

 In differential form,

S =
1

T
E -

μ

T
N , (39)

which can be written in a more familiar form as the thermodynamic identity for energy

E = T S + μ N . (40)

 This is also known as the first law of thermodynamics, which states that the energy 
change E is a sum of heat T S and work μ N .

 The conjugate pair (μ, N ) can be replace by other pairs in other thermodynamic problems, 
but the underlying principles are the same. [See the section Conjugate Pairs of Variables 
for more examples.]

◻ Equilibrium Condition

Why are temperature and chemical potential defined in this way (as in Eq. (38))? This has to 
do with what we mean by thermal and chemical equilibrium.

Equilibrium: probability distribution does not evolve in time.

Consider two initially isolated systems.

 The probability to observe them in microstates (x1, x2) is

p0(x1, x2) = p(x1) p(x2). (41)

 Imaging bringing the two systems in contact for some time t. They jointly evolve into new 

microstates:

x1 x2 →
t x1

′ x2
′

Assuming the time evolution is deterministic, the probability to observe (x1′ , x2′ ) after the 
contact is

pt(x1
′ , x2′ ) = p0(x1, x2) = p(x1) p(x2). (42)

 If the two systems were in equilibrium, their joint probability distribution should be time 
independent, meaning 
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pt(x1
′ , x2′ ) = p0(x1′ , x2′ ) = p(x1′ ) p(x2′ ). (43)

So the equilibrium condition (at the probability level) is

p(x1) p(x2) = p(x1
′ ) p(x2

′ ), (44)

for any (x1′ , x2′ ) related to (x1, x2) by time evolution.

What is its implication for microcanonical ensembles?

For microcanonical ensembles, p(x) only depends on the energy E and particle number N  of 
the microstate x

p(x) =
1

Ω(E, N )
. (45)

x1 x2

E1, N1 E2, N2
→
t

x1
′ x2

′

E1
′ , N1′ E2

′ , N2′

The equilibrium condition Eq. (44) implies

1

Ω(E1, N1)

1

Ω(E2, N2)
=

1

Ω(E1
′ , N1′)

1

Ω(E2
′ , N2′)

, (46)

Taking logarithm on both side, noting S = logΩ, Eq. (46) becomes

S(E1, N1) + S(E2, N2) = S(E1′ , N1′) + S(E2′ , N2′), (47)

meaning that the total entropy will not evolve in time, if two systems have reached equilib-
rium. Note that the energy and particle number are also time invariant by conservation laws,

E1 +E2 = E1
′ +E2

′ ,

N1 +N2 = N1
′ +N2

′.
(48)

These can be summarized in differential forms as (under infinitesimal evolution of time  t)

E1 + E2 = 0,

N1 + N2 = 0,

S(E1, N1) + S(E2, N2)

=
∂S

∂E1 N1

E1 +
∂S

∂N1 E1

N1 +
∂S

∂E2 N2

E2 +
∂S

∂N2 E2

N2

= 0.

(49)

Result in two equilibrium conditions (at the thermodynamic level)

Derive the following two equilibrium conditions from Eq. (49).Exc
5

 The thermal equilibrium condition
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1

T1
=

∂S

∂E1 N1

=
∂S

∂E2 N2

=
1

T2
, (50)

or equivalently

T1 = T2, (51)

which defines what should be called temperature.

 The chemical equilibrium condition

-
μ1

T1
=

∂S

∂N1 E1

=
∂S

∂N2 E2

= -
μ2

T2
, (52)

or equivalently (assuming T1 = T2 is already achieved)

μ1 = μ2, (53)

which defines what should be called chemical potential.

◼ Canonical Ensemble

◼ Probability Distribution

The canonical ensemble describes isothermal systems (thermally open and particle-wise 
closed), in thermal equilibrium with a heat bath, with fixed temperature T and number of parti-
cles N .

T , N

 Microstates x ∈ N  of the system still have the same particle number N , but can take all 
different energies. 

 An energy function E(x) is therefore introduced to evaluate the energy associated with 
each state x.

 One can still talk about the energy expectation value for the ensemble

E = 〈E(x)〉 = 

x∈N

E(x) p(x).
(54)

Given temperature T , the ensemble is expected to have an energy expectation value 〈E(x)〉 

StatisticalEnsembles.nb     13



that matches the macroscopic energy E.

 Given the energy constraint 〈E(x)〉 = E, the MaxEnt estimation asserts that the probability 
distribution should be [recall Eq. (30)]

p(x) =
1

Z (β, N )
-β E(x), (55)

where

 The partition function Z (β, N ) is given by

Z (β, N ) = 

x∈N

-β E(x).
(56)

 Originally introduced as a Lagrangian multiplier, β is found to be related to the tempera-
ture T by (assuming kB = 1)

β =
1

T
, (57)

so β is also called the inverse temperature.

◻ Lagrangian Multipliers

The Lagrangian multiplier β was introduced to enforce the energy constraint 〈E(x)〉 = E, so it 
should be determined by solving the constraint equation, according to Eq. (33), 
-∂λa log Z [λ] = 〈fa〉,

E = -
∂ log Z

∂β N
. (58)

On the other hand, Eq. (34), S = log Z +∑a λa 〈fa〉, tells us how to compute entropy,

S = log Z + β E. (59)

Take the total derivative on both sides,

S = β E +
∂ log Z

∂N β

N . (60)

Derive Eq. (60) using Eq. (58).Exc
6

Compared with Eq. (39), which defines temperature and chemical potential,

S =
1

T
E -

μ

T
N , (61)

one concludes that
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β =
1

T
,

μ = -T
∂ log Z

∂N β

= -T
∂ log Z

∂N T
.

(62)

◼ Thermodynamics

The logarithm of partition function log Z defines the (Helmholtz) free energy,

F(T , N ) = -T log Z (1 /T , N ). (63)

 The free energy enables us to compute:

 Entropy

S = -
∂F

∂T N
, (64)

Derive Eq. (64).Exc
7

 Chemical potential

μ =
∂F

∂N T
. (65)

Derive Eq. (65).Exc
8

 In differential form,

F = -S T + μ N . (66)

This is the thermodynamic identity for free energy.
Moreover, the free energy is related to the energy by

F = E -T S. (67)

Derive Eq. (67) from Eq. (59).Exc
9

Conversely, the energy can be reconstructed from the free energy

E = F -T
∂F

∂T N
. (68)
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Statistical physics of a qubit. A qubit is a system with two states (labeled by 
x = 0, 1): a ground state of energy E(0) = 0, and an excited state of energy E(1) = ϵ 

(where ϵ > 0). Suppose the qubit is in thermal equilibrium with a heat bath at tempera-
ture T . (The number of particles can be treated as N = 1, and is not relevant to the 
problem.)
(i) Calculate the partition function Z in terms of ϵ and T = 1 / β. 
(ii) Derive the expression for the probabilities p(x) of finding the qubit in the ground 
state (x = 0) and the excited state (x = 1), respectively.
Let us compute the entropy S in two different ways: 
(iii) From the partition function Z , calculate the free energy F = -T log Z , and then 
obtain S = -∂F / ∂T . 
(iv) From the probability distribution p(x), calculate the entropy by definition 
S = -∑x p(x) log p(x). 
Compare the results obtained in (iii) and (iv) and show that they are the same.
(v) Plot the entropy S as a function of temperature T (taking ϵ = 1 as the energy 
unit), discuss the behavior at low and high temperatures.

HW
2

◼ Grand Canonical Ensemble

◼ Probability Distribution

The grand canonical ensemble describes open systems, in thermal and chemical equilib-
rium with a reservoir, at fixed temperature T and chemical potential μ.

T , μ

 Microstates x ∈  can take all possible states of different energies and particle numbers. 

 To evaluate the energy and particle number associated with a particular microstate x, the 
energy function E(x) and the particle number function N (x) are introduced 
respectively.

 The energy E and particle number N  of the macrostate refers to their expectation values 
in grand canonical ensemble
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E = 〈E(x)〉 = 

x∈

E(x) p(x),

N = 〈N (x)〉 = 

x∈

N (x) p(x).
(69)

 Given the energy constraint 〈E(x)〉 = E and the particle number constraint 〈N (x)〉 = N , 
the MaxEnt estimation asserts that the probability distribution should be [recall Eq. (30)]

p(x) =
1

ℨ(β, μ)
-β (E(x)-μN (x)), (70)

where

 The (grand) partition function ℨ(β, μ) is given by

ℨ(β, μ) = 

x∈

-β (E(x)-μN (x)).
(71)

 The Lagrangian multipliers are parameterized by the inverse temperature β = 1 /T and 
the chemical potential μ.

◻ Lagrangian Multipliers

To figure out the physical meaning of Lagrangian multipliers, first rewrite the partition func-
tion Eq. (71) as

ℨ(β, -γ / β) = 

x∈

-β E(x)-γN (x),
(72)

such that β and γ can be treated as independent Lagrangian multipliers. According to Eq. (33), 
-∂λa log Z [λ] = 〈fa〉, their corresponding constraint equations are

E = -
∂ logℨ

∂β γ

,

N = -
∂ logℨ

∂γ β

,
(73)

On the other hand, Eq. (34), S = log Z +∑a λa 〈fa〉, tells us how to compute entropy, 

S = logℨ+ βE + γN . (74)

Take the total derivative on both sides,

S = β E + γ N . (75)

Derive Eq. (75) using Eq. (73).Exc
10

Compared with Eq. (39), which defines temperature and chemical potential,
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S =
1

T
E -

μ

T
N , (76)

one concludes that

β =
1

T
,

γ = -
μ

T
,

(77)

which justify the parametrization of Lagrangian multipliers in Eq. (70) and Eq. (71).

◼ Thermodynamics

The logarithm of (grand) partition function log ℨ defines the (grand) free energy,

(T , μ) = -T logℨ(1 /T , μ). (78)

 Some textbook defines a similar concept, call the “grand potential”: Φ(T , μ) = -(T , μ).

 The (grand) free energy enables us to compute:

 Entropy

S = -
∂

∂T μ

, (79)

Derive Eq. (79).Exc
11

 Particle number

N = -
∂

∂μ T
, (80)

Derive Eq. (80).Exc
12

 In differential form,

 = -S T -N μ. (84)

This is the thermodynamic identity for (grand) free energy.
Moreover, the (grand) free energy is related to the energy by

 = E -T S - μN . (85)

Derive Eq. (85) from Eq. (74).Exc
13

Conversely, the energy can be reconstructed from the (grand) free energy.
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E =  -T
∂

∂T μ

- μ
∂

∂μ T
. (86)

◼ Summary

◼ Statistical Ensembles

Comparison of the three primary statistical ensembles:

Ensemble Microcanonical Canonical Grand Canonical
Microstates E,N ⊆ N ⊆ 

Macrostate (E, N ) (T , N ) (T , μ)

Probability p =
1
Ω

p =
1
Z
-β E p =

1
ℨ
-β (E-μN )

Partition function Ω = ∑1 Z = -β E ℨ = -β (E-μN )

Free energy none F = -T log Z  = -T logℨ

Entropy S = logΩ S = -
∂F
∂T


N

S = - 
∂

∂T

μ

Energy E E = F +T S E =  +T S + μN

Particle number N N N = -
∂

∂μ

T

Temperature T = 
∂E
∂S


N

T T

Chemical potential μ = 
∂E
∂N


S

μ = 
∂F
∂N


T

μ

Thermodynamics E = T S + μ N F = -S T + μ N  = -S T -N μ

◼ Conjugate Pair of Variables

In thermodynamics, a conjugate pair of variables is a pair of 

 Intensive variable (like T , μ) to be balanced at equilibrium,  

 Extensive variable (like E, N) to be transferred in order to reach the equilibrium,
such that they multiplies to an energy unit.

We have only focused on (T , S) and (μ, N ) pairs in the above discussion. However, the prin-
ciple of statistical mechanics can be applied to much broader systems:

Process / System
Conjugate pair of variables Contribution

Intensive variable Extensive variable to energy (E)

Heat transfer Temperature (T ) Entropy (S) +T S

Particle transfer Chemical potential (μ) Particle number (N ) +μ N

Charge transfer Electric potential (ℰ) Charge (Q) +ℰ Q
Gas, Liquid Pressure (P) Volume (V ) -P V
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Membrane Surface tension (γ) Area (A) -γ A

Elastic material Stree tensor (σ) Strain tensor (ϵ) +Tr σ  ϵ

Dielectric material Electric field (D) Electric polarization (P) -
1
ε
D · P

Magnetic material Magnetic field (B) Magnetization (M ) -B · M

Rotating galaxy Angular velocity (ω) Angular momentum (L) +ω L

This flexibility allows for a comprehensive modeling of a wide range of physical phenomena. 

For example, we want to model a system of

☑ Gas (-P V ),
with

☑ Heat transfer (+T S),

☑ Particle transfer (+μ N).

 The thermodynamics is described by

E = -P V +T S + μ N , (87)

or, in terms of free energies,

F = -P V - S T + μ N ,

 = -P V - S T -N μ.
(88)

 This enables us to write done thermodynamic identities, such as

P = -
∂

∂V T ,μ
,

S = -
∂

∂T V ,μ
,

N = -
∂

∂μ V ,T
.

(89)
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