
140B Statistical Physics
Part 2. Quantum Gases

Thermal Quantum Gases

◼ Bosons and Fermions

◼ Quantum Many-Body System

Imagine our university as a quantum many-body system, where

 Each person represents a particle,

 Each role they take (be it a student, professor, staff, or service personnel) is akin to a 
quantum state.

 Each role describes a person’s social functionality, just as each quantum state describes a 
particle’s physical properties, such as momentum, spin, charge, color, flavor, etc.

Each particle occupies a quantum state. (like each person takes a role)

 The occupation number nα = 0, 1, 2,… represents the number of particles occupying the 
αth quantum state (denoted as α〉). (like the number of people in each role)

 Each quantum state α〉 also has an associated energy ϵα -- the cost to keep a particle in the 
state. (like each role in a university comes with a salary -- the cost to keep a person in their 
position)

◼ Single-Particle v.s. Many-Body State

It is important to distinguish quantum states at two different levels:

 Single-particle state: the state or mode of a particle (like the role of a person), denoted as 
α〉 (with α = 1, 2, 3,… being the mode index).

 Many-body state: the state of a system of particles (like the role of an institute), denoted 
as n〉 with

n := {nα ∈  α = 1, 2, 3…}, (1)

which is an integer vector that encodes occupation numbers on all available single-particle 
states α〉.

The many-body state n〉 serves as the microstate of the quantum system in the statistical 
mechanics context, for which we can define:



 The total number of particles in the system (like the total number of people in our univer-
sity) is

N (n) = 

α

nα. (2)

 The total energy of the system (like the total salary expenditure of our university) is

E(n) = 

α

ϵα nα. (3)

[Note: to differentiate the two energies E and ϵα, we often call E the many-body energy, 
and ϵα the single-particle energy.]

◼ Identical Particles

In the quantum world, particles can be made identical, such that they can not be distin-
guished from one another. (This is akin to a scenario where Personal Identifiable Information 
(PII), like names or IDs, is protected and kept confidential. In this case, we can only talk about
how many students are there in a class without revealing who they are.) 

Using the math language:

 For distinguishable particles, a two-particle system can be describe by the many-body 
quantum state α〉 ⊗ β〉, where the 1st particle is in single-particle state α〉 and the 2nd in β〉.

 For identical particles, many-body states like α〉 ⊗ β〉 and β〉 ⊗ α〉 are indistinguishable:
α〉 ⊗ β〉 β〉 ⊗ α〉

the 1st particle in α〉
the 2nd particle in β〉

the 1st particle in β〉
the 2nd particle in α〉

↘ ↙

there is one particle in α〉, and another particle in β〉
1α 1β〉

The only legitimate description is 1α1β〉, as an equal-weight linear combination of α〉 ⊗ β〉 

and β〉 ⊗ α〉. But there are still two possible ways to combine them:

 Symmetric combination  bosons

1α1β〉B =
1

2
(α〉 ⊗ β〉+ β〉 ⊗ α〉), (4)

 Anti-symmetric combination  fermions

1α1β〉F =
1

2
(α〉 ⊗ β〉- β〉 ⊗ α〉). (5)

What if we try to bring both particles to the α〉 state?
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 For bosons, 2α〉B is still a meaningful quantum state, with the state norm enhanced by 2
due to a constructive interference:

1

2
(α〉 ⊗ α〉+ α〉 ⊗ α〉) = 2 α〉 ⊗ α〉 = 2 2α〉B. (6)

Boson enhancement factor: the probability to transfer a boson to a state that has already 
been occupied by n bosons will get enhanced by a factor of n + 1. 
 Bosons like to stay in the same state (exhibiting an extroverted personality).

 For fermions, the quantum state vanishes due to destructive interference. 

1

2
(α〉 ⊗ α〉- α〉 ⊗ α〉) = 0. (7)

Pauli exclusion principle: two (or more) fermions can not occupy the same state simultane-
ously. 
 Fermions hate to stay in the same state (exhibiting an introverted personality).

This leads to different sets of possible values that the occupation number nα can take:

nα = 
0, 1, 2,… for bosons,
0, 1. for fermions, (8)

which results in different thermodynamic behaviors between bosons and fermions.

◼ Examples of Bosons and Fermions

 Elementary particles (the Standard Model). 
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 Fermions are of half-integer spins.

 Bosons are of integer spins.
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 Inside an atom (7Li isotope):

 Rules (due to the multiplication rule of fermion sign):

boson+ boson = boson,
fermion+ boson = fermion,
fermion+ fermion = boson.

(9)

 Total number of fermions in an atom

NF = Np +Nn +Ne =
neutral 2Np +Nn. (10)

 A neutral atom is a fermion (boson) iff the number of neutrons Nn is odd (even).

◼ Statistical Distributions

◼ What is Ideal Gas?

Ideal gas is a system of non-interacting (free) particles.

 Its energy is a simple sum of energies of particles in each single-particle mode 

E(n) = 

α

ϵα nα. (11)

In real gases or more complex systems (liquids, solids), there are interactions between 
particles.

 The energy function will contain higher-order interaction terms

E(n) = 

α

ϵα nα + 

αβ

ϵαβ nα nβ

two-body interaction

+ 

αβγ

ϵαβγ nα nβ nγ

three-body interaction

+…

(12)

 The interaction, say ϵαβ, is

 Attractive, if ϵαβ < 0: energy is reduced when particles attract each other. (like people in a 
cooperative environment will reduce operational cost)

 Repulsive, if ϵαβ > 0: energy is increased when particles repel each other. (like people in a 
confrontational environment will increase operational cost)
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 If the interaction is weak ϵαβ, ϵαβγ,… ≪ ϵα, the system can remain in the gas phase. If the 
interaction gets strong enough, the system may transition into liquid or solid phases.

These ideas applies to quantum particles. An ideal quantum gas refers to a system of non-
interacting (free) bosons or fermions.

◼ Grand Partition Function

The grand partition function is particularly convenient to study the statistical mechanics 
of quantum gases.

 Each microstate n〉 of a quantum many-body system is labeled by

n := {nα α = 1, 2,…}. (13)

 Following Eq. (3) and Eq. (2), the energy and particle number functions are

E(n) = 

α

ϵα nα, N (n) = 

α

nα. (14)

 The probability p(n) to observe the system in the microstate n〉 is

p(n) =
1

ℨ
-β(E(n)-μN (n)), (15)

where grand partition function ℨ is given by

ℨ = 

n
-β(E(n)-μN (n)).

(16)

Given that there is no interaction among single-particle states for ideal gas, the probability 
distribution p(n) can be factorized (meaning that the distribution of each nα is independent)

p(n) = 

α

p(nα), (17)

where

 The probability to observe nα particles in the single-particle state α〉 is

p(nα) =
1

ℨα

-β(ϵα-μ) nα. (18)

 With the single-mode grand partition function

ℨα = 

nα

-β(ϵα-μ) nα.
(19)

The full grand partition function is also factorized

ℨ = 

α

ℨα, (20)
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Derive Eq. (17 - 20) from Eq. (15, 16).Exc
1

Or written in the logarithm form

logℨ = 

α

logℨα. (21)

◻ Bosons

For bosons, nα = 0, 1, 2,… can take all natural numbers.

ℨα = 

nα=0

∞

-β(ϵα-μ) nα =
1

1- -β (ϵα-μ)
. (22)

Evaluate the summation in Eq. (22).Exc
2

Or written in the logarithm form 

logℨα = - log1- -β (ϵα-μ). (23)

Note: the partition function is only well-defined for β(ϵα - μ) > 0 (i.e. μ < ϵα).

◻ Fermions

For fermions, nα = 0, 1 has only two possibilities due to the Pauli exclusion principle.

ℨα = 

nα=0,1

-β(ϵα-μ) nα = 1+ -β (ϵα-μ).
(24)

Or written in the logarithm form 

logℨα = log1+ -β (ϵα-μ). (25)

◼ Bose-Einstein Distribution

Substitute the boson partition function ℨα in Eq. (22) into the probability distribution p(nα) 
in Eq. (18), 

p(nα) = 1- -β (ϵα-μ) -β (ϵα-μ) nα. (26)

 The distribution is tuned by a joint parameter β(ϵα - μ). 
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〈nα〉 = 0.58

0 2 4 6 8 10
0.0
0.2
0.4
0.6
0.8
1.0

nα

p
(n

α
)

β (ϵα - μ) = 1

Based on the probability distribution Eq. (26), the average boson number 〈nα〉 occupying the 
single-particle state α〉 is 

〈nα〉 = 

nα=0

∞

nα p(nα) =
1

 β (ϵα-μ) - 1
. (27)

Evaluate the summation in Eq. (27).Exc
3

This is also known as the Bose-Einstein distribution.

0 1 2 3 4 5
0
1
2
3
4
5

ϵα - μ

〈n
α
〉

T = 1

 The Bose-Einstein distribution is well-defined only for ϵα - μ > 0.

◼ Fermi-Dirac Distribution

Substitute the fermion partition function ℨα in Eq. (24) into the probability distribution p(nα) 
in Eq. (18), 

p(nα) =
-β (ϵα-μ) nα

1+ -β (ϵα-μ)
=

1
-β (ϵα-μ)+1

nα = 0,
1

 β (ϵα-μ)+1
nα = 1.

(28)

 The distribution is tuned by a joint parameter β(ϵα - μ).
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〈nα〉 = 0.50
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β (ϵα - μ) = 0

Based on the probability distribution Eq. (28), the average fermion number 〈nα〉 occupying 
the single-particle state α〉 is

〈nα〉 = 

nα=0,1

nα p(nα) =
1

 β (ϵα-μ) + 1
. (29)

This is also known as the Fermi-Dirac distribution.
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ϵα - μ

〈n
α
〉

T = 1

 The Fermi-Dirac distribution is applicable for any ϵα - μ ∈ .
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Imagine a hypothetical type of identical particles (neither boson nor fermion), with 
the defining property that its occupation number nα = 0, 1,…, nmax can only take 
values up to some integer nmax. 
(i) Calculate the grand partition function ℨα = ∑nα=0

nmax -β(ϵα-μ) nα for such hypothetical 
particles on a single-particle state α〉 of energy ϵα.
(ii) Construct the probability distribution p(nα) of the occupation number nα, and 
prove that the expectation value 〈nα〉 can be computed from the following derivative: 
〈nα〉 := ∑nα=0

nmax nα p(nα) = β-1 ∂μ logℨα. 
(iii) Use the derivative trick to compute 〈nα〉 based on the result of ℨα obtained in 
problem (i).
(iv) Compare the result with Eq. (27) and Eq. (29), and show that the hypothetical 
particles behave like bosons as nmax → ∞, and fermions as nmax = 1. 

-4 -2 0 2 4
0

1

2

3

4

ϵα - μ

〈n
α
〉

T = 1
nmax
1
2
3
5
∞

HW
1

◼ Maxwell-Boltzmann Distribution

Interestingly, the average occupation number 〈nα〉 assumes a unified form

〈nα〉 =
1

 β (ϵα-μ) - η
. (30)

where η denotes the fermion sign:

η = 
+1 for bosons,
-1 for fermions. (31)

The inverse temperature β = 1 /T is always a positive real number, and the chemical potential μ 
should obey:

 For bosons, the chemical potential μ can not exceed the lowest energy level (i.e. ∀ α : μ < ϵα).

 For fermions, there is not restriction on the chemical potential.

Is there a “classical limit” where bosons and fermions behave the same? -- Yes, this is the 
limit when the gas is dilute (i.e. N /V → 0).

 In the dilute limit, the average occupancy of each single-particle state is close to zero (com-
pare to 1), i.e. 〈nα〉 → 0 (such that N = ∑α 〈nα〉 is also small).
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 Based on Eq. (30), this limit is achieved when  β (ϵα-μ) → ∞, such that the fermion sign η in the 
denominator is negligible, and the average occupation number

〈nα〉 ≃  -β (ϵα-μ) (32)

will be close to zero.
This, Eq. (32), is known as the Maxwell-Boltzmann distribution.

0 1 2 3 4 5 6 7
0.001

0.010

0.100

1

10

β (ϵα - μ)

〈n
α
〉

Bose-Einstein
Fermi-Dirac
Maxwell-Boltzmann

There will be no distinction between Bose and Fermi gases in their dilute limit (also called the 
classical limit, as the quantum effect that distinguish bosons and fermions is no longer 
important).

◼ Energy and Particle Number

The average occupation number 〈nα〉 enables us to compute

 The average total energy (defined as E := ∑n E(n) p(n)): 

E = 

α

ϵα 〈nα〉 = 

α

ϵα

 β (ϵα-μ) - η
. (33)

 The average total particle number (defined as N := ∑n N (n) p(n)):

N = 

α

〈nα〉 = 

α

1

 β (ϵα-μ) - η
. (34)

The sign η depends on whether the particles are bosons (η = +1) or fermions (η = -1).

◼ Continuum Limit

◼ Particles in Free Space

So far, we have not explained what labels the single-particle state α〉 and what determines its 
energy ϵα.

Consider non-interacting particles in the free space (assuming translation symmetry), 
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energy eigenstates are labeled by momentum k (as a good quantum number) and spin σ

α = (k, σ), (35)

 Momentum k = (k1, k2,…, kD) is a D-dimensional vector for particles in D-dimensional space. 

L

L

k

(D = 2)

In quantum mechanics, particles are waves, and the momentum ki is set by the wave length λi 
via the De Broglie relation in the corresponding direction,

ki =
2 π

λi
=
2 πmi
L

(mi ∈ ), (36)

which must be quantized in a box of finite size L.

 The volume of the system (the box) will be

V = LD. (37)

 Spin σ labels the internal degrees of freedom of the particle. The number of spin states is 
called the spin degeneracy, denoted as gs.

 Electron (spin-1/2 fermion):

gs = 2. (38)

Two spin states: σ = ±1 / 2.

 Photon (spin-1 gauge boson):

gs = D - 1. (39)

(D - 1) spin (polarization) states: σ = ±1 for D = 3. The σ = 0 photon (longitudinal) photon 
is forbidden by the gauge invariance. 

 Phonon (spin-1 scalar boson):

gs = D. (40)

D spin (polarization) states: σ = 0, ±1 for D = 3.
Usually (without internal symmetry breaking), the energy ϵα = ϵk,σ does not depend on the 
spin degrees of freedom σ, so different spin states are degenerated in energy.

◼ Dispersion Relations

Dispersion relation tells us how the energy ϵk of a particle (or a wave) is related to its 
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momentum k.

 Non-relativistic particles (electrons in metal):

ϵk =
k2

2m
, (41)

with m - the inertial mass of the particle.

 Relativistic particles (photons, acoustic phonons, electrons in graphene):

ϵk = c k. (42)

with c - the limiting speed of the particle, e.g. the speed light/sound or fermi-velocity.

(In these expressions, we have set ℏ = 1).

◼ Density of States

Density of state (DOS) g(ϵ) counts the number of single-particle states per volume and per 
energy interval ϵ near the energy ϵ in the continuum limit, defined as the integration mea-
sure (weighting function) required to convert the state summation to an energy integration for 
any function f (ϵ):

∀ f : 
α

f (ϵα) = V  ϵ g(ϵ) f (ϵ). (43)

For example, we can use it to compute the energy E and particle number N  in integral forms 
(following Eq. (33) and Eq. (34))

E = V  ϵ
ϵ g(ϵ)

 β (ϵ-μ) - η
. (44)

N = V  ϵ
g(ϵ)

 β (ϵ-μ) - η
. (45)

Similar approach applies to many other thermodynamic properties whenever a state sum is to be 
evaluated.

◻ General Principle

Counting number of states in the momentum space:
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k1

k2
2 π
L

2 π
L

(D = 2 case)

 In this picture, each point corresponds to a state k,σ〉 in the momentum space with gs-fold 
spin degeneracy. The momentum is discretized according to Eq. (36).

 The continuum limit refers to the limit L → ∞, such that the states are densely distributed, 
forming a continuum.

 Consider a ball in the momentum space of radius k, its volume is

Ω = 
k<k

Dk

= 
0

k
AD kD-1 k

=
AD
D
kD,

(46)

where AD is the area of a (D - 1)-dimensional hypersphere of unit radius (in the D-dimensional 
space), given by

AD =
2 πD/2

Γ(D / 2)
, (47)

where Γ(n) = ∫0
∞xn-1 -x x is the Euler Gamma function.

D 1 2 3 4 5 6 7 8 9 10 …

AD 2 2 π 4 π 2 π2
8 π2

3
π3

16 π3

15
π4

3
32 π4

105
π5

12
…

 The number of states Νk in the ball of radius k is (approximately)

Νk = 

α

1 = gs 
k<k

1 = gs
Ω


2 π
L

D

=
gs AD V

(2 π)D D
kD. (48)

 On the other hand, we expect the DOS function g(ϵ) to be such that

Νk = 

α

1 = V 
0

ϵk

ϵ g(ϵ). (49)

Therefore, comparing Eq. (48) and Eq. (49), g(ϵ) should be given by
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g(ϵ) =
1

V

∂Νk

∂ϵk ϵk=ϵ

=
1

V

∂Νk

∂k

∂k

∂ϵk ϵk=ϵ

=
gs AD
(2 π)D

kD-1 ∂k

∂ϵk ϵk=ϵ

,
(50)

which is fully determined by the dispersion relation ϵk.

◻ Specific Examples

 For non-relativistic particles (with the inertial mass m)

g(ϵ) =
gs AD
2 (2 π)D

(2m)D/2 ϵD/2-1. (51)

Derive Eq. (51) given the dispersion relation Eq. (41).Exc
4

0.0
0.5
1.0
1.5
2.0

g
(ϵ
)

D = 1

0.0
0.5
1.0
1.5
2.0

g
(ϵ
)

D = 2

-1 0 1 2 3
0.0
0.5
1.0
1.5
2.0

ϵ

g
(ϵ
)

D = 3

 For relativistic particles (with the limiting speed c)

g(ϵ) =
gs AD
(2 π)D

c-D ϵD-1. (52)

Derive Eq. (51) given the dispersion relation Eq. (42).Exc
5
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(ϵ
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D = 2
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0.5
1.0
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ϵ

g
(ϵ
)

D = 3

In these examples, for particles in free space, the DOS always scales with the particle energy ϵ in 
a power-law manner. We might as well introduce a characteristic energy ϵ0 to express the 
DOS uniformly as

g(ϵ) =
Δ ϵΔ-1

ϵ0
Δ
. (53)

where the exponent

Δ = D / ζ > 0 (54)

depends on:

 the dimension of space D,

 the dynamical exponent ζ (such that ϵk ∼ kζ):

 ζ = 1 for relativistic particles with linear dispersion,

 ζ = 2 for non-relativistic particles with quadratic dispersion.
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System D ζ Δ

Electrons in metal 3 2 3/2
Electrons in graphene 2 1 2
Electrons in

field-effect transistors
2 2 1

Electrons in nanotube 1 2 1/2
Electrons on quantum

Hall insulator boundary
1 1 1

Phonons in solid 3 1 3
Atomic gas 3 2 3/2
Cold atoms in 2D optical trap 2 2 1

Eq. (53) is designed in such a way that the integration measure takes a simple form

g(ϵ) ϵ = 
ϵ

ϵ0

Δ

, (55)

assuming the single-particle energy ϵ ≥ 0 is non-negative. The energy scale ϵ0 depends on the 
kinetic model of the free particle,

1

ϵ0
Δ
=

gs
Γ(Δ/2+1)


1

2 π1/2 c

Δ

ζ = 1 (and Δ = D),
gs

Γ(Δ+1)

m
2 π

Δ

ζ = 2 (and Δ = D / 2).
(56)

Derive Eq. (56).Exc
6

◼ Thermodynamic Properties

◼ Free Energy

The free energy plays a central role in statistical mechanics, bridging the microscopic and 
macroscopic realms. It is defined by the logarithmic partition function

 = -T logℨ. (57)

 According to Eq. (21), for ideal gases, the free energy arises from the independent contribu-
tions of each single-particle mode.

 = -T

α

logℨα

= ηT V 
0

∞

ϵ g(ϵ) log1- η -β (ϵ-μ).
(58)

It will be convenient to introduce the fugacity

z = β μ = μ/T . (59)
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 For bosons: z ∈ (0, 1) (as μ < 0).

 For fermions: z ∈ (0, +∞).

Using the general form of the DOS g(ϵ) in Eq. (53), the free energy can be written as

 = -T V
T

ϵ0

Δ

ℐη
Δ+1(z), (60)

where ℐηs(z) is a dimensionless function of the fugacity z = μ/T , as defined by the following 
integral

ℐη
s(z) := 

0

∞

x
xs-1

z-1 x - η
. (61)

 η = ±1 is the fermion sign (+1 for bosons, -1 for fermions).

 s counts the total power of x (including x) in the numerator.

Derive and verify Eq. (60, 61).Exc
7

◻ Mathematical Properties of ℐη
s(z)

 Expression: ℐηs(z) can be expressed in terms of the Euler Gamma function Γ(s) and the polyloga-
rithm function Lis(z)

ℐη
s(z) =

1

η
Γ(s) Lis(η z), (62)

where Γ(s) and Lis(z) are defined by

Γ(s) = 
0

∞

xs-1 -x x,

Lis(z) = 

k=1

∞ zk

ks
.

(63)

Verify Eq. (62) given the definition Eq. (63).Exc
8

 Γ(s) = (s - 1)! can be expressed as a factorial. Therefore, it has an important property:

s Γ(s) = Γ(s + 1). (64)

 Graph: Behavior of ℐηs(z) for η = ±1.
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0 1 ∞

0

1

∞

z

ℐ
ηs
(z
)

Bosons
(η = +1)

Fermions
(η = -1)

 For bosons (η = +1): z ∈ (0, 1) and the integral function ℐ+
s (z) monotonically increases and 

stops (or diverges) at z = 1.

 For fermions (η = -1): z ∈ (0, +∞) and the integral function ℐ-
s (z) monotonically increases 

towards +∞ as z → +∞.

 When z → 0, ℐηs(z) for both bosons and fermions converges to the same linear behavior 
ℐη
s(z) ∝ z.

 Derivative: ℐηs(z) behaves like (log z)s / s under differentiation

z
∂ℐη

s(z)

∂z
≡
∂ℐη

s(z)

∂ log z
= (s - 1) ℐηs-1(z). (65)

Verify Eq. (65).Exc
9

◼ Free Energy Derivatives

As shown in Eq. (60), the (grand) free energy  is a function of V , T , μ (or z = μ/T), as 
illustrated by the following graph



V T

z

μ

It obeys the following thermodynamic identity

 = -P V - S T -N  μ, (66)

which enables us to compute the following thermodynamic quantities.

 Pressure

P = -
∂

∂V T ,μ
= T

T

ϵ0

Δ

ℐη
Δ+1(z). (67)
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 Entropy

S = -
∂

∂T V ,μ
= V

T

ϵ0

Δ

(Δ+ 1) ℐηΔ+1(z) -
Δ μ

T
ℐη
Δ(z) . (68)

Derive Eq. (68).Exc
10

 Particle number

N = -
∂

∂μ V ,T
= ΔV

T

ϵ0

Δ

ℐη
Δ(z). (69)

Derive Eq. (69).Exc
11

The variable dependence among these thermodynamic quantities is summarized by the following 
graph:

P S N

V T

z

μ

Based on these, the energy E can be reconstructed

E =  +T S + μN

= ΔT V
T

ϵ0

Δ

ℐη
Δ+1(z).

(70)

Derive Eq. (70).Exc
12

Comparing Eq. (67) and Eq. (70), we conclude that 

E = ΔP V , (71)

which holds under all conditions regardless of bosons or fermions. For example, in D = 3 dimen-
sional space,

 For gas of non-relativistic particles, E =
3
2
P V .

 For gas of relativistic particles, E = 3P V .
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Let us try a different way to compute the energy E and the particle number N  for 
the ideal quantum gas.
(i) Starting from Eq. (33) and Eq. (34), convert the state summation to energy integra-
tion, and prove that E and N  can be expressed as
E = V ∫0

∞
ϵ g(ϵ) ϵ

 β (ϵ-μ)-η
, 

N = V ∫0
∞
ϵ g(ϵ) 1

 β (ϵ-μ)-η
. 

(ii) Plugging in the density of state g(ϵ) in Eq. (53), manipulate the integrations to 
the standard from in Eq. (61), and show that the results match Eq. (70) and Eq. (69) 
.

HW
2

◼ Equation of State

The equation of state is an equation that relates the thermodynamic properties together, 
like pressure P, volume V , particle number N , and temperature T .

 A well-known example is the (classical) ideal gas law: 

P V = N T , (72)

where the Boltzmann constant has been set to kB = 1. However, it only describe the ideal gas 
in the classical limit (low density and high temperature).

 Comparing Eq. (67) and Eq. (69), we found the equation of state for ideal quantum gas 
(free bosons and fermions)

P V = keff N T , (73)

where the P V /N T ratio is a function of fugacity z = μ/T  only, denoted as

keff :=
P V

N T
=
ℐη
Δ+1(z)

Δ ℐη
Δ(z)

. (74)

It can be viewed as an effective Boltzmann constant (we will see that keff = 1 for ideal classical 
gas as z → 0).

◻ Dilute (Classical) Limit

In the dilute limit (the classical limit), we expand ℐηΔ(z) around z → 0 (or μ /T → -∞).

Dilute limit
0 1 ∞

0

1

∞

z

ℐ
ηs
(z
)

Bosons
(η = +1)

Fermions
(η = -1)
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ℐη
s(z) =

z→0
Γ(s) z +

η

2s
z2 +… . (75)

Verify Eq. (75).Exc
13

Using Eq. (75), around z → 0, keff and N  behaves as 

keff = 1-
η z

2Δ+1
+ ...,

N = V
T

ϵ0

Δ

Γ(Δ+ 1) z +….
(76)

Verify the expansions in Eq. (76).Exc
14

We can solve z in terms of N /V  and substitute the solution to keff, this gives the virial expan-
sion of the equation of state

P V

N T
= 1-

η

2Δ+1 Γ(Δ+ 1)

N

V

ϵ0

T

Δ

+… (77)

 The deviation from the ideal classical gas behavior (P V = N T) will be significant when 
(N /V ) (ϵ0 /T )Δ ≫ 1, i.e. when

 the temperature is low (T → 0),

 or the density is high (N /V → ∞).

 Bose statistics (η = +1) causes an decrease in pressure compare to the classical limit, as if 
there is an effective attraction between bosons.

0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0
1.5
2.0

T / ϵ0

P
/
ϵ 0

N /V = 1

 Fermi statistics (η = -1) causes an increase in pressure compare to the classical limit, as if 
there is an effective repulsion between fermions.
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◼ Isothermal Process

Isothermal (constant-temperature) process is the thermodynamic process where T and N  

are fixed, i.e. the system in quasi-equilibrium with a thermal bath (T = 0) and there is no 
particle exchange (N = 0).

Given a fixed particle number N , Eq. (67) and Eq. (69) tell us how to compute pressure P 

and volume V  as a function of temperature T and fugacity z

P(T , z) = T
T

ϵ0

Δ

ℐη
Δ+1(z),

V (T , z) = N Δ
T

ϵ0

Δ

ℐη
Δ(z)

-1

.

(78)

Fix T , and vary z, the point (V (T , z), P(T , z)) traces out a curve in the P-V  plane, called the 
isothermal curve. The system will move along the isothermal curve in the isothermal process.

 For bosons (η = +1), the isothermal curves are like
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ϵ 0

Δ = 1.5
T / ϵ0
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1.4
2.0
4.0
6.0

 For fermions (η = -1), the isothermal curves are like
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In the classical limit, isothermal curves follow P V = N T = const. However, as N /V → ∞ or 
T → 0, isothermal curves deviates from the classical behavior in distinct ways,

 Degenerated Bose gas: the curves flatten out at low volumes, suggesting transitions to 
Bose-Einstein condensates (BEC), where pressure cease to increase as more and more bosons 
condense to a zero-momentum state that does not contribute to pressure. 

 Degenerated Fermi gas: even at zero temperature, fermions can sustain a finite pressure, 
called the degeneracy pressure, due to the Pauli exclusion principle preventing fermions from 

occupying the same quantum state.

◼ Specific Heat

Specific heat is the amount of heat (per particle) required to change the temperature of a 
system. There are two types of specific heat for systems of fixed particle number:

 Isochoric (constant-volume) specific heat

cV =
T

N

∂S

∂T N ,V
. (79)

It can be computed by evaluating S as a function of T given N , V  fixed.

P S N

V T

z

μ

 Given N , V , input T .

 Solve for z from N (V , T , z) = N .

 Output S = S(V , T , z).

 Isobaric (constant-pressure) specific heat
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cP =
T

N

∂S

∂T N ,P
. (80)

It can be computed by evaluating S as a function of T given N , P fixed.

P S N

V T

z

μ

 Given N , P, input T .

 Solve for z from P(T , z) = P.

 Solve for V  from N (V , T , z) = N .

 Output S = S(V , T , z).

For Bose gas, their behaviors are like:
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T / ϵ0

c P

P = 1

For Fermi gas, their behaviors are like:
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◻ Dilute (Classical) Limit

In the dilute limit (the classical limit), we expand ℐηΔ(z) around z → 0 (or μ /T → -∞),

Dilute limit
0 1 ∞

0

1

∞

z

ℐ
ηs
(z
)

Bosons
(η = +1)

Fermions
(η = -1)

Using the expansion formula Eq. (75), we find

P = T
T

ϵ0

Δ

Γ(Δ+ 1) z +…, (81)

S = V
T

ϵ0

Δ

Γ(Δ+ 1) (1+ Δ- log z) z +…, (82)
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N = V
T

ϵ0

Δ

Γ(Δ+ 1) z +…. (83)

Verify the expansions in Eq. (81, 82, 83).Exc
15

 To compute the isochoric (constant volume) specific heat, N  and V  are held fixed. First solve 
z from Eq. (83),

z =
1

Γ(Δ+ 1)

N

V

ϵ0

T

Δ

, (84)

then substitute Eq. (84) to Eq. (82), to the leading order,

S = N (Δ logT + logV - logN ) + const. (85)

Derive Eq. (85).Exc
16

therefore, cV = (∂S / ∂ logT )N ,V N  is 

cV = Δ. (86)

 To compute the isobaric (constant pressure) specific heat, N  and P must be fixed. First solve 
z from Eq. (81),

z =
1

Γ(Δ+ 1)

P

T

ϵ0

T

Δ

, (87)

then substitute Eq. (87) to Eq. (82), to the leading order,

S = N ((Δ+ 1) logT - logP) + const. (88)

Derive Eq. (88).Exc
17

therefore, cP = (∂S / ∂ logT )N ,P N  is

cP = Δ+ 1. (89)

Following the same approach, one may also compute cVand cP to the next order in z,

cV = Δ+
η

2Δ+1 Γ(Δ- 1)

N

V

ϵ0

T

Δ

+…,

cP = Δ+ 1+
η (Δ+ 1)

2Δ+1 Γ(Δ)

P

T

ϵ0

T

Δ

+….
(90)

Derive Eq. (90).Exc
18

The relations like cP - cV = 1 and cP / cV = 1+ 1 / Δ are only valid in the dilute (classical) limit, 
which do not apply to quantum gases in general.
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◼ Adiabatic Process

Adiabatic process is the thermodynamic process where S and N  are fixed, i.e. no heat 
transfer (S = 0) and no particle exchange (N = 0).

The adiabatic process of ideal gas is described by

P V γ = const., (91)

where γ is the adiabatic exponent:

γ = 1+ 1 / Δ. (92)

Prove the statement Eq. (91, 92).Exc
19

It holds beyond the classical limit and applies to generic ideal quantum gases. For example, 
when Δ = 3 / 2, we have γ = 5 / 3 -- a familiar result for ideal gases.

◼ Summary

Bose gas Fermi gas Classical limit
Energy E = ΔP V ✓ ✓ ✓

Eq. of state P V = keff N T keff < 1 keff > 1 keff = 1
Specific heat cV ( ∼ TΔ)T→0 ( ∼ T )T→0 Δ

cP 0T→0 ( ∼ T )T→0 Δ+ 1
Isochoric V = const. ✓ ✓ ✓

Isobaric P = const. ✓ ✓ ✓

Isothermal P V = const. × × ✓

Adiabatic P V γ = const.
(γ = 1+ 1 / Δ)

✓ ✓ ✓

 In reality, gases are consist of quantum particles (either bosons or fermions) at the micro-
scopic level.  The classical gas is not real.

 However, in the dilute limit, both Bose and Fermi gases converge to a universal behavior 
described by the classical gas. Given z ∝ (N /V ) (ϵ0 /T )Δ [see Eq. (84)], the classical limit 
(z → 0) is characterized by

N

V

ϵ0

T

Δ

≪ 1. (93)

In the following, we will move away from the classical limit, and explore the intriguing realm of 
degenerated quantum gases.
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Degenerated Quantum Gases

◼ Degenerated Bose Gas

◼ Unsustainable Thermal Bosons

Let us now understand the elephant in the room: what happens to the Bose gas at low 

temperature?

Consider N  bosons in a volume V , recalling Eq. (45), the number density N /V  should be 
given by the following integral

N

V
= 

0

∞

ϵ
g(ϵ)

 β (ϵ-μ) - 1
. (94)

 g(ϵ) = Δ ϵΔ-1  ϵ0
Δ is the (per volume) density of states.

 As the temperature T = 1 / β lowers, the chemical potential μ (or the fugacity z = μ/T) will 
adjust to maintain the number density N /V  (say N /V = 1).
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z N /V
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However, the constraint μ < 0 (or z < 1) sets a limit for the adjustment.

 It is possible that the integral can not provide the required N /V , even if the chemical poten-
tial is tuned to μ = 0. To see this, we investigate the divergent behavior of the integrand near 
ϵ → 0,

N

V
∝ 

0

∞

ϵ
ϵΔ-1

 ϵ/T - 1
∼
ϵ→0 T 

0

... ϵ

ϵ2-Δ
. (95)

 If Δ > 1, the integral will converge (even if μ = 0), which can not provide the required N /V  

as T lowers to a certain point.

 If Δ ≤ 1, the integral can diverge (if μ = 0), which enables the adjustment of μ to reach the 
required N /V  no matter how low T is.

It seems that bosons will disappear at low temperature. Where do the “missing” bosons go?
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 The integral Eq. (94) only accounts for the thermal bosons (bosons occupying the excited 
states). 

 Due to the vanishing DOS as ϵ → 0, the bosons occupying the lowest-energy ground state
(ϵ = 0) was not taken into account.

To be more careful, the number of bosons should contain two parts

N = Nth +N0 (96)

 Nth: the thermal boson number, defined by the integral Eq. (94), whose result is given by 
Eq. (69),

Nth = ΔV
T

ϵ0

Δ

ℐ+
Δ(z). (97)

 N0: the condensed boson number (in the ground state), given by the Bose-Einstein distribu-
tion nB(ϵ) = z-1 β ϵ - 1-1 at ϵ = 0:

N0 =
1

z-1 - 1
, (98)

meaning that the fugacity will be set by z = N0 / (N0 + 1).

Now there is no problem keeping N  fixes: when Nth becomes insufficient to host all N  bosons by 
thermal excitations, the N0 = N -Nth remaining bosons will condense to the ground state.

◼ Bose-Einstein Condensation

Bose-Einstein condensation (BEC) is the phenomenon that a macroscopic number of 
bosons occupies the lowest-energy single-particle state at low temperature. The corresponding 
state of matter is called Bose-Einstein condensate.

 By saying that the ground state occupation number N0 is macroscopic, we mean

lim
V→∞

N0
V

≠ 0. (99)

This is unusual, as for other excited states, the occupation number does not scale with the 
system size V  (i.e. 〈nα〉 /V → 0 as V → ∞).

 The fraction of thermal v.s. condensed (ground-state) bosons: 
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The condensate fraction in the BEC phase

N0
N

= 1-
T

Tc

Δ

. (100)

Derive Eq. (100).Exc
20

 The BEC transition temperature Tc is set by the temperature at which z → 1,

Tc = ϵ0
1

Γ(Δ+ 1) ζ(Δ)

N

V

1/Δ
, (101)

where ζ(s) := Lis(1) is the Riemann zeta function, defined by

ζ(s) = 

k=1

∞ 1

ks
.

Derive Eq. (101).Exc
21

 For non-relativistic particles,

Tc =
2 π

m

1

ζ(D / 2)

N

V

2/D
. (102)

To increase the BEC transition temperature, one can

 either reduce the boson mass m,

 or increase the boson density N /V .

 Dimension dependence of Tc (following Eq. (102))
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BEC transition only happens in 3D and higher dimensions (for non-relativistic bosons).

 In general, BEC transition only happens in bosonic systems with Δ = D / ζ > 1. According to 
Eq. (101), Tc → 0 as Δ → 1+ due to the divergence of the Riemann zeta function 
ζ(Δ → 1) → ∞.

In the BEC phase (when T < Tc), the pressure P of the Bose gas will gradually 
decrease to zero as the temperature T is lowered. Show that they follow a power law 

P = A T λ, where
(i) the proportionality constant A is independent of N , V  (which is very different 
from the P V = N T behavior of the ideal classical gas), 
(ii) and determine the power λ in terms of the exponent Δ = D / ζ  that appears in the 
density of state.

HW
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◼ Ultracold Atoms

The Bose-Einstein condensate (BEC) of weakly interacting atoms was observed in ultracold 
atom systems, where atoms are trapped by lasers and cooled to extremely low temperatures.

 Examples are found in bosonic atoms, such as Rb, Na, Li, of a number N ∼ 104 → 107 below 

the temperature Tc ∼ 10-7K. [2001 Nobel Prize]
How do we know whether the temperature was really that low?

Traditional thermometers become ineffective in measuring such extremely low temperature, 
leading researchers to infer temperature by observing the Bose-Einstein distribution directly!

A time-of-flight (TOF) experiment was performed, involving the following steps:

 Release of Atoms: Initially, the atoms are confined in an optical trap. The trap (trapping 
laser) is tuned off, allowing atoms to expand freely.

 Free Expansion: The atoms expand for a set duration. During this time, their positions evolve 
according to their initial momenta: atoms with larger momenta will travel further.

 Imaging: Following the expansion period, the spatial distribution of the atoms is captured 
using imaging techniques. This image reflects the momentum distribution of the atoms.

QuantumGases.nb     31

https://www.nobelprize.org/prizes/physics/2001/summary/


K. B. Davis, M. -O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and 
W. Ketterle, Bose-Einstein Condensation in a Gas of Sodium Atoms, Phys. Rev. Lett. 75, 3969 
(1995)

[1]

The expected number of atoms carrying momentum k is given by the Bose-Einstein 
distribution:

Nk =
1

β(ϵk-μ) - 1
, (103)

where ϵk = k2  (2m) is kinetic energy of the atom.

 Aggregating within each momentum shell 4 π k2 k gives the distribution for the momentum 

magnitude k ≡ k:

Nk =
4 π k2

exp 1
T

k2

2m
- μ- 1

. (104)

 However, this only accounts for the thermal boson. One should also include the potential 
contribution from N0 bosons condensed in the ground state.

Nk =
4 π k2

exp 1
T

k2

2m
- μ- 1

+N0 δ(k). (105)
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The peak at k = 0 (artificially broadened for visualization) represents the condensed bosons in 
the lowest-energy state.

◼ Condensation Transition

The BEC transition refers to the phase transition between the BEC phase (where 
N0 /V ≠ 0) and the normal phase (where N0 /V = 0) in the thermodynamic limit V → ∞. 

 Near the BEC transition, the fugacity is close to one. So we expand ℐ+
Δ(z) around z → 1.

BE
C

0 1 ∞

0

1

∞

z

ℐ
ηs
(z
)

Bosons
(η = +1)

Fermions
(η = -1)

ℐ+
s (z) =

z→1

- log(1- z) if s = 1,
π2

6
+ (1- z) (log (1- z) - 1) +… if s = 2,

Γ(s) (ζ(s) - ζ(s - 1) (1- z) +…) +
π

sin π s
(1- z)s-1 +… otherwise.

(106)

Verify Eq. (106).Exc
22

Let us focus on the case of non-relativistic bosons in D = 3 dimension, corresponding to 
Δ = D / 2 = 3 / 2.

 The expansion Eq. (106) enables us to compute the thermal boson number Nth [see Eq. (69)] 
and the energy E [see Eq. (70)]:

Nth =
3 π ζ(3 / 2)

4
V

T

ϵ0

3/2
1-

2 π

ζ(3 / 2)
1- z +… ,

(107)
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E =
9 π ζ(5 / 2)

8
T V

T

ϵ0

3/2
1-

ζ(3 / 2)

ζ(5 / 2)
(1- z) +… .

Derive Eq. (107).Exc
23

 These expressions in Eq. (107) are not very friendly. Let us simplify them by introducing: 

 The BEC transition temperature Tc (adapt from Eq. (101) or Eq. (102)),

Tc = ϵ0
4

3 π ζ(3 / 2)

N

V

2/3

. (108)

 The energy Ec of the system at T = Tc,

Ec =
9 π ζ(5 / 2)

8
Tc V

Tc
ϵ0

3/2
=
3

2B
N Tc. (109)

 Two numerical constants A and B,

A =
2 π

ζ(3 / 2)
≈ 1.35697,

B =
ζ(3 / 2)

ζ(5 / 2)
≈ 1.94737.

(110)

Then Eq. (107) can be organized into a relatively neat form:

Nth
N

=
T

Tc

3/2
1-A 1- z , (111)

E = Ec
T

Tc

5/2
(1-B (1- z)). (112)

 The behavior of the fugacity z near the transition can be analyzed as follows:

 When T > Tc, Nth = N  (thermal excitations can host all bosons), then z can be determined 
by solving Eq. (111), 

1 =
T

Tc

3/2
1-A 1- z , (113)

whose solution is

z = 1-
1

A2
1-

Tc
T

3/2 2

. (114)

 When T < Tc, it is no longer possible for Nth to match N . The remaining N0 = N -Nth 
bosons will condense. In this case, z = N0 / (N0 + 1) → 1 will become very close to 1 (given 
that N0 is macroscopically large).

This behavior can be summarized as
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z = 1-
1

A2
max 0, 1-

Tc
T

3/2 2

. (115)
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Note that the piecewise nature of z (as a function of T) is the fundamental reason that leads 
to singularities in various thermodynamic functions at T = Tc, as will be seen later.

 Plugging the solution Eq. (115) to Eq. (112), we obtain the energy E as a function of tempera-
ture T (with fixed N  and V , packed in Tc and Ec)

E = Ec
T

Tc

5/2
1-

B

A2
max 0, 1-

Tc
T

3/2 2

. (116)
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The key indicator of a phase transition is hidden in the higher order derivatives of the 
energy with respect to the phase transition driving parameter (which, in this case, is the 
temperature T).

 1st order derivative: (isochoric) heat capacity -- the amount of heat (per particle) required 
to change the temperature. 

CV =
∂E

∂T N ,V
. (117)

Show that the heat capacity CV  in Eq. (117) is related to the specific heat cV  in Eq. 
(79) by CV = cV N .

Exc
24
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The heat capacity exhibits a cusp at T = Tc, which is rooted in the similar cusp behavior in 
(∂z / ∂T ) ∼ max0, 1- (Tc /T )3/2.

 2nd order derivative: starts to exhibit a discontinuity at T = Tc.
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Classification of Phase Transitions:

An nth order phase transition is a phase transition at which the energy (or free energy) 
starts to exhibit singularity (discontinuity or divergence) at its nth order derivative with 
respect to the driving parameter.

 1st order phase transitions:

 Boiling of water

 Melting of ice

 Structural transitions in some materials

 2nd order (or continuous) phase transitions:

 BEC transitions

 Superconducting transitions

 Magnetic transitions in some materials

 Liquid crystal transitions

 3rd order phase transitions:
(They are less common or more theoretical.)

 Certain topological quantum phase transitions (e.g. mass generation transition of 2D Dirac 
fermions)

 Infinite order phase transitions:
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 Berezinskii-Kosterlitz-Thouless (BKT) transitions (e.g. superfluid transition in 2D) [2016 
Nobel Prize]

◼ Superfluid Helium
4He (the most abundant isotope of helium) is a bosonic atom. It has two liquid phases:

He-II
(superfluid)

He-I
(normal fluid)

He solid

λ-line

vaporizing

melting

0 1 2 3 4 5 6
0.0
0.5
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1.5
2.0
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3.5

T [K]

P
[M
P
a]

 A classical liquid (normal fluid) phase, called He-I: finite viscosity, limited heat conductivity, 
staying in its container normally.

 A quantum liquid (superfluid) phase, called He-II: zero viscosity, nearly infinite thermal 
conductivity, can spontaneously climb walls and escape its container.

The phase transition between He-I and He-II phases is called the λ-transition, due to the λ shape 
(logarithmic divergence) of the specific heat at the critical point.
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There is a close connection between BEC and superfluidity:

 BEC refers to the condensate of non-interacting bosons (gas),

 Superfluid is the condensate of (repulsively) interacting bosons (liquid).
They shares some common features, such as macroscopic boson occupation in the lowest-energy 
state. However, the interaction is essential to maintain the quantum coherence among con-
densed bosons, such that they can propagate collectively in the form of a macroscopic matter 
wave -- the key feature of superfluidity.
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◼ Black-Body Radiation

◼ Radiations Carried by Bosons

Radiation is the emission or transmission of energy in the form of waves (= particles) 
through the space.

 Electromagnetic radiation (light) is carried by photons (spin-1).

 Acoustic radiation (sound) is carried by phonons (spin-0).

 Spin wave radiation is carried by magnons (spin-1).

 Gravitational radiation is carried by gravitons (spin-2).

 *Dark matter radiation could hypothetically be carried by axions (spin-0).
All these particles are bosons (given their integer spins).

Black-body radiation is an ideal Bose gas of radiation-carrying bosons in thermal equilib-
rium with a heat bath (i.e. the “black body” that can absorb and emit radiation).

 The physical laws of black-body radiation applies to all different types of radiations, although 
we will mainly focus on photons gas in the following discussions.

Examples:
System T Dominant radiation

Cosmic microwave background (CMB) 2.7K Microwave
Cold interstellar dusts ∼10K Terahertz

Night hemisphere of the Earth 300K Infrared
Electric stove/oven 500K Infrared
Incandescent light 2500K Infrared to Visible

The Sun 6000K Visible
Black hole accretion disk ∼106K X-ray

◼ Zero Chemical Potential for Radiations

A key feature of radiations is that there is no particle number conservation for the radiation-
carrying bosons.

 This is because a heat bath could absorb one high-energy boson and emit two lower-energy 
bosons (causing boson number to +1), or vice versa (causing boson number to -1). 

 For examples, atoms can serve as heat bath to absorb and emit photons.

ℏ ω1
ℏ ω2

ℏ ω3

38     QuantumGases.nb



 In such processes,

 while energy remains conserved  〈E〉 = E, 

 the particle number does not  〈N 〉 = ??.

 If the particle number is not a conserved quantity, we should not require a definitive expecta-
tion value for the number of particles in the system. Therefore, the grand canonical ensemble 
is not a good starting point for our discussion.

However, having already embarked on a journey with the grand canonical ensemble, do we need 
to start all over again?

-- No panic. In statistical mechanics, whenever faced with questions we can’t answer, we take 
the answer that maximizes entropy.

 Our problem: how to infer the chemical potential μ with no knowledge about the particle 
number N . 

 According to Eq. (68), the entropy S is related to chemical potential μ (or the fugacity 
z = μ/T) by

S = V
T

ϵ0

Δ

(Δ+ 1) ℐ+
Δ(z) - Δ ℐ+

Δ-1(z) log z. (118)

Given V  and T fixed, S is a monotonically increasing function of z ∈ (0, 1) for any choice of 
Δ > 0.
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0
1
2
3
4

z

S

Prove that S is a monotonically increasing function of z ∈ (0, 1).
Exc
25

The entropy S is always maximized at z = 1, corresponding to 

μ = 0. (119)

 The chemical potential is always zero for radiation-carrying bosons.

 In fact, there is no need to introduce the chemical potential μ as a Lagrangian multiplier in 
the first place, if the statistical ensemble is not constrained by the particle number N .

◼ Spectral Energy Density
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The spectral energy density ρ(ω) describes how the radiation energy density E /V  is 
distributed over different frequencies ω, as defined by

E

V
=  ρ(ω) ω. (120)

 In quantum mechanics, due to the wave-particle duality, the radiation frequency ω is related 
to the boson single-particle energy ϵ by

ϵ = ℏ ω. (121)

(We may set ℏ = 1).

 Knowing that radiations are carried by bosons (η = +1) of zero chemical potential (μ = 0), Eq. 
(44) implies that the spectral energy density for the black-body radiation should take the 
following form

ρ(ω) =
ω g(ω)

 β ω - 1

=
Δ

ϵ0
Δ

ωΔ

 β ω - 1
.

(122)

Further assuming relativistic gauge bosons in D = 3 dimensional space (such as photons), we 
obtain the Planck radiation law:

ρ(ω) =
1

π2 c3
ω3

 β ω - 1
. (123)

Derive Eq. (122) and Eq. (123).Exc
26
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The spectral distribution ρ(ω) has a maximum at the frequency

ωm ≈ 2.821T . (124)

Derive Eq. (124).Exc
27
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Thus the dominant frequency of thermal radiation will shift towards higher frequency linearly 
with the raising temperature, known as the Wien’s displacement law.

◼ Thermodynamic Properties

Given the zero chemical potential μ = 0 (or unit fugacity z = 1), thermodynamic quantities of 
the black-body radiation takes simple forms [see Eq. (67-70) and Eq. (60)].

 Pressure

P = κ TΔ+1. (125)

 Entropy

S = (Δ+ 1) κV TΔ. (126)

 Particle number

N =
ζ(Δ)

ζ(Δ+ 1)
κV TΔ. (127)

 Energy

E = Δ κV TΔ+1. (128)

 Free energy (F = E -T S =  + μN)

F =  = -κV TΔ+1, (129)

The constant κ is defined as

κ =
1

ϵ0
Δ
Γ(Δ+ 1) ζ(Δ+ 1). (130)

Derive Eq. (125-130).Exc
28

Based on these results, we can conclude a few important thermodynamic relations for black-
body radiations.

 Equation of state: 

P V =
ζ(Δ+ 1)

ζ(Δ)
N T , (135)

which deviated from ideal classical gas behavior (P V = N T) by a factor ζ(Δ+ 1) / ζ(Δ). For 
relativistic bosons in three dimensional space, we have Δ = 3, and ζ(4) / ζ(3) ≈ 0.9004, a bit 
smaller than 1.

 In terms of energy E,

E = Δ κV TΔ+1, (136)
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we can express

P V =
1

Δ
E,

T S = 1+
1

Δ
E,

F = -
1

Δ
E.

(137)

 Thermodynamics processes:

Process Relation Notes
Isobaric P = const.

T = const. as P and T are locked together by P = κ TΔ+1
Isothermal
Isochoric V = const.
Adiabatic P V γ = const. with γ = 1+ 1 / Δ

◼ Specific Heat

Since particle number is not conserved in radiation gas, it is only meaningful to define the 
specific heat as the heat capacity per volume.

 Isochoric (constant-volume) specific heat

cV =
T

V

∂S

∂T V
= 1+

1

Δ
κTΔ. (138)

It exhibits a cV ∼ TΔ behavior, a important feature of radiation gas.

 Isobaric (constant-pressure) specific heat can not be defined as making P constant prevents us 
to change T .

◼ Degenerated Fermi Gas

◼ Fermi Energy

In the T → 0 low-temperature limit, the Fermi-Dirac distribution is simply a step function:

〈nα〉 =
1

β(ϵα-μ) + 1
T→0


1 for ϵα < μ,
0 for ϵα > μ.

(139)
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 Each fermion added to the system will just fill up the available single-particle states from low 

energy to high energy.

 The energy of the last filled state is called the Fermi energy, defined by the chemical poten-
tial at T = 0, 

ϵF := μ(T = 0). (140)

The Fermi energy is set by the fermion density N /V  in the system. To see this, we com-
pute the number of fermions N  following Eq. (45),

N = V  ϵ
g(ϵ)

 β (ϵ-μ) + 1

=
T→0 V 

0

ϵF

ϵ g(ϵ).
(141)

For free particles, recall Eq. (55): g(ϵ) ϵ =  (ϵ / ϵ0)
Δ, the energy integral simply results in

N = V
ϵF

ϵ0

Δ

, (142)

which determines the Fermi energy,

ϵF = ϵ0
N

V

1/Δ
. (143)

 While ϵF is the highest energy that a fermion can take, the average energy E /N  carried by a 
fermion is a fraction of ϵF , given by

E =
Δ

Δ+ 1
N ϵF . (144)

Derive Eq. (144).Exc
29

It goes as E =
3
5
N ϵF for Δ =

3
2
 (for non-relativistic fermions in three dimensional space).
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 Given E = ΔP V  [recall Eq. (71)], the pressure P of the degenerated Fermi gas (at T = 0) is

P =
1

Δ+ 1

N

V
ϵF . (145)

Amazingly, P does not vanish at zero temperature for Fermi gas (unlike the ideal classical gas 
P V = N T).

 The finite pressure of Fermi gas at low temperature is called the degeneracy pressure. 

 It is a consequence of Pauli exclusion principle and is important in understanding the sta-
bility of white dwarf stars and neutron stars in astrophysics.

Although these results were derived in the T → 0 limit, the picture hold as the temperature 
T ≪ TF is low compared to the Fermi temperature TF , defined as the temperature scale 
corresponding to the Fermi energy:

TF =
ϵF

kB
. (146)

 Under the setting of kB = 1, temperature and energy are essentially the same unit, with

1.60218 × 10-19J = 1eV = 11 604.5K ≃ 104K. (147)

 TF can vary by orders of magnitudes in different systems: 

System ϵF TF T
Ultracold 6Li atoms ∼ 0.1neV ∼ 10-6K ∼ 10-7K

Superfluid 3He atoms ∼ 0.1meV ∼ 1K ∼ 10-3K

Electrons in metal ∼ 1eV ∼ 104K 300K
Electrons in white dwarf stars ∼ 0.1MeV ∼ 109K ∼ 106∼8K
Nucleons in atomic nucleus ∼ 10MeV ∼ 1011K --

Neutrons in neutron starts ∼ 0.1GeV ∼ 1012K ∼ 106∼11K

◼ Compact Stars

Compact stars, such as white dwarfs, neutron stars, and black holes, are endpoints of stellar 
evolution. In the Hertzsprung-Russell (HR) Diagram of astrophysics, stars are plotted 
according to their luminosity and temperature:
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 Main sequence stars: the majority of stars, including the Sun, in stable phase of stellar 
evolution, fusing H into He in their cores.

 White dwarf stars: remnants of low to medium mass stars, like our Sun, no nuclear fusion 
anymore and are supported against gravitational collapse by electron degeneracy pressure.

 Neutron stars: remnants of supernova from more massive stars,  gravity is strong enough to 
push electrons into nucleus, 

p+ e- → n + νe, (148)

leaving neutrons alone to fight against gravitational collapse by neutron degeneracy pres-
sure. (Too faint to be visible on the HR diagram.)

 Black holes: extremely dense remnants formed from the gravitational collapse of very mas-
sive stars post-supernova. Nothing can sustained against gravity, even light can not escape.

For a white dwarf star of mass M  and radius R, its energy consists of

E = Egas +Egrav (149)

 The energy of the degenerated electron gas

Egas =
Δ

Δ+ 1
N ϵF ∝

M 1+1/Δ

R3/Δ
. (150)

Verify Eq. (150).Exc
30

 The gravitational energy

Egrav ∝ -
M 2

R
. (151)

Put together, the balance is achieved when the energy E in Eq. (149) is minimized, which gives 
a relationship between the radius R  and the mass M  of the star:
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R ∼M
1-Δ
3-Δ . (152)

Derive Eq. (152).Exc
31

 For non-relativistic electrons: Δ = 3 / 2, Eq. (152) predicts

R ∼M-1/3, (153)

meaning that the star will shrink as it gets more massive. 

 Because as M  increases, gravity compresses the star more, forcing electrons to get closer, 
generating a higher degeneracy pressure (Fermi energy) to balance the stronger gravity, 
thus resulting in a smaller star radius R. 

 However, this trend does not sustain for ever. As ϵF grows to the point that it becomes 
comparable to the electron rest mass energy me c2, relativity effects sets in.

 For relativistic electrons: Δ = 3, Eq. (152) predicts

R ∼M∞, (154)

a strange expression ... but it just means M ∼ R0 = const., i.e. M  will top out when R reduces 
to the point that electrons become relativistic.

 In the relativistic regime, the Fermi gas energy (Egas ∼ R-1) does not increase as rapidly as 
it does in the non-relativistic regime (Egas ∼ R-2). Consequently, there comes a point where 
the pressure can no longer counterbalance the gravity for a more massive star.

This leads to a mass limit, called the Chandrasekhar limit, about 1.44 of the solar mass 
M⊙,

Mlimit ≈ 1.44M⊙
. (155)

Beyond this limit, the white dwarf can no longer sustain itself against gravitational collapse, 
potentially leading to:

 a type Ia supernova (the “standard candle” in astronomy),

 or a more compact object, like a neutron star or a black hole. 

Similar analysis can be made for neutron stars. While for black holes, one needs a dif-
ferent analysis to see R = 2GM  c2 as predicted by General Relativity. Put together the mass-
radius relations for different compact stars:
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This helps us understand the fate of the Sun. After exhausting its nuclear fuel, it will:

 first expand into a red giant (swallowing the Earth),

 then blow away its outer layers, 

 leaving behind a white dwarf (cooling over time).

◼ Low-Temperature Expansion

To better understand the low-temperature (T ≪ TF) behavior of Fermi gas, we should study 
the function ℐ-

s (z) in the z → ∞ limit. Because when T / ϵF → 0, we have

z = μ/T ≃ ϵF /T → +∞ . (156)

Expanding ℐ-
Δ(z) in the z → ∞ limit is called the low-temperature expansion (or the Sommer-

feld expansion).

Low-T

0 1 ∞

0

1

∞

z

ℐ
ηs
(z
)

Bosons
(η = +1)

Fermions
(η = -1)

ℐ-
s (z) =

z→∞ (log z)s

s
1+

π2 s (s - 1)

6 (log z)2
+
7 π4 s (s - 1) (s - 2) (s - 3)

360 (log z)4
+… . (157)

Verify Eq. (157).Exc
32

 The expansion Eq. (157) enables us to compute the fermion number N  [see Eq. (69)] and the 
energy E [see Eq. (70)] at low temperature, 
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N = V
μ

ϵ0

Δ

1+
π2 Δ (Δ- 1)

6

T

μ

2
+… , (158)

E =
Δ

Δ+ 1
μ V

μ

ϵ0

Δ

1+
π2 Δ (Δ+ 1)

6

T

μ

2
+… . (159)

Derive Eq. (158), Eq. (159).Exc
33

 For fixed fermion number N , we can solve Eq. (158) for the chemical potential μ,

μ = ϵF 1-
π2 (Δ- 1)

6

T

ϵF

2
+… , (160)

where ϵF = ϵ0 (N /V )1/Δ is the Fermi energy. 

Derive Eq. (160).Exc
34

 We can see μ = ϵF at T = 0, as expected.

 As T increases, μ will deviates from ϵF slowly, in quadratic order of T / ϵF .

 Substitute the solution of μ in Eq. (160) to the expression of E in Eq. (159), we obtain E as a 
function of T at fixed N  and V .

E =
Δ

Δ+ 1
N ϵF 1+

π2 (Δ+ 1)

6

T

ϵF

2
+… . (161)

Derive Eq. (161).Exc
35

◼ Specific Heat

The energy function E in Eq. (161) enables us to compute the (isochoric) specific heat. 
Following the definition

cV =
1

N

∂E

∂T N ,V
, (162)

the result reads

cV =
π2 Δ

3

T

ϵF
+…. (163)

Derive Eq. (163).Exc
36

 The specific heat of a Fermi gas is linear in T at low temperature. 
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 Recall Eq. (86) that cV = Δ is the result for a classical gas. Compare to that, the specific heat
of a degenerated Fermi gas is smaller by a factor of T / ϵF (or T /TF). 
The specific heat essentially counts the number of modes (per particle) that can be thermally 
excited to participate in energy exchange.

 In classical gas, every particle can participate in energy exchange with the heat bath.

 In degenerated Fermi gas, only a T / ϵF fraction of the fermions near the Fermi surface 
are excited and can contribute to the energy exchange. The remaining fermions deep in the 
Fermi sea are effective frozen.

The specific heat will deviate from the low-temperature linear-T behavior if T approaches to ϵF 

(or TF), and eventually saturate to the classical limit.

Δ
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◼ Susceptibilities

Number susceptibility is the (relative) rate that the particle number N  changes with the 
chemical potential μ, defined by

χN =
1

N

∂N

∂μ V ,T
. (164)

To the leading order in the T → 0 limit,

χN =
Δ

ϵF
+…. (165)

Derive Eq. (165).Exc
37

The number susceptibility forms a basis to compute other susceptibilities of the Fermi gas in 
response to different external fields.

Electron is a fermion that carries both charge (-e) and spin ℏ / 2 (which corresponds to a 
magnetic moment μB = e ℏ / (2me), known as a Bohr magneton). These properties enables 
electron gas to response to both electric and magnetic fields. 
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 Charge susceptibility: the rate that the charge density Q /N  changes with the electric 
potential ℰ.

χQ =
1

N

∂Q

∂ℰ V ,T
. (166)

 The total charge of the electron gas is

Q = -e N . (167)

 Varying in electric potential ℰ will cause a change in the electron chemical potential by

 μ = -e ℰ. (168)

 Therefore, χQ is related to χN  by

χQ = e2 χN =
Δ e2

ϵF
+…. (169)

 Spin susceptibility: the rate that the magnetization density M /N  changes with the mag-
netic field B.

χM =
1

N

∂M

∂B V ,T
. (170)

 The total magnetization of the electron gas is

M = μB(N↑ -N↓), (171)

where N↑ and N↓ are respectively the number of up-spin and down-spin electrons in a mag-
netic field.

 Varying the magnetic field B will cause a change in the chemical potential for up-spin and 
down-spin electrons,

 μ↑ = μB B,

 μ↓ = -μB B.
(172)

 Therefore, χM  is related to χN  by

χM = μB
2 χN =

Δ μB
2

ϵF
+…. (173)

This is also known as the Pauli susceptibility, which (partially) explains the paramag-
netism of many metals.

The charge and spin susceptibilities can be measured in experiments by putting the electron gas 
in an electromagnetic field, thereby providing a feasible approach to infer the number suscepti-
bility (which is otherwise not directly measurable).

Note: the specific heat cV  and different susceptibilities χQ, χM  are all proportional to Δ / ϵF in 
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the T → 0 limit:

cV =
π2 Δ

3

T

ϵF
+…,

χQ =
Δ e2

ϵF
+…,

χM =
Δ μB

2

ϵF
+…,

(174)

By taking ratios among them, the non-universal feature like ϵF can be eliminated, resulting in an 
universal ratio, call the Wilson ratio.

RW =
π2

3

χQ T

e2 cV
=
π2

3

χM T

μB
2 cV

= 1. (175)

 For non-interacting electrons, the Wilson ratio is expected to be unity. This prediction holds 
for most metals, where electron-electron interactions are well screened and thus negligible.

 However, deviations from unity in the Wilson ratio are indicative of significant electron-
electron interactions within the materials. -- A defining feature of strongly correlated 
electron systems, including many unconventional high-temperature superconductors.

Thermoelectric (Seebeck) effect is an interesting phenomenon that temperature differ-
ence across a metal can induce a voltage difference. The Seebeck coefficient  charac-
terizes how electric potential ℰ raises with temperature T , defined as 
 = 

∂ℰ

∂T
Q,V .

(i) Express the Seebeck coefficient in terms of the temperature derivative of chemical 
potential.
(ii) Use Eq. (160) to calculate the Seebeck coefficient  to the leading order of T / ϵF 

at low-temperature. 
(iii) Show that the ratio RS = e  / cV  between the Seebeck coefficient  and the spe-
cific heat cV  is a universal ratio (that does not depend on the Fermi energy ϵF to the 
leading order in T / ϵF).

HW
4

Summary

◼ Partition Function is All You Need

◼ General Idea

The partition function (or the free energy) is all you need in statistical physics.
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 Given the energy function E(x) for some random variable x.

 Under maximal entropy estimation, the equilibrium probability distribution of x is given 
by the exponential form, with β = 1 /T ,

p(x) =
1

Z
-β E(x). (176)

 The partition function Z is not just a normalization constant

Z = 

x
-β E(x),

(177)

its also encodes all the thermodynamic properties of the statistical ensemble.

 Or equivalently, in terms of the free energy F 

F = -T log Z . (178)

The trick is to take advantage of the nice form of log Z under derivatives.

 Derivative of log Z with respect to β, energy expectation value is obtained,

∂ log Z

∂ β
= -〈E(x)〉. (179)

Derive Eq. (179).Exc
38

 Suppose the energy function Eλ(x) further depends on a Lagrangian multiplier λ for a function 
f (x) of x

E(x) → Eλ(x) = E(x) + λ f (x), (180)

derivative of log Z with respect to λ gives the expectation value of f (x)
∂ log Z

∂λ
= - β 〈f (x)〉. (181)

Derive Eq. (181).Exc
39

Or more directly as

∂F

∂λ
= 〈f (x)〉. (182)

Conclusion: to evaluate the expectation value of any function f (x), first add a term λ f (x) to the 
energy function E(x), compute the free energy F, and take the derivative ∂λF with respect to λ.
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◼ Cumulant Expansion

One can continue to take higher order derivatives of F to obtain other derived thermody-
namic properties.

 To be more systematic, the first few orders of derivatives of log Z are given by (denote ∂ / ∂λ 

as ∂λ)

∂λ log Z =
∂λZ

Z
,

∂λ
2 log Z =

∂λ
2Z

Z
-

∂λZ

Z

2
,

∂λ
3 log Z =

∂λ
3Z

Z
- 3

∂λ
2Z

Z

∂λZ

Z
+ 2

∂λZ

Z

2
,

….

(183)

Verify Eq. (183).Exc
40

 The partition function derivatives are related to different moments of f (x),

∂λ
nZ

Z
= 〈(- β f (x))n〉, (184)

for n = 1, 2, 3,….

Prove Eq. (184).Exc
41

Substitute Eq. (184) into Eq. (183), the derivatives of log Z gives us different cumulants of 
f (x),

∂λ log Z = - β 〈f (x)〉,
∂λ
2 log Z = (- β)2 f (x)2- 〈f (x)〉2,
∂λ
3 log Z = (- β)3 f (x)3- 3 f (x)2 〈f (x)〉+ 2 〈f (x)〉3,

….

(185)

They corresponds to the mean, variance, skewness of f (x).
Example: particle number fluctuation.

Grand canonical ensemble can be effectively viewed as a canonical ensemble, if we tread 
E(n) - μN (n) energy function (where n = {nα α = 1, 2,…} denotes the collection of occupation 
numbers on each single-particle state).

 The particle number fluctuation is quantified by the variance of N (n),
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varN := N (n)2- 〈N (n)〉2

= (- β)-2 ∂μ
2 log Z

= -T
∂2F

∂μ2

(186)

 The particle number susceptibility is defined as Eq. (164)

χN =
1

N

∂N

∂μ
= -

1

N

∂2F

∂μ2
, (187)

given that N = -∂μF.
Therefore, there is a relation between fluctuation and susceptibility (response)

varN = N T χN . (188)

This is an example for the fluctuation-response relation, which states that the thermal 
fluctuation of an extensive variable (like varN) is always proportional to the response of the 
extensive variable (like N) with respect the its conjugate intensive variable (like μ).

◼ Mid-Term Sample Problem

In our universe, every matter has its anti-matter counterpart. Consider a ideal gas system of 
particles and anti-particles, suppose each single particle state α〉 can be either empty (nα = 0), or 
occupied by one particle (nα = 1) or one anti-particle (nα = -1), i.e. nα = -1, 0, 1 (and no further 
options).

 Both particle and anti-particle occupations cost the same amount of energy ϵα on the α〉 state, 
while the empty occupation does not cost energy. 

 Anti-particle counts as a “negative” particle in terms of particle number, as it can annihilate 
with the particle.

nα N E meaning
1 1 ϵα particle
0 0 0 empty
-1 -1 ϵα anti-particle
Given a collection of occupation numbers n = {nα}, the energy and particle numbers will be given 
by

E(n) = 

α

ϵα nα2,

N (n) = 

α

nα.
(189)

(i) Consider a grand canonical ensemble with inverse-temperature β = 1 /T and chemical poten-
tial μ, derive the average particle number 〈nα〉 for every the single-particle state α〉.
(ii) Discuss the behavior of 〈nα〉 as a function of ϵα in the low temperature limit as T → 0.

54     QuantumGases.nb



(iii) Assuming the density of state is given by the following general form

g(ϵ) =
Δ ϵΔ-1

ϵ0
Δ
, (190)

with some typical energy scale ϵ0. Compute the average energy E and average particle number 
N  in the T → 0 limit as a function of the chemical potential μ.

(iv) Use the above result to express E as a function of N  in the T → 0 limit by eliminating μ.

◼ Nondimentionalization

We often encounter complicated integrations (originated from state summation) in calcu-
lating thermodynamic quantities. In many cases, these integrations can not be computed analyti-
cally. Nondimentionalization is the trick to circumvent the evaluation of these integrals while 
still giving us useful results.

 Rule 1: the argument of a transcendental function must be dimensionless. 

 Examples of transcendental functions: exp, log, trigonometric functions (cos, sin, tan, …, 
cosh, sinh, tanh, …).

 This is because things like exp(5 Joule) does not make sense.

 Rule 2: perform a change of the integration variable to make it dimensionless.
Consider an definite integral of the form

I = 
0

∞

ϵ ϵs f (β ϵ), (191)

where f () is a transcendental function. Using the rules, we introduce x = β ϵ as a dimensionless 
variable, such that ϵ = x / β and

I =
1

βs+1

0

∞

x xs f (x). (192)

Now the integration has become dimensionless, and simply evaluates to a number (assuming it 
converges), which allows us to conclude that

I ∝
1

βs+1
. (193)

◼ Quantum Gas

◼ Grand Canonical Ensemble

 The microstate of a quantum gas is described by a collection of occupation numbers

n := {nα α = 1, 2,…}. (194)

 Energy and particle number for a specific collection n
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E(n) = 

α

ϵα nα, N (n) = 

α

nα. (195)

 Probability distribution

p(n) =
1

ℨ
-β(E(n)-μN (n)), (196)

and the partition function

ℨ = 

n
-β(E(n)-μN (n)).

(197)

◼ Bosons and Fermions

 Introduce the fermion sign

η = 
+1 bosons,
-1 fermions. (198)

 Partition function ℨ = ∏α ℨα, with

logℨα = -η log1- η -β (ϵα-μ). (199)

 Average occupation number

〈nα〉 =
1

 β (ϵα-μ) - η
. (200)

◼ Density of State

 Definition

∀ f : 
α

f (ϵα) = V  ϵ g(ϵ) f (ϵ). (201)

 General form

g(ϵ) =
Δ ϵΔ-1

ϵ0
Δ
, (202)

with

Δ =
D

ζ
, (203)

 D - dimension of space,

 ζ - dynamical exponent (ϵk ∼ kζ).

◼ Thermodynamics

 Introduce fugacity
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z = β μ = μ/T . (204)

 Free energy  = -T logℨ,

 = -T V
T

ϵ0

Δ

ℐη
Δ+1(z), (205)

 Pressure

P = -
∂

∂V T ,μ
= T

T

ϵ0

Δ

ℐη
Δ+1(z). (206)

 Entropy

S = -
∂

∂T V ,μ
= V

T

ϵ0

Δ

(Δ+ 1) ℐηΔ+1(z) -
Δ μ

T
ℐη
Δ(z) . (207)

 Particle number

N = -
∂

∂μ V ,T
= ΔV

T

ϵ0

Δ

ℐη
Δ(z). (208)

 Energy

E =  +T S + μN

= ΔT V
T

ϵ0

Δ

ℐη
Δ+1(z)

= ΔP V .

(209)

 Equation of state

P V =
ℐη
Δ+1(z)

Δ ℐη
Δ(z)

N T . (210)

 Higher order properties

 Specific heats

cV =
T

N

∂S

∂T N ,V
,

cP =
T

N

∂S

∂T N ,P
.

(211)

 Susceptibilities

χN =
1

N

∂N

∂μ V ,T
,

χQ =
1

N

∂Q

∂ℰ V ,T
= e2 χN , (212)
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χM =
1

N

∂M

∂B V ,T
= μB

2 χN .

◼ Special Cases

 z → 0: Dilute (classical) limit

 Equation of state

P V = N T (213)

 Energy

E = ΔP V = ΔN T . (214)

 Specific heats

cV = Δ,

cP = Δ+ 1.
(215)

 z → 1, η = +1: Bose-Einstein condensation (BEC)

 Condensed fractions

N0
N

= 1-
T

Tc

Δ

. (216)

 Transition temperature

Tc =
ϵ0 

1
Γ(Δ+1) ζ(Δ)

N
V

1/Δ

Δ > 1

0 Δ ≤ 1
. (217)

 z = 1, η = +1: Black-body radiation or in the BEC phase

 Equation of state

P V =
ζ(Δ+ 1)

ζ(Δ)
N T . (218)

 Energy

E = Δ κV TΔ+1. (219)

 Specific heats

cV = 1+
1

Δ
κTΔ. (220)

 z → ∞, η = -1: Degenerated fermi gas

 Fermi energy

 Definition ϵF = μ(T = 0),

 Formula
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ϵF = ϵ0
N

V

1/Δ
. (221)

 Equation of state (T ≪ ϵF)

P V =
1

Δ+ 1
N ϵF . (222)

 Energy (T ≪ ϵF)

E =
Δ

Δ+ 1
N ϵF . (223)

 Specific heats (T ≪ ϵF)

cV =
π2 Δ

3

T

ϵF
. (224)

 Susceptibilities (T ≪ ϵF)

χN =
Δ

ϵF
,

χQ =
Δ e2

ϵF
,

χM =
Δ μB

2

ϵF
.

(225)

QuantumGases.nb     59


