
140B Statistical Physics
Part 3. Phase Transitions

Liquid-Gas Transition

◼ Phases and Phase Transitions

◼ States of Matter

Gas, liquid, and solid are states of matter in our everyday life. They are all made of atoms 
(or molecules), yet their macroscopic behaviors are very different.

Fluid Solid
Gas Liquid

Atom arrangement Random Random Periodic
Traslation symmetry Preserved Preserved Broken

Correlation Negligible Short-range Long-range
Density Low High High

Compressibility High Low Low
Fluidity ✓ ✓ ×

Sound modes 1 1 3

 The key difference lies in the density correlation

C (r) = 〈n(r) n(0)〉, (1)

which quantifies how the presence of an atom at the origin 0 affects the likelihood of finding 
another atom at some point r away from the origin. 
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 Gas: atoms are far apart, almost independent, no regular arrangement. Correlation is 
negligible (very weak and short-ranged).

 Liquid: atoms are close together, sliding around each other, no regular arrangement. Corre-
lation is strong but short-ranged.

 Solid: atoms are closely packed, arranging in regular patterns (crystal lattices). Correlation 
is strong and long-ranged.

 Different microscopic order of atoms leads to different macroscopic properties of the matter.

◼ Phase Diagram

Phase diagram show the macroscopic conditions under which distinct states of matter 
occur at equilibrium. The phase diagram of water (H2 O) looks like
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 Each macrostate of a system is labeled by a set of coordinates g = (g1, g2,…) in the phase 
diagram. For example, g = (T , P) in the above phase diagram.

 Phase transition happens across the phase boundary, where the free energy density

f (g) = lim
V→∞

F(g)

V
(2)

becomes non-analytic with respect to g in the thermodynamic limit, i.e. its derivatives become 
singular or discontinuous.

 Phase: Two macrostates g and g′ belongs to the same phase as long as there exists a contin-
uous path from g to g′ without encountering any phase transition.

 Liquid and gas are in the same phase (the fluid phase).

 Even though liquid and gas are separated by a phase transition, it does not make them 

different phases of matter, because the phase transition can be circumvented through the 
supercritical fluid regime.
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 This is the only logically consistent way of defining phases: 
they should be unified by the absence of phase transitions, 
other than separated by the presence of phase transitions.

g

g′

g

g′

 Solid is in a different phase from liquid and gas. 

There can be many different solid phases characterized by different ways of breaking the 
translation and rotation symmetry of the space.

◼ Lattice Gas Model

◼ Model Hamiltonian

Interaction plays an essential role to bind atoms together to form the liquid state at low 

temperature. To model the liquid-gas transition, we must go beyond the non-interacting limit of 
ideal gas, and include the interaction effects.

The lattice gas model is toy model to describe interacting atoms on a lattice. Its energy 
function is

E(n) = -g
〈i j〉

ni nj - μ
i

ni. (3)

 Assuming the space is partitioned into many small cells (or lattice sites), each labeled by an 
index, denoted as i, j.

i j

 The microstate of the system is described by a collection of binary random variables 
n = {ni}, where

ni = 
0 empty,
1 occupied, (4)

describes the number of atoms on site i, assuming each site can not host more than one atom 
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(the hard-core condition).

 g > 0 is the attractive interaction strength between atoms: it provides an energy reward if 
atoms are neighboring to each other.

 〈i j〉 denotes the summation over pairs of neighboring sites i and j.

 The energy -g ni nj under different scenarios:
ni nj -g ni nj
0 0 0

(no energy reward)0 1 0
1 0 0
1 1 -g (attractive energy reward)

(5)

 μ ∈  is the chemical potential, s.t. each atom experiences a potential energy of -μ to 
occupy a site. 

 It is introduced to tune the total particle number

N (n) =
i

ni. (6)

To lower the energy, N  tends to increase with increasing μ.

◼ Lattice Structure

The lattice model can be implemented on various lattices in different dimensions.
1D 2D 3D

chain sqaure triangle cubic
q = 2 q = 4 q = 6 q = 6

 Coordination number q: the number of nearest-neighbor sites around each given site, 
reflecting how connected or coordinated each site is within the lattice.

 Volume: Number of sites on the lattice.



i

1 = V
(7)

 Number of nearest-neighbor bonds (links) on the lattice.



〈i j〉

1 =
q

2
V . (8)
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◼ Probability Distribution

The probability distribution of the lattice gas configuration n is

p(n) =
1

Z
-β E(n), (9)

where β = 1 /T is the inverse temperature, and Z is the partition function

Z =

n
-β E(n).

(10)

 High temperature limit (T → ∞, β  0): p(n) = 1 /Z reduces to a uniform distribution of n. 
In this case, each site will be occupied or empty with 1 / 2 to 1 / 2 probability  Supercritical 
fluid (an uniform mixture of liquid and gas).

N /V = 0.50

 Low temperature limit (T → 0, β  ∞): p(n) will be dominated by the lowest-energy config-
uration n. 

 A over-simplified estimation: assuming the same particle number on every site, i.e. 
∀ i : ni = n, the energy function becomes

E(n) = -V n
q

2
g n + μ . (11)

where V  is the lattice volume and q is the coordination number (assuming square lattice 
with q = 4). 

Derive Eq. (11).Exc
1
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 When μ < -2 g, the configuration n = 0 is lower in energy.  Gas (in the dilute limit). 
Atoms are far apart from each other — so dilute that we can’t see any atom on a finite 
lattice.

N /V = 0

 When μ > -2 g, the configuration n = 1 is lower in energy.  Liquid (in the dense limit). 
Atoms are closely packed, next to each other — so dense that we can’t see any bubble on a 
finite lattice.

N /V = 1

◼Markov Chain Monte Carlo

◼ Monte Carlo Sampling

Monte Carlo sampling is an important numerical algorithm to draw random variables x
from the Boltzmann distribution p(x) ∝ -β E(x), given the energy function E(x). 

The main idea is to

 start with an arbitrary initial sample x (0)  p0x(0),

 generate a new sample x(1) following the transition probability px(1) x(0) (to be designed 
later)

x(0) → x(1)  px(1) x(0), (12)

 iterate the process to construct a chain of samples 

x(0) → x(1)  x(2) … → x(n) …. (13)

The hope is that after sufficient number of steps (n ≫ 1), the probability distribution pn(x(n)) of 
the last generated sample x(n) will converge to the desired distribution p(x) ∝ -β E(x).

◼ Markov Chain

The iterative sampling process is a Markov process. “Markov” means the probability distri-
bution of the next sample x(n+1) depends only on the current sample x (n) but not any previous 
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samples x(n-1), x(n-2), …. In short, the Markov process is a stochastic process that has no 
memory of history.

 The chain of samples Eq. (13) generated by the Markov process is a Markov chain, along 
which the sample probability evolves as

pnx(n) = 

x(n-1)

px(n) x(n-1) pn-1x(n-1).
(14)

The evolution is uniquely determined by the transition probability p(x′ x).

 One may start with any initial distribution p0(x). Under the Markov process, the distribution 
pn(x) might evolve and relax to a stationary distribution p(x)

lim
n→∞

pn(x) = p(x). (15)

The goal is to design the transition probability p(x′ x) wisely, such that the stationary distribu-
tion p(x) matches our desired target distribution -β E(x).

◼ Detailed Balance

Detailed balance is a sufficient (but not necessary) condition for a stationary distribution 
p(x) to exist, which requires

p(x′ x) p(x) = p(x x′) p(x′). (16)

 Argument: detailed balance implies that, for every pair of states , the flow of probability is 
perfectly balanced between the forward sampling x → x′ and the reversed sampling x′ → x, 
such that the probability will not evolve in time, i.e. stationary.

 Alternatively, Eq. (16) can be written as

p(x′ x)

p(x x′)
=
p(x′)

p(x)
. (17)

Note: for x′ = x, Eq. (17) is trivially satisfied, thus one only need to check the detailed bal-
ance for the case of x′ ≠ x.

◼ Metropolis-Hastings Algorithm

Metropolis-Hastings algorithm is a systematic approach to realize the Markov process 
x → x′ that is detailed balanced with respect to the desired stationary distribution p(x).

 Given the current sample x.

 Propose a new sample x  by drawing from the proposal probability q(x x).

 Calculate the acceptance probability

α(x , x) = min 1,
p(x ) q(x x )

p(x) q(x x)
∈ [0, 1]. (18)
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 Accept or Reject:

 with probability α(x , x), accept the new sample and set x′ = x ,

 with probability 1 - α(x , x), reject the new sample and set x′ = x.

 Return x′ as the updated sample.
For x′ ≠ x, the transition probability is then given by

p(x′ x) = q(x′ x) α(x′, x), (19)

which satisfies detailed balance by design.

Show that the transition probability in Eq. (19) satisfies the detailed balance condi-
tion in Eq. (17).

Exc
2

If the proposal probability is symmetric,

q(x x ) = q(x x), (20)

the acceptance probability will be simplified to

α(x , x) = min 1,
p(x )

p(x)
. (21)

If the desired stationary probability distribution p(x) is further modeled by the energy function 
E(x) as p(x) = -E(x) Z , the acceptance probability will be further reduced to

α(x , x) = min1, E(x)-E(x

)

=
1 E(x ) ≤ E(x),
E(x)-E(x


) E(x ) > E(x).

(22)

In this case, the accept-or-reject rule is simple:

 if the proposed sample has a lower (or equal) energy, i.e. E (x ) ≤ E(x), the proposal is always 
accepted,

 if the proposed sample has a higher energy, i.e. E (x ) > E(x), the proposal is accepted with 
probability E(x)-E(x


) that decays exponentially with the energy difference.

◼ Monte Carlo Simulation

Monte Carlo sampling is an important numerical algorithm to draw samples from the 
Boltzmann distribution p(n) ∝ -β E(n), given the energy function E(n):

E(n) = -g
〈i j〉

ni nj - μ
i

ni. (23)

The algorithm has the following steps:

 Start with (arbitrary) initial configuration n.
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 Randomly choose a site i.

 Propose a new configuration n′ by flipping the occupation number on site i, i.e.

ni′ = 1- ni,

nj′ = nj (for all j ≠ i),
(24)

 Compute the energy difference

ΔE = E(n′) -E(n). (25)

 If the energy lowers, ΔE < 0, accept the update n  n′,

 If the energy raises, ΔE > 0, accept the update n  n′ with probability

α = -β ΔE, (26)

and reject with probability 1 - α (if rejected, configuration will remain in n).

 Repeat to collect a series of configurations n.

Update rate: 0 1 10 200 5000

(T , μ) / g = (1.00, -2.00)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-3.0

-2.5

-2.0

-1.5

-1.0

T / g

μ
/
g

N /V = 0.49

Magnetic Transition

◼ Ising Model

◼ Model Hamiltonian

Ising model is another lattice model in statistical mechanics that describes the behavior of 
magnetic spins on a lattice, originally introduced to study the order-disorder magnetic transi-
tion in magnetic materials. It is described by the energy function
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E(s) = -J
〈i j〉

si sj - h
i

si. (27)

 The microscopic state is describes by a set of Ising spins s = {si}, where

si = 
+1 spin up,
-1 spin down, (28)

describes the spin state on the lattice site i.

 J > 0 is the coupling constant, representing the interaction strength between neighboring 
spins.

 〈i j〉 denotes the summation over pairs of neighboring sites i and j.

 The energy -J si sj under different scenarios:

spins si sj -J si sj energy
aligned +1 +1 -J gain

anti-aligned +1 -1 +J cost
anti-aligned -1 +1 +J cost
aligned -1 -1 -J gain

(29)

 h ∈  is the external magnetic field, s.t. the spin gains energy h by aligning with the 
external magnetic field, and costs energy h to anti-align.

 It is introduced to tune the total magnetization 

M =

i

si. (30)

The magnetization M  is energetically favored to align with the external magnetic field h 
(i.e. to be of the same sign).

◼ Ising Symmetry

The Ising model and the lattice gas model are closely related.

 Mapping between on-site binary variables.

Lattice gas
ni = 0 ni = 1

empty occupied

Ising
si = +1 si = -1

spin up spin down
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ni =
1+ si
2
. (31)

 Using Eq. (31), the lattice gas model

E(n) = -g
〈i j〉

ni nj - μ
i

ni, (32)

is equivalent to the Ising model (up to a constant energy shift)

E(s) = -J
〈i j〉

si sj - h
i

si. (33)

with the following relations

J =
g

4
, h =

q g + 2 μ

4
. (34)

Derive the relations in Eq. (34).Exc
3

However, there is a key conceptual difference between the two models.

 The Ising model has an explicit 2 Ising symmetry at h = 0 (in the absence of external 
magnetic field).

 The symmetry acts by flipping all Ising spins together,

2 : si → -si. (35)

The symmetry transformations a 2 group — the two-fold cyclic group containing two 
elements: identity (do nothing) and spin flip, s.t.

flip + flip = identity. (36)

 The energy function (at h = 0) is invariant under the symmetry transformation

E(s) = -J
〈i j〉

si sj. (37)

There is no such 2 symmetry in the lattice gas model in general. (Although one may argue that 
at μ = -q g / 2, there is a ni → 1- ni symmetry, but this requires fine-tuning and is not generic if 
the hard-core assumption is relaxed.)

◼ Probability Distribution

The probability distribution of the Ising configuration s is

p(s) =
1

Z
-β E(s), (38)

PhaseTransitions.nb     11



where β = 1 /T is the inverse temperature, and Z is the partition function

Z =

s
-β E(s).

(39)

Solving a statistical mechanics problem amounts to computing the partition function Z as a 
function of model parameters (such as T = 1 / β, J and h). However, it is not easy to solve Ising 
model, because

 Combinatorial complexity: With V  spins, there are 2V  possible configurations. This expo-
nential growth in configurations makes exact summation in Eq. (39) intractable for large 
systems, especially in higher dimensions.

 Correlation complexity: The correlated nature of spins rooted in the interactions among 
them, where the state of one spin can influence the probable states of others. This preclude 
simplifying the analysis to isolated spins, necessitating a collective analysis. 

Given these challenges, exact solutions to the Ising model are only possible in limited cases. Our
current status of knowledge:

h = 0 h ≠ 0 Approach
d = 1 ✓ ✓ Transfer matrix
d = 2 ✓ ? Fermionization
d = 3 ? ? -

d ≥ 4 (✓) (✓) Mean field theory

 d - spatial dimension of lattice,

 h - external magnetic field.

◼Mean Field Theory

◼ General Idea

Mean field (MF) theory is a powerful approximation method to solve many-body problems.

 Key assumption: neglect the correlation between Ising spins, assuming each spin only feels 
an average interaction effect from other spins, hence the name “mean field”.

Introduce average magnetization density m,

m = 〈si〉 =
s
si pMF(s). (40)

s0 s1

s2

s3

s4

s0 m

m

m

m


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This enables two crucial simplifications:

 Independence: Each spin s0 is treated as if it is independent of the others si≠0, under the 
influence of the mean field m only.

 Factorization: The joint probability distribution p(s) is approximated by a product of 
independent distributions for each spin.

pMF(s) =
i

pMF(si). (41)

 Key steps:

 Probability Factorization: propose a factorized probability model pMF(s) to approximate 
the ground truth p(s).

 Objective Function: formulate an objective function that measure the divergence 
between pMF(s) and p(s).

 Parameter Optimization: optimize model parameters in pMF(s) to minimize its distance 
to p(s), such that pMF(s) approximates p(s) as much as possible (within the model capacity).

 Model Prediction: use the model pMF(s) to predict whatever thermodynamic properties of
interest.

◼ Probability Factorization

Starting with a factorized probability model Eq. (41),

pMF(s) =
i

pMF(si). (42)

For each Ising spin si = ±1 on site i, we can parameterize its probability distribution by the 
model parameter m ∈ [-1, 1] in the following form

pMF(si) =
1+m si
2

=

1+m
2

si = +1,
1-m
2

si = -1.
(43)

 Normalization is automatically satisfied



si=±1

pMF(si) = 1. (44)

 The model parameter m has a clear physical meaning — the expectation value of si (i.e. the 
magnetization density)

〈si〉 = 

si=±1

si pMF(si) = m. (45)

Show that Eq. (43) is the unique solution of Eq. (45).Exc
4
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◼ Objective Function

◻ Kullback-Leibler (KL) Divergence

In statistical machine learning, the Kullback-Leibler (KL) divergence DKL(p || q), also 
known as the relative entropy, is often used to characterize the deviation of one probability 
distribution q(x) with respect to the other p(x) for x ∈  in the same support space.

DKL(p || q) = 

x∈

p(x) log
p(x)

q(x)
. (46)

 The term “divergence” is used instead of “distance” because DKL is not symmetric in general, 
i.e. DKL(p || q) ≠ DKL(q || p), therefore not qualified as a distance.

 Non-negativity of KL divergence: for any two distributions p(x) and q(x),

DKL(p || q) ≥ 0. (47)

The equality is achieved iff p(x) and q(x) are identical distributions, i.e.

DKL(p || q) = 0⇔ ∀ x : p(x) = q(x). (48)

Prove Eq. (47) that the KL divergence is non-negative.Exc
5

DKL(p || q) quantifies the average relative surprise we experienced when our belief q(x) 
deviates from the reality p(x).

 Reality p(x): The world is full of randomness. Let p(x) describe the probability of event x 
happening in reality.

 Belief q(x): When we observe reality, our brain unconsciously construct a (different) proba-
bility model q(x) in our mind, representing our belief about the world.

 Surprise: Sometimes, we witness an event x that, according to our belief q(x), was highly 
unlikely, yet it actually occurs in reality. This discrepancy results in surprise:

surprise = - log q(x). (49)

If an event x happens:
q(x) - log q(x) Level of suprise
1 0 bit Not at all.
1 / 2 1 bit As if flipping a coins, landing heads up.
1 / 1024 10 bit As if flipping 10 coins, all landing heads up !

 Relative surprise: Now, I observe the world with my friend. We hold different beliefs q(x) 
(me) and q′(x) (my friend). Thus, even if we witness the same event x, we might experience 
different levels of surprise. My surprise relative to my friend:
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relative surprise = (- log q(x)) - (- log q′(x))

= log
q′(x)

q(x)
.

(50)

 Compare belief with reality: It turns out that my friend is  omniscient, that their belief 
equals the reality, i.e. q′(x) = p(x), then relative to them, I would feel more surprised.
This is because 

 when I am more surprised than my friend, it indicates that I underestimated the likelihood 
of an event occurring, 

 when I am less surprised, it means I overestimated it. 

Consequently, I tend to be more surprised than my friend more frequently, leading to a higher 
average relative surprise for me.

DKL(p || q) = 

x∈

p(x) log
p(x)

q(x)
. (51)

The KL divergence DKL precisely measures this relative, comparative level of surprise, 
quantifying the deviation of my belief q(x) from reality p(x).

Example: asymmetry of KL divergence

Who will be the next US president?

x Biden Trump
qPro-Biden(x) 0.999 0.001
qNeutral(x) 0.5 0.5
qPro-Trump(x) 0.001 0.999

(52)

The KL divergence between each pair of probability distributions:

DKL(p || q) belief q(x)
[bit] qPro-Biden qNeutral qPro-Trump

re
al
ity
p(
x) pBiden wins 0 0.99 9.94

pElection ties 3.98 0 3.98
pTrump wins 9.94 0.99 0

(53)

◻ Variational Free Energy

We want to use the KL divergence to quantify the deviation between pFM(s) and p(s).

 In practice, it does not matter which distribution is treated as belief and which is reality. 
Both objectives are fine:

DKL(pMF || p) or DKL(p || pMF). (54)

However, DKL(pMF || p) is much easier to evaluate analytically, because sampling s from the 
uncorrelated (factorized) distribution pMF is tractable.
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 So we choose the objective function to be

DKL(pMF || p) =
s
pMF(s) log

pMF(s)

p(s)
. (55)

By minimizing the objective function, we expect to bring pMF(s) close to p(s) as much as 
possible.

Given Eq. (27), Eq. (38), Eq. (41), and Eq. (43),

p(s) =
1

Z
-β E(s) =

1

Z
exp

1

T
J

〈i j〉

si sj + h
i

si ,

pMF(s) =
i

pMF(si) =
i

1+m si
2

,

(56)

the objective function can be written as

DKL(pMF || p) = β F + log Z , (57)

where

 F is the variational free energy, given by

F = E -T S,

E = -
q J

2
m2 - h m V ,

S = -
1+m

2
log

1+m

2
-
1-m

2
log

1-m

2
V ,

(58)

 V  - lattice volume

 q - coordination number (assuming square lattice with q = 4)

Derive Eq. (58) by substituting Eq. (56) into Eq. (55).Exc
6

 Note that Ftrue := -T log Z is the true free energy of the system, Eq. (57) can be written as

DKL(pMF || p) = β (F -Ftrue), (59)

 Since Fture (or Z) is independent of the model parameter m, it can be dropped from the 
objective function without affecting the optimization of m. 

 To minimize DKL(pMF || p), we only need to minimize F.

 Given DKL(pMF || p) ≥ 0,

F ≥ Ftrue = -T log Z , (60)
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i.e. the variational free energy F serves as an upper bound of the true free energy.

Optimization steps

-T log Z

F

F★
T DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKLT DKL

The variational free energy F (V , T , h; m) is a function of the magnetization density m 

(as model parameter), given the volume V , temperature T and external field h (with the Ising 
coupling J taken as the energy unit).

-1.0 -0.5 0.0 0.5 1.0
-2.25
-2.20
-2.15
-2.10
-2.05
-2.00

m

F
/
J
V

(T , h) / J = (3.00, 0.00)

The goal of bringing pMF(s) close to p(s) boils down to optimizing the model parameter m to 
minimize the objective function F (V , T , h; m).

◼ Parameter Optimization

The optimal parameter m can be found by solving the saddle point equation (the point 
where gradient vanishes)

∂F(V , T , h; m)

∂m
= 0, (61)

which results in

-h - q J m +T arctanhm = 0. (62)

Verify Eq. (62).Exc
7

Or equivalently written as the mean-field equation (to determine m self-consistently)

m = tanh
q J m + h

T
. (63)
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By solving the mean-field equation, the stable solution (the free energy minimum solution) of 
the magnetization density

m★(T , h) := argmin
m

F(V , T , h; m), (64)

can be found as a function of the temperature T and the external magnetic field h (but not the 
volume V , because is m is intensive).
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T / J

 h = 0: there is a phase transition, with the critical temperature 

Tc = q J . (65)

 T ≥ Tc: Only one stable solution m = 0.  Ising spins are disordered, resulting in zero 
magnetization on average.

 T < Tc: m = 0 is unstable, two stable solutions emerge at m ≠ 0 (as T → 0, m → ±1).  Ising 
spins are ordered (spontaneously align in the same direction), resulting in finite 
magnetization.

 m is also called the order parameter — a local observable that indicates the ordering of 
Ising spins.

 h ≠ 0: there is no sharp transition, only a crossover.

18     PhaseTransitions.nb



 T ≫ q J : m ∼ h /T varies smoothly.

 T ≲ qJ : The anti-aligned solution (h m < 0) will become meta-stable or unstable. The 
aligned solution (h m > 0) is always stable.

 Magnetization curve shows how magnetization m★ responding to external magnetic field h.

 T > Tc: Paramagnetic (spin disordered) phase. Magnetization curve is continuous with 
finite slope near h → 0.

 T < Tc: Ferromagnetic (spin ordered) phase. Magnetization curve is discontinuous across 
h → 0.

 T = Tc: Critical point of the magnetic transition (order-disorder transition). Magnetiza-
tion curve is continuous but with divergent slope near h → 0. 
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Mean field theory of XY model. The XY model is a lattice model of planar spins, 
where each spin can rotate continuously in a plane. The model is defined on a lattice 
with a spin at each site i is represented by an angle θi ∈ [0, 2 π), describing the spin 
orientation with respect to a reference axis (say, the horizontal axis). The spin configu-
ration is denoted as θ = {θi}. The energy function is given by 
E(θ) = -J ∑〈i j〉 cos(θi - θj),
where J is the coupling constant, and the sum runs over all pairs of nearest neigh-
boring sites. Assume the lattice coordination number is q. Consider a mean field 
distribution that is factorizable
pMF(θ) = ∏i pMF(θi),
where the model has two parameters α and Θ:
pMF(θi) = exp(α cos(θi -Θ)) /Z .

0 π

2
π 3 π

2
2 π

0.0
0.2
0.4
0.6
0.8
1.0

θi

p M
F
(θ
i)

(α, Θ) = (1.18, 0.25 π)

(i) Determine the normalization constant Z in pMF(θi).
(ii) Compute the average magnetization density in the horizontal 〈cos θi〉 and the 
vertical 〈sin θi〉 directions based on the mean field distribution pMF(θi), express the 
result as a function of α and Θ.
(iii) Evaluate the average energy E of the system (assuming volume V ). 
(iv) Evaluate the entropy S associated with the mean field distribution pMF(θ).
(v) Compute the variational free energy F = E -T S. Verify that F is only a function 
of α but not Θ. Provide a symmetry argument for the Θ-independence.
(vi) Determine the magnetic transition temperature Tc given the coupling strength J 

and coordination number q within the mean field theory.
(vii)* Find the optimal α as a function of temperature T numerically. Define the 
magnitude of the magnetization density as m = 〈cos θi〉2 + 〈sin θi〉2

1/2, plot the optimal 
m as a function of T . 
————————
Hint: Useful facts about the Bessel function
∫0
2 πcos(n θ) α cos θ θ = 2 π In(α), 

In(α) = 
α

2

n
∑k=0
∞ 1

k! (n+k)!

α2

4

k
.

HW
1
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◼ Model Prediction

Free energy is all we need! Define the mean-field free energy F★(V , T , h) as the minimum 

of the variational free energy F (V , T , h; m):

F(V , T , h; m)
minimize

m=m★(T ,h)

F★(V , T , h) := F(V , T , h; m★(T , h)).
(66)

Recall Eq. (60), it is an upper bound of the true free energy.
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It obeys the following thermodynamic identity

F★ = -P★ V - S★ T -M★ h, (67)

which enables us to compute the following thermodynamic quantities.

 Entropy

S★ = -
∂F★
∂T V ,h

. (68)

0 2 4 6 8
0.0
0.1
0.2
0.3
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T / J

S

h = 0

 Specific heat

cV =
T

V

∂S★
∂T V ,h

= -
T

V

∂2F★
∂T2 V ,h

. (69)
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c V
h = 0

 Mean field theory: cV  becomes discontinuous at T = Tc.

 Beyond mean field: cV  diverges at T = Tc as

cV ∼
1

T -Tcα
, (70)

with a critical exponent α.
Along h = 0: the mean-field free energy F★ becomes discontinuous in its 2nd order derivative 
with respect to T at T = Tc  indicating a 2nd order phase transition. 

 Magnetization

M★ = -
∂F★
∂h V ,T

. (71)

Magnetization density m★ =M★ /V .
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T / J

m
★

h → 0+

 Mean field theory: m★ drops to zero following m★ ∼ (Tc -T )1/2 as T → Tc (from below).

 Beyond mean field: m★ drops to zero as T → Tc following

m★ ∼ (Tc -T )β, (72)

with a critical exponent β.

 Magnetic susceptibility: in the paramagnetic phase, m★ responses to h linearly (for small 
h), a behavior known as linear response. The linear coefficient is defined as susceptibility

χ =
∂m★

∂h
= -

1

V

∂2F★
∂h2 V ,T

. (73)
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χ
h = 0χ → ∞

 Mean field theory: χ diverges as χ ∼ 1 / (T -Tc) as T → Tc (from above).

 Beyond mean field: χ diverges as T → Tc as

χ ∼
1

(T -Tc)γ
, (74)

with a critical exponent γ.

At the critical point T = Tc, χ → ∞ at h = 0, indicating that m★ is no longer linear in h.
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h / J

m
★

T = Tc

 Mean field theory: m★ responses to h as m★ ∼ h1/3 at T = Tc.

 Beyond mean field: m★ responses to h as

m★ ∼ h1/δ, (75)

with a critical exponent δ.

◼ Landau Theory of Phase Transition

◼ Spontaneous Symmetry Breaking

In physics, symmetry refers to the invariance of a system under certain transformations. A 

important class of symmetries are the O(n) symmetries.
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Name 2 ≅ O (1) O (2) O (3)
Meaning 2-fold reflection Circular rotation Spherical rotation

Order
parameter

m m =
m1
m2

m =

m1
m2
m3

Transform m → ±m m →  θ σ
y m m → 



2
θ·σm

It is logically plausible that if the cause has a certain symmetry, its effect will also respect 
the same symmetry.

 For example, if the microscopic energy model E (s) = E(-s) is invariant under the Ising sym-
metry s → -s, the probability distribution p(s) ∝ -β E(s) will inherit the same symmetry, hence 
any macroscopic properties 〈X〉 must also be symmetric,

∀ X : 〈X(s)〉

=

s
X(s) p(s) =

s-s


s
X(-s) p(-s)

=

s
X(-s) p(s) = 〈X(-s)〉.

(76)

 This would imply the magnetization density m := 〈m(s)〉 to vanish, because it is odd under the 
Ising symmetry,

m(s) =
1

V


i

si = -m(-s), (77)

thus 〈m(s)〉 = -〈m(-s)〉 = -〈m(s)〉  m = 0.
However, this is not the case we have seen in the phase diagram.  There can be symmetry 
breaking:

Symm.
(m ≠ 0)

(m > 0)

(m < 0)
ESB

ESB

SSB

0

0

T -Tc

h
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 Explicit symmetry breaking (ESB): When h ≠ 0, the external magnetic field explicitly 
breaks the Ising symmetry, s.t. E(s) is no longer invariant under s → -s. If the cause doesn’t 
have the symmetry, so doesn’t its effect. 

 Spontaneous symmetry breaking (SSB): When h = 0 and T < Tc, while the underlying 
microscopic model E(s) has the Ising symmetry, the system settles into a macroscopic state 
that does not exhibit this symmetry.
SSB presents a paradox where a symmetric cause leads to asymmetric effects. There are 
several interpretations:

 Collective choice: At low temperature, the Ising spins collectively choose a particular 
symmetry breaking order to lower the free energy. SSB is a collective effect driven by 
interaction.

 Historical contingency: At the critical point, the Ising spins fluctuates strongly. Once a 
small, random fluctuation biases towards a symmetry breaking pattern, the bias can be 
amplified by interaction and gets frozen in the system at low temperature. SSB is a histor-
ical contingency driven by critical fluctuations.

 Ergodicity breaking: Ergodicity — the assumption that a system can sample all feasible 
microstate in its equilibrium distribution — can break down when the distribution splits 
into disconnected modes (peaks). Once settled in one mode, the system can hardly explore 
other modes via local fluctuations. The symmetry appears to be broken despite that the 
distribution is still symmetric.

-2 -1 0 1 2
0.0
0.1
0.2
0.3
0.4

m

p
(m

)

T /Tc = 1.00

SSB is an asymmetric illusion in a symmetric probability distribution due to mode 
collapse.

◼ Classification of Phases

Symmetry (and its breaking) serves as one central principles in classifying phases of 
matter: two phases differed by symmetry must be separated by phase transitions, because the 
symmetry can not change continuously.
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Phase Order Broken symmetry
Ferromagnet Spin alignment Spin rotational symmetry
Liquid crystal

(nematic)
Molecule alignment Spatial rotation symmetry

Crystalline solid Atom arrangement
(periodic lattice)

Translation and rotation symmetries

Superfluid Phase coherence
of particles

U (1) symmetry
(particle number conservation)

Electricmagnetic field Phase coherence
of strings

Magnetic 1-form symmetry

◼ Landau Free Energy

Landau theory provides phenomenological approach to phase transition, focusing on the 
order parameter (e.g. m) that characterizes symmetry-breaking phases.

 Given a symmetry G of the system, an order parameter is a local observable that trans-
forms non-trivially under the symmetry action. 

 For example, G = 2 in Ising model is the Ising (spin-flip) symmetry. Given m = 〈si〉,

2 :m → -m, (78)

thus m qualifies as an order parameter, as it can indicate symmetry breaking:

m 
= 0 2 symmetric,
≠ 0 2 symmetry breaking.

(79)

 Landau theory employs a Taylor series expansion of the free energy (density) in terms of 
the order parameter, without considering the microscopic details of the system.

 For example, expanding the variational free energy F (V , T , h; m) in Eq. (58) with respect 
to the order parameter m gives

f :=
F

V
= -T log 2 - h m +

T -Tc
2

m2 +
T m4

12
+…. (80)

Verify Eq. (80).Exc
8

 Landau argues that, in the absence of external field (i.e. h = 0), the free energy density f  
should take the following general form

f (T ; m) = f0(T ) + a(T )m2 + b(T )m4 +… (81)
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 Symmetry argument: With h = 0, the system is 2 symmetric  f (T ; m) must be an 
even function of m as

f (T ; m) = f (T ; -m), (82)

So the expansion Eq. (81) must only contain even powers of m.

 To include an external magnetic field h, simply add -h m to the free energy density:

f (T , h; m) = f (T ; m) - h m

= f0(T ) - h m + a(T )m2 + b(T )m4 +…
(83)

 Symmetry argument: h ≠ 0 explicitly breaks the 2 symmetry, such that f (T , h; m) is no 
longer an even function of m, therefore a linear term -h m is allowed.

◼ Phase Diagram

When m is small (near the critical point), it will be sufficient to consider the first several 
leading terms in the expansion:

 The m0 term f0(T ) is unimportant (unrelated to m).

 The m2 coefficient a(T ), called the tuning parameter, tunes the phase transition:

a(T ) ≈ a0(T -Tc). (84)

Phases along h = 0:

Tuning
parameter

Order
parameter

Phase 2 symmetry

a (T ) > 0 m★ = 0 Disorder Preserved
a (T ) < 0 m★ ≠ 0 Ordered Broken (spontaneously)

 The m4 coefficient b(T ) should be positive to ensure the stability (if not, m6 term must be 
considered). We may assume
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b(T ) ≈ b0 > 0, (85)

for the temperature range of interest (around T ∼ Tc).

Phase diagram in the (a, h) plane (treating b as the energy unit).
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◼ Critical Behaviors

By minimizing the Landau free energy Eq. (81), we can compute:

 the stable solution of order parameter

m★(T ) =
±

a0
2 b0


1/2

(Tc -T )1/2 T < Tc,

0 T ≥ Tc,
(86)

which exhibits m★ ∼ (Tc -T )1/2 behavior near the critical point;
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T /Tc

m
★

 the optimal free energy density

f★(T ) =
f0 -

a02

4 b0
(T -Tc)2 T < Tc,

f0 T ≥ Tc.
(87)

Derive Eq. (86) and Eq. (87).Exc
9

Based on the optimal free energy density, the specific heat can be evaluated
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cV = -T
∂2 f★
∂T2

=

a02

2 b0
Tc T < Tc,

0 T ≥ Tc,
(88)

which jumps across the critical point  a manifestation of 2nd order phase transition.
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Putting back the external magnetic field h, the Landau free energy density takes the form of 
Eq. (83), for which the saddle point equation ∂ f / ∂m = 0 reads

h = 2 a0(T -Tc)m + 4 b0m3. (89)

Derive Eq. (89).Exc
10
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 In the disorder phase (T > Tc), the magnetic susceptibility at h = 0 is given by

χ =
∂m★

∂h h=0
=

1

2 a0(T -Tc)
, (90)

which diverges as χ ∼ (T -Tc)-1 as T → Tc from above, known as the Curie-Weiss law.

 At the critical point T = Tc, a(T ) = 0 vanishes, then Eq. (89) reduces to

h = 4 b0m3, (91)

indicating that m★ responses to h as m★ ∼ h1/3.
Summary: critical exponents predicted by the Landau theory.

Exponent Definition Condition Prediction
α cV ∼ T -Tc-α 0
β m★ ∼ (Tc -T )β T < Tc 1 / 2
γ χ ∼ (T -Tc)-γ T > Tc 1

(92)
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δ m★ ∼ h1/δ T = Tc 3

◼ Limitation of Landau Theory

Landau theory, in its basic form, is a mean field theory, because it only focus on the 
order parameter as an macroscopic average of spin states without microscopic fluctuations. — 

The spin correlations across the space is ignored.

 Limitations of Landau theory:

 Absence of critical fluctuations: Fluctuations are long-ranged and highly correlated 
near the critical point. Ignoring them leads to inaccurate predictions of critical exponents.

Exponent Definition D = 2 D = 3 D = 4 Mean field
α cV ∼ T -Tc-α 0 0.110 0 0
β m★ ∼ (Tc -T )β 1 / 8 0.336 1 / 2 1 / 2
γ χ ∼ (T -Tc)-γ 7 / 4 1.237 1 1
δ m★ ∼ h1/δ 15 4.790 3 3

(93)

 Ignorance of dimensionality: Dimensionality of the system significantly influences crit-
ical phenomena, which is not account for in mean field theories.

 Approaches beyond Landau theory:

 Field theory: Promote the order parameter m to a fluctuating field m(x), e.g.

F =  Dx
1

2
(∂μm)2 + a m2 + b m4 +… , (94)

such that the spatial dimension D can also be incorporated.

 Numerical simulations: Use computer to simulate the system at large scales (e.g. Monte 
Carlo simulation).

 Renormalization group: A powerful framework to analyze how physics systems behaves 
at different length scales, from which critical exponents can be more accurately estimated.

 Conformal bootstrap: A non-perturbative approach leveraging conformal symmetries to 
classify universality classes and solve for critical exponents.

Renormalization Group

◼ Overview

Renormalization group (RG) is 

 An elegant conceptual framework to understand phases and phase transitions,

 A powerful computational approach to identify critical points and estimate critical 
exponents.
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It iteratively coarsening the local degrees of freedom in physical systems, extracting representa-
tive features at every scale, and tracking the flow of effective theories from scale to scale.

 How to identify representative features? - Representation learning.

 How to establish the effective theory from scale to scale? - Coarse graining.

 What is the usage of tracking the flow of effective theories? - Renormalization group flow.

◼ Representation Learning

◼ Multivariate Probabilities

A multivariate random variable (X , Y ,…) is made up of a collection of random vari-
ables, each possible value (x, y,…) ∈ × ×… is assigned a joint probability 
p(x, y,…) = Pr(X = x, Y = y,…). The joint probability also satisfies

 Positivity

p(x, y,…) ≥ 0. (95)

 Normalization



x∈


y∈

… p(x, y,…) = 1.
(96)

For two random variables X , Y

 p(x, y): joint probability. The probability of observing X = x and Y = y jointly.

 p(x): marginal probability. The probability of observing X = x regardless of Y  (before any 
observation is made on Y ).

p(x) = 

y∈

p(x, y).
(97)

 p(x y): conditional probability. The probability of observing X = x after observing Y = y.

p(x y) =
p(x, y)

p(y)
. (98)

The conditional probability is simply proportional to the joint probability, and is normalized 
by the marginal probability for each given condition separately.

Example:

 Joint and marginal distributions:

p(x, y)
y

p(x)
1 2 3

1 0 1
2
0 1

2
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x 2 0 0 1
6

1
6

3 1
6
0 1

6
1
3

p(y) 1
6
1
2
1
3

 Conditional distributions:

 p(x y) = p(x, y) / p(y)

p (x Y = 1) p (x Y = 2) p (x Y = 3)
1 0 1 0

x 2 0 0 1
2

3 1 0 1
2

(100)

 p(y x) = p(x, y) / p(x)
y

1 2 3
p(y X = 1) 0 1 0
p(y X = 2) 0 0 1

p (y X = 3) 1
2
0 1
2

(101)

◼ Action and Probability

In statistical physics, for a set of random variables x with an energy function E (x), we can 
define an equilibrium probability distribution known as the Boltzmann distribution:

p(x) =
1

Z
-β E(x) (102)

Conversely, for any given probability distribution p(x), one can derive an underlying (dimen-
sionless) energy function, called the action in physics, or the negative log likelihood (NLL) 
in math,

S(x) = - log p(x) = β E(x) + log Z . (103)

 This concept of “action” parallels that in classical mechanics, where the principle of least 
action simply states that the most-likely configuration of x is the one that minimizes the 
action S(x) — a straightforward interpretation of Eq. (103).

 log Z is often dropped in describing the action, as it is just a constant shift, not affecting 
how S(x) depends on x, and Z can always be recovered by normalizing p(x).

 Interestingly, S(x) can also be interpreted as the entropy reduction, or the information 

gain, associated with observing the specific state x, because the average entropy of the distribu-
tion p(x) is precisely given by
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S =

x
p(x) S(x) = -

x
p(x) log p(x).

(104)

What a nice coincidence in the use of the symbol “S”!

The action model S(x) and the probability distribution p(x) are equivalent descriptions of 
random variables

p(x) = -S(x). (105)

Which one is more fundamental? - There are two perspectives:

S(x)
statistical physics

machine learning
p(x). (106)

 Statistical physics starts with the theoretical model of action (or energy function) 
S(x) = β E(x) and derive the probability distribution p(x) to characterize the equilibrium 

thermodynamic properties.

 Machine learning starts with the empirical data distribution p(x) and infer or learn a under-
lying action model S(x) that describe or generate the observed data distribution.

◼ Effective Action

The idea of effective action originates from marginalization of probability distributions. 
Let x and z be two sets of random variables. Given a joint distribution p(x, z) described by an 
joint action S(x, z):

p(x, z) = -S(x,z), (107)

if we only care about the distribution of x (regardless of z), we should consider the marginal 
distribution

p(x) =
z
p(x, z) =

z
-S(x,z),

(108)

which defines an effective action (the marginal action) S (x) for x only:

S(x) = - log p(x) = - log
z
-S(x,z).

(109)

The effective action S(x) is related to the joint action S(x, z) by 

-S(x) =
z
-S(x,z).

(110)

The idea can be summarized by the diagram:

p(x, z)
marginal

p(x)

S(x, z)
effective

S(x)
(111)
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Example: interaction mediated by a latent spin

 Consider an Ising model of three Ising variables x0, x1, z0 (grouped into x = (x0, x1) and 
z = (z0)). Suppose that they interact as

w w
x0 x1

z0

with w = β J > 0 being the dimensionless coupling strength (or call the weight in machine 
learning).

 The joint action is

S(x, z) = -w (x0 z0 + x1 z0). (112)

There is no direct interaction between x0, x1.

 However, z0 can mediate an effective interaction between x0and x1,

S(x) = - log
z
-S(x,z)

= - log 

z0=±1

w (x0+x1) z0

= - log (2 cosh(w (x0 + x1))).

(113)

Take w = 1 for example, the values of S(x) for different configurations of x are as follows
x1

+1 -1

x0 +1 -2.01815 -0.693147
-1 -0.693147 -2.01815

 The action is lower if x0 and x1 are aligned  meaning that there is an effective ferromag-
netic interaction between x0 and x1, even if there was no direct interaction between them in 
the original model. 

 In fact, for Ising variables x0, x1, Eq. (113) can be rewritten as

S(x) = -weff x0 x1 + const.,

weff =
1

2
log cosh(2 w) > 0.

(114)

Show that Eq. (114) is consistent with Eq. (113).Exc
11
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 In conclusion, the latent spin z0 can mediate an effective interaction between x0 and x1 with 
an effective interaction strength weff that increases with w.

w w
x0 x1

z0


weffx0 x1

◼ Boltzmann Machine

A Boltzmann machine is a generative model that learns to model the data distribution 

pdat(x) over input variables x by approximating pdat(x) as a Boltzmann distribution of some 
effective action:

pθ(x) =
1

Zθ



z
-Sθ(x,z),

Zθ =

x,z
-Sθ(x,z).

(118)

 Random variables:

 x = {xi} - input variables (describing a sample of data, such as an image).

 z = {zi} - latent variables (introduced to mediate effective interactions/correlations among 
input variables).

Consider xi, zi = 0, 1 as binary variables (like occupation numbers in a lattice gas model), such 
that each sample of x can represent a black-white image (as particles arranged into a pattern 
on the lattice).

x =

 pθ(x) - the model distribution to optimize.
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 Sθ(x, z) - a joint action parametrized by a set of parameters θ (such as the coupling 
strengths). For example,

Sθ(x, z) = -

i,j

Wij xi zj -
i

bix xi -
j

bjz zj

= -x ·W · z - bx · x - bz · z.
(119)

x0
z0

z1

z2

z3

x1

x2

x3

x4

 The weights wij and biases bix, bjz are the model parameters, collectively denoted as 
θ = (W , bx, bz). 

 The setting that the x and z only interact with each other, but not within themselves, is to 
make the training more efficient by Gibbs sampling. This special variant is called the 
restricted Boltzmann machine (RBM).

Objective: to optimize θ to align pθ(x) as close as possible with pdat(x), which can be achieved 
by minimizing the KL divergence, or (in practice) the cross entropy.

ℒθ = DKL(pdat || pθ)

= -

x
pdat(x) log pθ(x) + const. (120)

Training: the training algorithm iteratively samples x from the dataset, computes the loss 
function ℒθ, adjusts parameters θ to minimize ℒθ by gradient descent, until convergence (ther-
mal equilibrium) is reached.
Usage: training yields an optimal action model Sθ(x, z), which, as a generative model, is capable 
of:

 Sample generation: generate new samples x by drawing from the distribution

pθ(x) =
1

Zθ



z
-Sθ(x,z). (121)

 Other task-specific applications

 Anomaly detection

 Data imputation

 Feature extraction (representation learning)
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 Classification

◻ Demonstration

The MNIST (Modified National Institute of Standards and Technology) dataset is a famous 
dataset of hand-written digits. Each digit is represented as a 28 × 28 gray-scale image:

SeedRandom[42];

data = Map[ ] ;

Grid[Partition[data, 4]]

Can an lattice gas model learns to write digits?

 Step 1: write a code to define the restricted Boltzmann machine (RBM) model using PyTorch 
package.

 There are 28 × 28 = 784 input variables in x.

 We choose to use 32 latent variables for z.

I n [ ] : = import torch
import numpy
torch.manual_seed(12) # set random seed
# define the Boltzmann machine model
class RBM(torch.nn.Module):
   def __init__(self, nx=784, nz=32):
       super().__init__()
       self.nx = nx
       self.nz = nz
       self.w = torch.nn.Parameter(5*torch.randn((nx, nz)))  # 
adjusted weight initialization
       self.bx = torch.nn.Parameter(torch.zeros(nx))  # input 
variables bias
       self.bz = torch.nn.Parameter(torch.zeros(nz))  # latent 
variables bias

   def x_to_z(self, x, beta=1):
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       logit_z = torch.nn.functional.linear(x, self.w.T, self.bz)
       return torch.bernoulli(torch.sigmoid(beta*logit_z))

   def z_to_x(self, z, beta=1):
       logit_x = torch.nn.functional.linear(z, self.w, self.bx)
       return torch.bernoulli(torch.sigmoid(beta*logit_x))

   def forward(self, x, steps=5, beta=1):
       for _ in range(steps):
           z = self.x_to_z(x, beta=beta)
           x = self.z_to_x(z, beta=beta)
       return x
   

   def eff_action(self, x):
       bxx = x.matmul(self.bx)
       logit_z = torch.nn.functional.linear(x, self.w.T, self.bz)
       logZ = -torch.nn.functional.logsigmoid(-logit_z).sum(-1)
       return (- bxx - logZ).mean()
   

   def loss(self, x, steps=5):
       x1 = self(x, steps=steps)
       return self.eff_action(x) - self.eff_action(x1)

ExternalFunction System: Python Arguments: {self, nx, nz }

Command: RBM


 Step 2: setup the model, prepare the data, and connect the model to an optimizer. 

I n [ ] : = rbm = RBM()
data = torch.tensor(numpy.array(<*ImageData/@data*>), 
dtype=torch.float).view(-1, 28*28)
optimizer = torch.optim.Adam(rbm.parameters(), lr=0.1, 
weight_decay=0.002)

〉

 Step 3: train the model on the data for 1000 steps.

I n [ ] : = loss_sum = 0.
for k in range(1000):

optimizer.zero_grad()
loss = rbm.loss(data, steps=5)
loss.backward()
optimizer.step()

〉
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loss_sum += loss.item()
if (k+1)%100==0:

print(f'step {k+1:4}: loss = {loss_sum/100:6.2f}')
loss_sum = 0.

step 100: loss = 948.41

step 200: loss = 33.70

step 300: loss = -13.40

step 400: loss = -22.80

step 500: loss = -26.63

step 600: loss = -27.51

step 700: loss = -28.19

step 800: loss = -28.58

step 900: loss = -28.65

step 1000: loss = -28.34

The loss function ℒθ decreases significantly, then gradually converges to the minimum within 
the error range of stochastic fluctuations.

After training, we can use the the model to generate new samples.

 Start with an initial input x, follow the Markov chain Monte Carlo (MCMC) approach to 
obtain a sequence of new samples 

x → x′ → x″ →… (122)

according to the model distribution pθ(x).

 Recall that every action Sθ(x, z) = β Eθ(x, z) can be viewed as an rescaling of its energy func-
tion by an overall scale β. Tuning this temperature parameter T = 1 / β controls the 
strength of thermal fluctuations in the probability model.

T

updating

 Each digits is a (meta)-stable phase of the lattice gas model. 

 Raising and lowering the temperature can anneal the model to its stable phase.

We can open up the model to inspect the learned parameters:

Sθ(x, z) = -x ·W · z - bx · x - bz · z. (123)
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 bx - the chemical potential for the lattice gas.

 W  - the pattern of x interacting with each of the latent variables (there are 32 of them) in z.

bx =

W =

These emergent patterns are the key features automatically extracted by the model from the 
data, demonstrating the power of generative models to perform unsupervised representation 
learning.

Given an input x, the model can infer the latent variables z according to the conditional 
distribution

pθ(z x) =
-Sθ(x,z)

∑x 
-Sθ(x,z)

. (124)

 z serves as an encoding of x in the latent (feature) space.

 By projecting the high-dimensional latent space to a two-dimensional plane, we can visualize 
the arrangement of hand-written digits x in the latent space: we expect similar digits to be 
close to each other.

z
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◼ Coarse Graining

◼ Problem Setup

Consider a 2D Ising model, defined on a square lattice:

i j

 Degree of freedom: s = {si}, each Ising spin si = ±1 is a binary variable on site i.

 The energy model (without external magnetic field)

E(s) = -J
〈i j〉

si sj. (125)

Or the action model

S(s) = β E(s) = -w
〈i j〉

si sj, (126)

with w = β J = J /T being the dimensionless coupling constant.

 Small w: weak coupling, high temperature;

 Large w: strong coupling, low temperature.

 Probability distribution (Boltzmann distribution)

p(s) =
1

Z
-S(s),

Z =

s
-S(s).

(127)

Key idea: Coarse-graining the spin configuration to understand their interactions at a 
higher level (larger scale). This contains three steps:

 Block Partition: partitioning spins into blocks.

 Representation Learning: emergence of coarse-grained (higher-level) spins.

 Decimation: summing over (marginalize) fine-grained (lower-level) spins to obtain an effec-
tive theory for coarse-grained (higher-level) spins.
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◼ Block Partition

Partition the square lattice into 2 × 2 corner sharing blocks.

i j

I

 I  - block index (larger scale).

 i, j - site index (smaller scale).

Due to the corner sharing structure, every site is shared by two adjacent blocks. But the parti-
tion is such designed that every link 〈i j〉 uniquely belongs to only one block, which enables the 
link summation to be split



〈i j〉

=

I


〈i j〉∈I

.
(128)

Apply Eq. (128) to the action in Eq. (126),

S(s) =
I

SI (s), (129)

with the local action model within each block I :

SI (s) = -w 

〈i j〉∈I

si sj. (130)

Correspondingly, the (joint) probability distribution can be written as a product of local 
distributions,

p(s) ∝ -S(s) =
I

-SI (s) ∝
I

pI (s). (131)

 Note: Eq. (131) does not mean the distribution can be factored into independent distributions 
in each block, because the spins are shared between blocks — not independent variables.

◼ Representation Learning

We can focus on each block and try to learn a local representative spin for the 4 indi-
vidual spins in a block.

i j

I →

i

I
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 Spin degrees of freedom:

 s = {si} with si = ±1 - the original fine-grained spin (in blue),

 s′ = {sI′ } with sI′ = ±1 - the emergent coarse-grained spin (in orange), as a representative of 
the fine-grained spins.

 The local action 

SI (s) = -w 

〈i j〉∈I

si sj , (132)

defines a local distribution as a target distribution for a generative model to learn

pI (s) ∝ -SI (s), (133)

in which si interact with each other.
Goal: extract the representative features by generative modeling. 

 Introduce a generative model with the following action

S

I (s, s′) = -w 

i∈I

si sI′ , (134)

where

 si no longer interacts with each other directly, but they all interact with an emergent repre-
sentative spin sI′  at the block center. — the architecture of a restricted Boltzmann machine.

 w  is the model parameter to be optimized. It controls how strong the representative spin 
s′ interacts with the underlying spins s, described by the conditional distribution 

p I (s′ s) =
-S


I (s,s′)

∑s 
-S

I (s,s′)

. (135)
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w = 0.50
s p I (s′ s)

---- - +

---+ - +

--+- - +

-+-- - +

+--- - +

--++ - +

-+-+ - +

-++- - +

+--+ - +

+-+- - +

++-- - +

-+++ - +

+-++ - +

++-+ - +

+++- - +

++++ - +

 Given S

I (s, s′), the model distribution p I (s) of the original spins s is

p I (s) ∝
s′
-S


I (s,s′). (136)

Comparing the target distribution pI (s) (parametrized by w) and the model distribution p I (s) 
(parametrized by w ) for all configurations of s:

w = 0.72 w = 1.18
s pI (s) p I (s)

---- 0.373 0.349
---+ 0.021 0.033
--+- 0.021 0.033
--++ 0.021 0.006
-+-- 0.021 0.033
-+-+ 0.001 0.006
-++- 0.021 0.006
-+++ 0.021 0.033
+--- 0.021 0.033
+--+ 0.021 0.006
+-+- 0.001 0.006
+-++ 0.021 0.033
++-- 0.021 0.006
++-+ 0.021 0.033
+++- 0.021 0.033
++++ 0.373 0.349
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 Loss function: the KL divergence

ℒ = DKL(pI (s) || p I (s))

=

s
pI (s) log

pI (s)

p I (s)
,

(137)

which is a function of w  given w. For each w, find the optimal w  to minimize the KL diver-
gence ℒ.
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 The optimization is not perfect given the non-vanishing KL divergence, indicating that the 
model distribution p I (s) approximates rather than precisely matches the target distribution 
pI (s). 

 However, the small residual KL divergence ( < 0.1 bit) suggests that the approximation is 
sufficiently accurate.

 The approximation can be improved as more representative (latent) spins are introduced, 
see Ref. [1].

 As a result, we obtain the optimal model parameter w (w) as a function of the original 
parameter w.

w

i j

I → w

i

I

The optimization result tells us how to treat the local action SI (s) as an effective action of 
S

I (s, s′) approximately.

Wanda Hou, Yi-Zhuang You. Machine Learning Renormalization Group for Statistical Physics. 
arXiv:2306.11054.

[1]

◼ Decimation

Within each block, replace the local action SI (s) by its optimal approximation S

I (s, s′),
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si
→ si

sI′

the joint action becomes

S

(s, s′) =

I

S

I (s, s′) = -w 

I


i∈I

si sI′ . (138)

 If we marginalize the emergent coarse-grained spins s′, we fall back to the original action for 
the fine-grained spins s approximately



s′
-S


(s,s′) ≃ -S(s). (139)

 However, if we marginalize the fine-grained spins s, we will obtain a new effective action S ′(s′) 
for the coarse-grained spins s′

-S
′(s′) =

s
-S


(s,s′). (140)

si
sI′

sJ′
w →

sI′
sJ′w′

 The fine-grained spins s mediate effective interactions between the emergent coarse-grained 
spins s′, 

S ′(s′) = -w′ 
〈I J 〉

sI′ sJ′ , (141)

with an effective coupling w′ as a function of the original coupling w by (recall Eq. (114))

w′ =
1

2
log cosh(2 w (w)), (142)

where w (w) is given by the following curve.
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 If we rotate the lattice by 45 ° and rescale the lattice spacing by 2 , the effective action 
S ′(s′) in Eq. (141) maps to the original action S(s) in Eq. (126), with the coupling modified 
by w  w′ in Eq. (142).

The coarse graining procedure can be summarized as the following diagram

p(s) p (s, s′) → p′(s′)

S(s) S

(s, s′) S ′(s′)

= ∑I SI (s) → = ∑I S

I (s, s′) …

(143)

 Every step is exact except for the representation learning, where the KL divergence is non-
vanishing (i.e. the learning is not perfect).

 Under coarse graining,

 the lattice up-scales by 2 , i.e. the lattice spacing rescaled by ℓ  ℓ′ = 2 ℓ,

 the action restores the same form (this doesn’t need to be so in general, but let us assume 
it for now),

 the coupling constant is updated by w → w′ (more generally, it is the generative model 
that gets updated).

◼ Renormalization Group Flow

◼ RG Flow Equation

Iteratively coarse graining the system will generate a renormalization group (RG) flow of the 
coupling constant,

w(0)  w(1)  w(2)  w(3) …, (144)

described by a recurrent equation, called the RG flow equation:

w(k+1) = ℛw(k),

ℛ(w) :=
1

2
log cosh(2 w (w)).

(145)

 ℛ denotes the RG transformation, mapping the coupling constant w from one scale to 
another. 
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 Its specific form in Eq. (145) is derived for 2D Ising model under the given RG scheme (i.e., 
block size, number of representative spins, parameter space dimension, etc.). ℛ is expected to 
be different for different models and RG schemes.

The RG transformation looks like

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

w(k)

w
(k
+
1)

wc ≈ 0.486

w - the dimensionless coupling strength (with respect to the temperature)

w = β J = J /T . (146)

 Small w (weak coupling, high temperature) - disordered phase. Under coarse graining:

→ → → → →

Spins are randomly oriented due to strong thermal fluctuations. Their orientations averages 
out, allowing the representative spin to fluctuate more freely, weakening spin correlation at 
larger scales.

 Large w (strong coupling, low temperature) - ordered phase. Under coarse graining:

→ → → → →

Spins are locally aligned, reinforcing the orientation of local representative spins, mediating in 
a mutual alignment of representative spins, enhancing spin correlation at larger scales.

 The two phases are separated by a critical point at w = wc, where the phase transition 

happens.

 At the critical point, w stops flowing — realizing a RG fixed point. The critical value wc 
can be found by solving the fixed point equation 
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wc = ℛ(wc), (147)

where the RG transformation ℛ was defined in Eq. (145). One solution of Eq. (147) is

wc ≈ 0.486, (148)

which is close to the known exact solution of 2D Ising model

wc =
1

2
log1+ 2  ≈ 0.4407. (149)

 At the RG fixed point, the probability model p(s) looks the same at different scales — an 
emergent scale invariance. Under coarse graining:

→ → → → →

The spin configuration looks (statistically) the same as we zoom out (or in) — exhibiting a 
self-similarity. As a consequence, all thermodynamic properties must be scale-free at the 
critical point.

◼ RG Flow Diagram

An RG flow diagram illustrates how the parameters θ = {θ1, θ2,…} of a physical system 

(e.g. temperature, pressure, coupling constants) or a generative model (e.g. model parameters) 
evolves under the RG flow.

-2 -1 0 1 2
-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

 Flow lines: the trajectories of θ under coarse graining. In the continuum limit, the flow of θ 
can be described by a differential RG flow equation

θ

 log ℓ
= - β(θ), (150)

where β(θ) describes the flow velocity at each θ point, and log ℓ measures the RG step (or RG 

“time”) with ℓ being the cutoff length scale (such as the lattice spacing).
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 Fixed points: the points θ★ where the flow lines converge or diverge, i.e. where the flow 

velocity vanishes

β(θ★) = 0. (151)

Solutions of θ★ represent scale-invariant states of the system, where the physical behavior 
does not change under renormalization.

 Stable fixed points (the green, blue points): attracting flow lines from all directions in 
their vicinity, representing stable phases of the system that are robust against 
perturbations.

 Unstable fixed points (the red point): repelling flow lines in at least one directions, 
marking the phase transition between adjacent phases.

 Critical points: unstable fixed points with one relevant perturbation (the small perturba-
tion under which θ flows away from the fixed point).

 Multi-critical points: unstable fixed points with more than one relevant perturbations.

 Critical surface (the red flow line): the line (or surface, more generally) on which the RG 

flow converges to a critical point. It separates the RG flow towards different stable fixed 
points, and serves as the phase boundary.

◼ Perturbations at RG Fixed Points

The RG equation Eq. (150) can be linearized for small perturbations δθ := θ - θ★ near any 
RG fixed point θ★,

δθ

 log ℓ
= -δθ ·∇θ β (θ★) + δθ

2. (152)

Derive Eq. (152) from Eq. (150).Exc
12

Any perturbations can be decomposed as a linear combination of eigen directions na, 

δθ =

a

δθa na, (153)

such that each eigenvector na is a solution of the eigen equation

na ·∇θ β (θ★) = λa na, (154)

with the corresponding eigenvalue λa.

The eigen perturbation (perturbation along an eigen direction) flows as

δθa

 log ℓ
= -λa δθa + δθ

2, (155)
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Derive Eq. (155).Exc
13

whose solution is (with some integration constant A)

δθa = A -λa log ℓ = A ℓ-λa , (156)

meaning that the eigen perturbation always scales with the length scale ℓ in a power-law 

manner with the exponent set by the eigenvalue λa.

 Relevant perturbation: an eigen perturbation δθa with λa < 0, that increases under RG and 
becomes important at large scale, serving as a driving parameter of the phase transition, 
perpendicular to the critical surface.

 Irrelevant perturbation: an eigen perturbation δθa with λa > 0,  that diminishes under RG 

and become insignificant at large scale. Irrelevant perturbations span the tangent space of the 
critical surface.

 Marginal perturbation: an eigen perturbations δθa with λa = 0. There is no RG flow under 
such perturbation — a delicate balance at the threshold between relevance and irrelevance.

 Exact marginal perturbation: all higher order terms in the RG flow equation also 
vanish, such that δθa /  log ℓ = 0 exactly.

 Marginally relevant/irrelevant perturbation: if the higher order terms do not vanish, 
they will decide whether the perturbation is relevant (increasing) or irrelevant (diminish-
ing) under RG flow.

◼ Universal Scaling Behaviors

◼ Scaling Hypothesis

The scale invariance at the critical point implies that all thermodynamic properties of the 
system must be scale-free, i.e. not depending on any specific length scale.

 The only function that is scale-free is the power-law function. For example

y = A ℓ-λ, (157)

any change in the length scale ℓ → b ℓ can be absorbed into the coefficient A, leaving the form 

of the function unchanged.
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y ∼ ℓ-1

 All thermodynamic properties are derivatives of free energy density f = F /V  (the free 
energy per site) with respect to model parameters θ (or Lagrangian multipliers). At the crit-
ical point, they scale with the length scale ℓ as

f ∼ ℓd,

δθa ∼ ℓ
-λa ,

(158)

where d is the spatial dimension, and λa is the RG eigenvalue associated with the eigen 
perturbation δθa.

 The free energy density scaling f ∼ ℓd follows from the fact that a single site at scale ℓ is a 
representative of ℓd microscopic spins, which has a free energy that is ℓd times the average 
free energy of each microscopic spin.

 The parameter scaling δθa ∼ ℓ-λa was given by the solution of the linearized RG equation 
near the critical point, see Eq. (156).

 To make all thermodynamic properties scale invariant, the free energy density f  as a function 
of δθa must take a scale-free form, described by the scaling hypothesis 

f (δθ) = ℓd ϕℓλ1 δθ1, ℓλ2 δθ2,…. (159)

 ϕ is a universal scaling function relating the dimensionless parameters δθa  ℓ-λa with the 
dimensionless free energy f  ℓd, such that the scale ℓ is canceled everywhere, and Eq. (159) 
is scale-free.

◼ Scaling Laws

Take the Ising model for example, the free energy density f (T , h) is a function of the temper-
ature T and the external magnetic field h

 The critical point is at (T , h) = (Tc, 0).

 Eigen perturbations scale as

δT = T -Tc ∼ ℓ-λT ,

δh = h ∼ ℓ-λh .
(160)
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with two exponents λT  and λh to be determined. We may call λT  the temperature expo-
nent and λh the magnetic exponent.

 The scaling form Eq. (159) implies

f (δT , h) = ℓd ϕℓλT δT , ℓλh h. (161)

Given the free energy in Eq. (161), the scaling behavior of thermodynamic properties can be 
determined at the critical point

 Specific heat

cV = -T
∂2 f

∂T2
∼ ℓd+2 λT . (162)

 Magnetization density

m = -
∂ f

∂h
∼ ℓd+λh . (163)

 Spin susceptibility

χ = -
∂2 f

∂h2
∼ ℓd+2 λh . (164)

Derive Eq. (162), Eq. (163), Eq. (164).Exc
14

Instead of scaling with ℓ, we are more interested in how these properties scales with the perturba-
tions δT = T -Tc and h (that can be directly tuned). Using Eq. (160) to eliminate ℓ, one arrives 
at the following scaling laws:

cV ∼ δT -(d+2 λT )/λT ,

m ∼ δT -(d+λh)/λT ,

χ ∼ δT -(d+2 λh)/λT ,

m ∼ h-(d+λh)/λh .

(165)

Recall the definition of critical exponents, they can all be expressed in terms of λT  and λh: 

Definition Exponent
cV ∼ T -Tc-α α = (d + 2 λT ) / λT
m★ ∼ (Tc -T )β β = -(d + λh) / λT
χ ∼ (T -Tc)-γ γ = (d + 2 λh) / λT
m★ ∼ h1/δ δ = -λh / (d + λh)

(166)

As there are only two independent exponents λT  and λh to start with, the four derived expo-
nents α, β, γ, δ must be related by two relations, known as scaling relations.

 Rushbrooke’s relation [2]
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α+ 2 β+ γ = 2. (167)

 Widom’s relation [3]

γ = β (δ- 1). (168)

G. S. Rushbrooke, J. Chem. Phys., 39, 842, (1963).[2]

B. Widom, J. Chem. Phys. 41, 1633 (1964).[3]

◼ Correlation Function

Although scaling laws for cV , m, χ are intuitively accessible for experiments, these quantities 
are not conveniently calculable in theory or numerics. Instead, the correlation function often 
presents a more direct route for calculation.

The connected two-point correlation function G(r) is defined as

G(r) = 〈s(r) s(0)〉- 〈s(r)〉 〈s(0)〉, (169)

where s(r) denotes the spin variable at position r in the space (as the continuum limit of the 
spin si on a site i), distance r away from another spin variable s(0) at the origin (arbitrarily 
chosen).

s (0)

s (r)
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-5
0
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r 2

 At the critical point, the self-similar and scale-free properties necessitate a power-law 

correlation

G(r) ∼
1

rd-2+η
, (170)

thereby defining an exponent η. 

 Away from the critical point, a characteristic length scale — the correlation length ξ — 

emerges, and the correlation function decays exponentially as
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G(r) ∼
1

rd-2+η
-r/ξ. (171)

The correlation length is expected to diverge (ξ → ∞) as the system approaches the critical 
point (for Eq. (171) to reduce to Eq. (170)). The divergence is also a power-law,

ξ ∼ T -Tc-ν, (172)

with another exponent ν.

◼ Hyperscaling Relations

The exponents ν and η are also related to λT  and λh. The relations can be analyzed as follows.

 The exponent ν regards how the correlation length ξ scales. 

 The correlation length ξ describes the typical size of a magnetic domain (a region in 
which spins are predominantly aligned) in the spin configuration.

ξ ≃ 8

ℓ = 1

→
ξ ≃ 4

ℓ = 2

→
ξ ≃ 2

ℓ = 4

 It worth noting that ξ is measured in units of the lattice spacing ℓ. So as ℓ increases under 
coarse graining, ξ will decrease inversely,

ξ ∼ ℓ-1. (173)

 Using the scaling δT ∼ ℓ-λT  in Eq. (160), one finds

ξ ∼ (δT )1/λT . (174)

Comparing with the definition of ν in Eq. (172), ξ ∼ (δT )-ν, one concludes

ν = -1 / λT . (175)

 The exponent η concerns how fast the spin correlation decays with distance (larger η → more 
rapid decay).

 Using the fluctuation-response relation, the variance of magnetization M = ∫ 
d r s(r) 

and the spin susceptibility χ = -
1
V
∂h
2F are related

varM = -T
∂2F

∂h2
= V T χ. (176)

 Given that varM := M 2- 〈M 〉2, the variance can be expressed as an integration over the 
correlation function G(r),
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varM = V  d r G(r). (177)

Derive Eq. (177).Exc
15

Using the form of the correlation function in Eq. (171), G(r) ∼ r-d+2-η -r/ξ, the integra-
tion scales as

varM = V  d r r-d+2-η -r/ξ ∝ V ξ2-η. (178)

Show the scaling of the integration in Eq. (178) by nondimentionalization. Exc
16

 Comparing Eq. (176) and Eq. (178), one arrives at

χ ∼ T -1 ξ2-η. (179)

At the critical point, T = Tc is a constant, and by Eq. (165),

χ ∼ δT -(d+2 λh)/λT ∼ ξ -(d+2 λh), (180)

where the scaling δT ∼ ξλT  in Eq. (174) was used. Comparing Eq. (179) and Eq. (180), 

η = 2+ d + 2 λh. (181)

In conclusion, ν and η can be expressed in terms of λT  and λh:

ν = -1 / λT ,

η = 2+ d + 2 λh.
(182)

 Just by computing the behavior of the correlation function G(r) near the critical point, λT  

and λh can be determined.
Combining Eq. (166) and Eq. (182), more scaling relations can be discovered

 Josephson’s relation [4]

2- α = d ν. (183)

 Stell’s relation [5]

2- η = d
δ- 1

δ+ 1
. (184)

 Fisher’s relation [6]

γ = (2- η) ν. (185)

Here is a table of critical exponents for O(n) models in d dimensional space. [n = 0: polymers; 
n = 1: Ising universality, liquid-gas transition; n = 2: XY universality, superfluid transition; 
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n = 3: Heisenberg universality.] (results from Ref. [7])

α β γ δ ν η

d = 2 n = 1 0 1 / 8 7 / 4 15 1 1 / 4
d = 3 n = 0 0.24 0.30 1.16 4.83 0.59 0.028

n = 1 0.11 0.33 1.24 4.81 0.63 0.034
n = 2 0.00 0.35 1.32 4.79 0.67 0.035
n = 3 -0.12 0.37 1.39 4.79 0.71 0.036

d ≥ 4 0 1 / 2 1 3 1 / 2 0

(186)

 Each distinct set of critical exponents specifies a universality class of critical systems (or 
continuous phase transitions). Systems within a universality class share the same critical 
exponents and universal scaling functions.

 Universality classes are affected by spatial dimensions d and symmetry groups (such as 
O(n)).

 For O(n) models, above the upper critical dimension (d ≥ 4), all models are governed by the 
mean-field universality class, as fluctuations becomes less significant in higher dimensions.

 There is a special class of scaling relations, often referred to as hyperscaling relations, in 
which the spatial dimension d appears explicitly, such as  Eq. (183) and Eq. (184). These 
relations break down for d > 4, where the mean-field exponents prevails.

B. D. Josephson, Phys. Lett. 21, 608 (1966).[4]

G. Stell, Phys. Rev. Lett. 20, 533 (1968).[5]

M. E. Fisher, J. Math. Phys. 5, 944 (1964).[6]

J. Zinn-Justin, Scholarpedia, 5(5):8346 (2010).[7]

◼ Critical Exponent Estimations

◼ Critical Exponent ν

Can we estimate the critical exponents based on the RG flow equation Eq. (145) derived for 
the 2D Ising model?

w(k+1) = ℛw(k),

ℛ(w) :=
1

2
log cosh(2 w (w)).

(187)

 Introduce the perturbation of the coupling constant w near the critical point wc,

δw := w -wc, (188)

to linearize the RG flow equation

δw(k+1) = ∂wℛ(wc) δw(k) +…. (189)
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Derive Eq. (189) based on Eq. (187).Exc
17

 In each RG step, the perturbation δw will be multiplied by a factor ∂wℛ(wc) (the slop of ℛ(w) 
at w = wc). The fact that ∂wℛ(wc) > 1 makes δw a relevant perturbation. 

-1.0 -0.5 0.0 0.5 1.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

δw(k)

δw
(k
+
1)

∂ w
ℛ
(w
c)
≈
1.3
6

 Following Eq. (189), starting with an initial perturbation δw(0), after k steps of iteration, the 
perturbation grows to

δw(k) = (∂wℛ(wc))k δw(0). (190)

Meanwhile, the correlation length ξ shrinks to

ξ(k) = ξ(0)   2 k, (191)

since the lattice scale ℓ enlarges by 2  in each RG step, and the correlation length ξ ∼ ℓ-1 
scales inversely with ℓ.

 Eliminate k from Eq. (190) and Eq. (191), one obtains

ξ ∝ δw-ν, (192)

Eliminate k and show Eq. (192).
Exc
18

with the exponent ν given by

ν =
log 2

log ∂wℛ(wc)
≈ 1.1. (193)

The RG estimation is close to the exact result of ν = 1 for 2D Ising universality class. The estima-
tion can be further improved by introducing more latent variables to improved the accuracy of 
representation learning.

◼ Critical Exponent η

The critical exponent η can be estimated by fitting the power-law decay of the spin correla-
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tion function at the critical point. 

G(r) ∼
1

rd-2+η
. (194)

For 2D Ising model, d = 2, Eq. (194) simply reduces to

Gij ∼
1

rij
η
, (195)

where

 the correlation function G has been redefined on the lattice, indexed by two sites i and j

Gij = 〈si sj〉- 〈si〉 〈sj〉

=

s
si sj p(s) - 

s
si p(s) 

s
sj p(s) .

(196)

 rij := ri - rj  denotes the distance between sites i and j on a lattice, in unit of the lattice 
spacing.

How to evaluate the correlation function? - Sample spin configurations s from the distribution 
p(s), calculate correlation by averaging over many samples. Some sampling methods are:

 Monte Carlo sampling: unbiased, but suffers from critical slowdown (i.e. local update 
becomes slow to equilibrate the system at criticality).

 Inverse RG sampling: biased (approximate), but permits fast direct sampling at the RG 

fixed point. 

 Key idea: starting from a single spin, progressively fine-graining, regenerate large spin 
configurations in logarithmic steps.

→ → → → → → →

 The fine-graining is realized by sampling from the conditional distribution

p(s s′) =
-S


(s,s′)

∑s 
-S

(s,s′)

,

S

(s, s′) = -w c

I


i∈I

si sI′ .
(197)

 s - fine-grained spin configuration.
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 s′ - coarse-grained spin configuration.

 w c - fixed the coupling at the critical value (where the variance of magnetization is 
maximal).

 The sampling is efficient because given s′, the components of s are independent, and can 
be sampled independently (no equilibrium process required).

The correlation indeed decays in a power law.
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By fitting the power-law exponent, η can be estimated. The calculation can be performed on 
systems of different sizes L, the estimated η is converging to η ≈ 0.24, close to the exact value 
η = 1 / 4.
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