
PHYS 130C
Part 3: Quantum Optics

Quantization of Light

◼ Classical Electromagnetic Wave

◼ Lagrangian Description

Lagrangian density for free electromagnetic field:

ℒ =
1

2
E2 -B2, (1)

 Electromagnetic field is the physical observable:

 E - electric field,

 B - magnetic field,

E = -∇Φ- ∂tA,

B = ∇ ×A.
(2)

 Note: the speed of light c = 1 is set to unity.

 Gauge field: (Φ, A) as generalized coordinates (state variables)

 Φ - scalar potential,

 A - vector potential.

◼ Maxwell Equations

The Maxwell equations describes the motion of electromagnetic field. In the free space 
(without sources), they are

∇ ×E + ∂tB = 0,

∇ ·B = 0,

∇ ·E = 0,

∇ ×B - ∂tE = 0.

(3)



 The first two equations follows from Eq. (2), by definition.

Verify that Eq. (2) implies the first two equations in Eq. (3).Exc
1

 The last two equations follows from the variational principle δℒ = 0,

δℒ

δΦ
= 0 ⇒ ∇ ·E = 0,

δℒ

δA
= 0 ⇒ ∇ ×B - ∂tE = 0.

(4)

Drive Eq. (4).Exc
2

◼ Gauge Structure and Gauge Fixing

Gauge structure: physical observables E and B are invariant under the following gauge 
transformations induced by any scalar field θ,

A → A+∇θ,

Φ → Φ- ∂t θ.
(5)

Show that the gauge transformation Eq. (5) leaves Eq. (2) invariant.Exc
3

 Gauge structure is a redundancy in the gauge theory: there are multiple state variables 
(gauge field Φ, A) encoding the same physical observables (electromagnetic field E, B).

 Gauge fixing is a procedure to eliminate the gauge redundancy, by using gauge transforma-
tion to (partially) fix the gauge field configuration. 

The Coulomb gauge is one commonly used gauge choice:

Φ = 0,

∇ ·A = 0.
(6)

Gauge fixing procedure:

 Freedom to use: θ field (through out the spacetime).

 If Φ ≠ 0, use Φ → Φ- ∂t θ to fix Φ = 0, by setting

θ = 
0

t
ⅆ t Φ + θt=0, (7)

where θt=0 is still free to tune through out the space.

 With Φ = 0 fixed, E = -∂tA, then the Coulomb law implies

∇ ·E = 0 ⇒ -∂t∇ ·A = 0 ⇒ ∇ ·A = ∇ ·At=0. (8)
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 At the t = 0 time slice, if ∇ ·At=0 ≠ 0, use At=0 → At=0 +∇θt=0 to fix ∇ ·At=0 = 0, by solving for 
θt=0 from

∇ ·At=0 +∇2 θt=0 = 0. (9)

Then ∇ ·A = 0 is also fixed. 
[Almost all freedom of θ has been used, only the global shift of θ is still free, which corre-
sponds to a global U(1) symmetry associated with electric charge conservation.]

Under Coulomb gauge, Φ = 0 is fixed, A remains as the generalized coordinate (with the 
constraint ∇ ·A = 0), the conjugate generalized momentum is

∂ℒ

∂(∂tA)
= -E. (10)

◼ Hamiltonian Description

Hamiltonian density for free electromagnetic field:

ℋ =
1

2
E2 +B2, (11)

Derive the Hamiltonian density Eq. (11) from the Lagrangian density Eq. (1).Exc
4

which might as well be written in terms of the generalized coordinate A and the generalized 
momentum -E as

ℋ =
1

2
E2 + (∇ ×A)2. (12)

 Hamiltonian dynamics

∂tA = -
∂ℋ

∂E
⇒ ∂tA = -E,

∂tE =
∂ℋ

∂A
⇒ ∂tE = -∇ × (∇ ×A) = ∇2A-∇(∇ ·A).

(13)

Use the Coulomb gauge ∇ ·A = 0, and combine the equations of motion, the vector potential 
satisfy a wave equation,

∂t
2A-∇2A = 0. (14)

◼ Electromagnetic Wave

The solution of Eq. (14) describes the electromagnetic wave in the free space,
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A(r, t) = 
k

Ak ⅇ-ⅈ ωk t+ⅈ k·r. (15)

 The angular frequency ωk must satisfy the dispersion relation

ωk = k, (16)

where the speed of light has been set to c = 1, compared to the general form of ωk = c k.

Verify that Eq. (15) is a general solution of Eq. (14), given Eq. (16).Exc
5

 Ak is the wave amplitudes (i.e. the Fourier components of A, as a complex vector) at each 
wave vector k. The gauge constraint ∇ ·A = 0 further requires

k ·Ak = 0, (17)

meaning that the electromagnetic wave is transverse. For any k, there are only two transverse 
directions, hence, two independent polarization directions, labeled by unit vectors ek,α 
(α = 1, 2), such that

Ak = Ak,1 ek,1 +Ak,2 ek,2 = 
α=1,2

Ak,α ek,α, (18)

where Ak,α is the wave amplitude of polarization α with wave vector k.

 The corresponding solution of electromagnetic field follows from E = -∂tA and B = ∇ ×A,

E(r, t) = ⅈ
k

ωk Ak ⅇ-ⅈ ωk t+ⅈ k·r,

B(r, t) = ⅈ
k

k ×Ak ⅇ-ⅈ ωk t+ⅈ k·r.
(19)

Here is an illustration of linearly polarized electromagnetic wave.
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◼ Quantization of Electromagnetic Field

◼ Canonical Quantization (Real Space)

Canonical quantization is a procedure to transition from classical mechanics to quantum 
mechanics. It is based on the principle of promoting classical observables (like position and 
momentum) to operators acting on a Hilbert space.
General Procedure:

 Identify the classical phase space: a classical system described by generalized coordinates qi 
and their conjugate momenta pi := ∂L / ∂q i.

 Promote classical variables to quantum operators:

qi → q i, pi → p i,

H → H

= H (q i, p i).

(20)

 Impose canonical commutation relations between conjugate pairs of coordinates and 
momenta (setting ℏ = 1):

q i, q j = p i, p j = 0,

q i, p j = ⅈ δij 𝟙.
(21)

(For simplicity, we will omit the operator symbol   in the following, with the understanding 
that any classical variable in quantum mechanics is promoted to an operator.)

Apply to electromagnetic field. Given that A and -E are generalized coordinates and 
momenta [recall Eq. (10)], their canonical commutation relations reads

[Ai(r), Aj(r′)] = [-Ei(r), -Ej(r′)] = 0,

[Ai(r), -Ej(r′)] = ⅈ δij δ(r - r′) 𝟙.
(22)
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 Field Operators: define the following (vectorial) operators

A(r) = (Ax(r), Ay(r), Az(r)),
E(r) = (Ex(r), Ey(r), Ez(r)),

(23)

at each point r in the space.

 Each component is a Hermitian operator (corresponding to a real variable in the classical 
limit)

Ai
†(r) = Ai(r),

Ei
†(r) = Ei(r).

(24)

 In general, A and E are non-commuting operators. They only commute (become indepen-
dent) if they are

 at different spacial positions,

 or along perpendicular directions.

◼ Canonical Quantization (Momentum Space)

Fourier transformation allows us to express field operators in the momentum space, 
rather than in real space, which can simplify calculations.

 Forward transformation:

Ak =  ⅆ3r A(r) ⅇ-ⅈ k·r,

Ek =  ⅆ3r E(r) ⅇ-ⅈ k·r.
(25)

 Backward transformation:

A(r) = 
k

Ak ⅇⅈ k·r,

E(r) = 
k

Ek ⅇⅈ k·r.
(26)

Note: ∑k := (2 π)-3 ∫ ⅆ3k to properly normalize.
The Fourier components Ak and Ek are also operators, constructed as linear combinations of 
A(r) and E(r) respectively.

 Ak and Ek are no longer Hermitian operators by themselves. Instead, their Hermitian conju-
gates are

Ak
† = A-k,

Ek
† = E-k.

(27)

 Commutation relations (with ℏ = 1):
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Ai,k, Aj,k′
†  = -Ei,k, -Ej,k′

†  = 0,

Ai,k, -Ej,k′
†  = ⅈ δij δkk′ 𝟙.

(28)

Verify Eq. (28), given Eq. (22).Exc
6

Further impose ∇ ·A = 0 (Coulomb gauge) and ∇ ·E = 0 (Gauss law) for electromagnetic field in 
the free space, the Fourier components Ak and Ek only contains the transverse modes, as in 
Eq. (18),

Ak = 
α=1,2

Ak,α ek,α,

Ek = 
α=1,2

Ek,α ek,α,
(29)

where ek,α (α = 1, 2) are orthogonal unit vectors, characterizing independent transverse polariza-
tion directions (i.e. k · ek,α = 0).

 Ak,α and Ek,α are not Hermitian operators. As inherited from Eq. (27), their Hermitian conju-
gates are

Ak,α
† = A-k,α,

Ek,α
† = E-k,α.

(30)

 Commutation relations (with ℏ = 1):

Ak,α, Ak′,α′
†  = -Ek,α, -Ek′,α′

†  = 0,

Ak,α, -Ek′,α′
†  = ⅈ δαα′ δkk′ 𝟙.

(31)

◼ Hamiltonian Operator

The Hamiltonian operator (under the Coulomb gauge)

H =
1

2

k,α

Ek,α
† Ek,α + ωk2 Ak,α

† Ak,α, (32)

where ωk = k is set by the dispersion relation.

Derive Eq. (32).Exc
7

 H  accounts for contributions from all possible wave modes, labeled by the wave vector k 
and the polarization index α.

 Ak,α and Ek,α are quantum operators satisfying the commutation relation in Eq. (31).

 Ek,α
† Ek,α originated from the E2 term, representing the kinetic energy of the electromag-

netic field.
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 ωk2 Ak,α
† Ak,α originated from the B2 term, representing the potential energy of the electromag-

netic field.

◼ Photons

For each mode of k and α, define the photon creation ak,α
†  and annihilation ak,α operators as

ak,α =
1

2
ωk

1/2 Ak,α - ⅈ ωk
-1/2 Ek,α,

ak,α
† =

1

2
ωk

1/2 Ak,α
† + ⅈ ωk

-1/2 Ek,α
† .

(33)

The inverse combination is

Ak,α =
1

2
ωk
-1/2ak,α + a-k,α

† ,

Ek,α =
ⅈ

2
ωk

1/2ak,α - a-k,α
† .

(34)

Derive Eq. (34) by inverting Eq. (33).Exc
8

 They satisfy the following commutation relations

[ak,α, ak′,α′] = ak,α
† , ak′,α′

†  = 0,

ak,α, ak′,α′
†  = δαα′ δkk′ 𝟙.

(35)

Derive Eq. (35) from Eq. (31), given the definition Eq. (33).Exc
9

 Photon number operator:

nk,α = ak,α
† ak,α. (37)

By quantum bootstrap, Eq. (35) requires that the eigenvalues of nk,α are quantized to 
natural numbers

nk,α = 0, 1, 2, … ∈ ℕ. (38)

 Photons are Bosons: their creation ak,α
†  and annihilation ak,α operators satisfy the 

bosonic commutation relations, and each photon mode (labeled by k and α) can be occu-
pied by an arbitrary number nk,α of photons.

◼ Photon Energy

The total energy of the electromagnetic field is
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H =  ⅆ3r
1

2
E2 +B2. (39)

From Eq. (32), H  can be written as

H = 
k,α

ωk nk,α +
1

2
. (40)

 Every photon mode is (mathematically) equivalent to a simple harmonic oscillator with quan-
tized energy levels. 

 Adding/removing each photon (nk,α → nk,α ± 1) will cause the total energy H  to increase/de-
crease by ωk = k (or ℏ ωk = ℏ c k, if the units are restored).

⇒ Energy quantization: each photon of wave vector k and polarization α carries ℏ ωk unit 
of energy.

 Even if nk,α = 0 (in the photon vacuum state), there is still 1
2
ℏ ωk energy associated with 

each photon mode, known as the vacuum energy.

Evac = 
k,α

ωk
2

= 
k

ωk. (41)

◼ Field Operators

The field operators can be recovered in terms of photon operators,

 Vector potential

A(r) =
1

2

k,α

ωk
-1/2 ek,αak,α ⅇⅈk·r + ak,α

† ⅇ-ⅈk·r. (42)

 Electromagnetic field

E(r) =
ⅈ

2

k,α

ωk
1/2 ek,αak,α ⅇⅈk·r - ak,α

† ⅇ-ⅈk·r,

B(r) =
ⅈ

2

k,α

ωk
-1/2 k × ek,αak,α ⅇⅈk·r - ak,α

† ⅇ-ⅈk·r.
(43)

Verify Eq. (42) and Eq. (43).Exc
10

◼ Photon Momentum

The total momentum carried by the electromagnetic field (a.k.a. the Poynting vector) is
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K =  ⅆ3r E ×B. (44)

Substitute Eq. (43) into Eq. (44), 

K = 
k,α

knk,α. (45)

Derive Eq. (45).Exc
11

 Adding/removing each photon (nk,α → nk,α ± 1) will cause the total  momentum K to 
increase/decrease by k (or ℏ k, if the units are restored).

⇒ Each photon of wave vector k and polarization α carries ℏ k amount of momentum.

◼ Photon Spin

The total spin angular momentum carried by the electromagnetic field is

S =  ⅆ3r E ×A. (46)

Substitute Eq. (43) into Eq. (46),

S = 
k,α

ⅈk

k
ak,1 ak,2

† - ak,1
† ak,2. (47)

Derive Eq. (47).Exc
12

The spin operator S is not diagonal in the photon polarization space, i.e. it mixes different 
polarization modes. 

 Define the circular polarization basis

ak,± =
1

2
(ak,1 + ⅈ ak,2),

ak,±
† =

1

2
ak,1

† - ⅈ ak,2
† ,

(48)

where ± labels the left/right circular polarized light.
The spin operator is now diagonalized

S = 
k,α

k

k
(nk,+ - nk,-), (49)

where nk,± = ak,±
† ak,± is the number of left/right circular polarized photons.
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 Each left/right circular polarized photon carries spin-1 angular momentum along/against 
the wave vector direction k / k (the light propagation direction).

◼ Quantum Vacuum Fluctuations

◼ Uncertainty Relation

There is an uncertainty relation between the electric and magnetic fields

varEk + varE-k

2

varBk′ + varB-k′

2
≥ ωk2 δkk′, (50)

where the variance can be defined for the electric (varEk) and the magnetic (varBk) field 
respectively at any wave vector k,

varEk := Ek
† ·Ek - Ek

† · 〈Ek〉,
varBk := Bk

† ·Bk - Bk
† · 〈Bk〉.

(51)

Prove the uncertainty relation Eq. (50).Exc
13

 Noise trade-off: It highlights the inherent quantum noise present in electromagnetic fields 
— reducing the noise in one field (E or B) inevitably leads to an increase in the noise of the 
other.

 Frequency dependence: The bound ωk2 grows with the mode frequency — higher frequency 
field exhibits stronger quantum noise.

Let us check the uncertainty relation explicitly on the photon number eigenstate (Fock 
state)

nk,1,nk,2;n-k,1,n-k,2〉. (56)

 The uncertainties of electric and magnetic fields are given by

varEk =

varBk = 
α

ωk
2

(nk,α + n-k,α + 1), (57)

therefore the uncertainty relation holds for all Fock states (∀ nk,α ∈ ℕ)

varEk varBk = ωk2 
α

1

2
(nk,α + n-k,α + 1)

2

≥ ωk2. (58)

Calculate the variances in Eq. (57) on the state Eq. (56).Exc
14

 Specifically, the uncertainty relation is saturated when 
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∀ : nk,α = 0, (59)

i.e. on the photon vacuum state vac〉 = 0,0;0,0〉. We say vac〉 is a minimal uncertainty 
state. 

 The finite amount of vacuum energy is also a consequence of the uncertainty relation. 
Given that

Ek
† ·Ek Bk

† ·Bk ≥ varEk varBk ≥ ωk2, (60)

The total energy is therefore bounded

E = 〈H 〉 =
1

2

k

Ek
† ·Ek + Bk

† ·Bk

≥
1

2

k

Ek
† ·Ek +

ωk2

Ek
† ·Ek

=
xk=Ek

† ·Ekωk

k

ωk
2

xk +
1

xk

≥ 
k

ωk = Evac.

(61)

The lower bound turns out to match the vacuum energy Evac, as discussed in Eq. (41).

◼ Casimir Effect: Vacuum Energy is Real

The ωk / 2 vacuum energy associated with each photon mode is real and has a measurable 
physical effect—the Casimir effect: two uncharged, parallel conducting plates in vacuum experi-
ence an attractive force due to quantum vacuum fluctuations of the electromagnetic field.

To avoid the complications, we are going to demonstrate the effect

 in (1+ 1) spacetime dimension,

 and for scalar field (like for sound waves).

Two plates (walls) separated by distance d. The standing wave between the plates:

ψn(x) = sin
n π x

d
. (62)
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d

n = 3

 n = 1, 2, 3, … is the mode index, labeling different wave modes on which bosons (like 
phonons) can occupy.

 Oscillation frequency (assuming linear dispersion)

ωn = kn =
n π

d
. (63)

The vacuum energy between the two plates:

Evac(d) = 
n=1

∞

ωn =
π

d

n=1

∞

n =!? -
π

12 d
. (64)

0.0 0.2 0.4 0.6 0.8 1.0
-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5

d

E
va

c

The energy Evac is lower when the plates are closer (smaller d) — the quantum vacuum fluctua-
tions wants to pull the plates together, mediating an attractive force between the plates!

How on earth can the sum of all natural numbers be - 1
12

?

 A brute-force yet incorrect answer (by Srinivasa Ramanujan):

S = 1 + 2 + 3 + 4 + 5 + 6 + …
4 S = 4 + 8 + 12 + …
-3 S = 1 - 2 + 3 - 4 + 5 - 6 + …

=x=1 1 - 2 x + 3 x2 - 4 x3 + 5 x4 - 6 x5 + …
= (1+ x)-2

=x=1 1 / 4

(65)

Therefore, S = -1 / 12. However, S is not a convergent series to start with, so the above manip-
ulations are illegitimate.

 Regularization — a correct understanding (by Terence Tao, see Ref. [1]): introduce a regular-
ization function η(n /N ) that smoothly suppresses large terms in the summation across a cut-
off scale N , while approximates the original divergent series as N → ∞:
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n=1

∞

n η(n /N )
N→∞


n=1

∞

n. (66)

Examples:


n=1

∞

n ⅇ-n/N = N 2 -
1

12
+

1

240 N 2
+𝒪

1

N 4
,


n=1

∞ n

(n /N )3 + 1
=

2 πN 2

3 3
-

1

12
+𝒪

1

N 4
,


n=1

∞ n

(n /N )4 + 1
=

πN 2

4
-

1

12
+𝒪

1

N 4
,


n=1

∞ n

(n /N )2 + 12
=

N 2

2
-

1

12
-

1

60 N 2
+𝒪

1

N 4
,

…

(67)

Verify Eq. (67) by Mathematica.Exc
15

 The leading term diverge as N 2 (confirming the divergent nature of the series), but its 
coefficient depends on the choice of the regularization function η(n /N ), making it non-
universal.

 The sub-leading term is always -1 / 12, which is universal, independent of the choice of 
regularization. — This represents an intrinsic and invariant feature hidden beneath the 
apparent divergence of the series.

In the context of Casimir effect, the non-universal regularization reflects our ignorance about 
the behavior of high-frequency modes in a physical system.

 In reality, the mode frequency can grow indefinitely towards infinity (e.g. materials impose a 
natural cutoff at plasma frequency), the frequency summation must be regularized

Evac(d) = 
n=1

∞

ωn ⅇ-a ωn =
d

π a2
-

π

12 d
+…. (68)

 Consider the vacuum energy both inside and outside the plates,

Evac
total(d) = Evac(d) +Evac(L- d), (69)

assuming L → ∞ is the size of the full space outside, the attractive force between the plates 
is the only thing we can measure

FCasimir(d) = -∂d Evac
total(d)

= -
1

π a2
-

π

24 d2
+…. +

1

π a2
+

π

24 (L- d)2
+…. (70)
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=a→0,L→∞ -
π

24 d2
,

(70)

where the leading non-universal divergence cancels exactly. 
The Casimir force between conducting plates has been experimentally measured and confirmed 
[2,3]. — 1+ 2+ 3+… = -1 / 12 is real!
Terence Tao. The Euler-Maclaurin formula, Bernoulli numbers, the zeta function, and real-
variable analytic continuation. (2010)
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Lett. 78, 5 (1998).

[2]

Umar Mohideen, Anushree Roy. Precision Measurement of the Casimir Force from 0.1 to 0.9 
microns. arXiv:physics/9805038 (1998).
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Quantum Coherence of Light

◼ Light-Matter Interaction

◼ Dipole Approximation

In most situations, the light-matter coupling is through the electric field E interacting 
with a dipole moment d of atoms or molecules, described by the Hamiltonian

Hcp = -E · d. (71)

The electric field operator is given by Eq. (43)

E(r) =
ⅈ

2

k,α

ωk
1/2 ek,αak,α ⅇⅈk·r - ak,α

† ⅇ-ⅈk·r. (72)

 Mode Parity: Eq. (72) can be further decomposed into

E (r) = Eeven(r) +Eodd(r), (73)

 the even parity part (i.e. Eeven(r) = Eeven(-r))

Eeven(r) =
ωk

1/2

2
cos(k · r) ek,α ⅈ ak,α - ak,α

† , (74)

 the odd parity part (i.e. Eodd(r) = -Eodd(-r))

Eodd(r) = -
ωk

1/2

2
sin(k · r) ek,α ak,α + ak,α

† . (75)

 Single-Mode Approximation: focus on a specific mode of fixed wavelength, parity (e.g. 
odd), and polarization, 
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E = -
ω1/2

2
sin(k · r) e a + a†. (76)

 ω - photon energy (mode frequency),

 e - the polarization vector of the mode,

 a†, a - the creation and annihilation operators of the mode, such that the electromag-
netic field energy is given by

Hem = ω a† a +
1

2
(77)

Under Eq. (76), the light-matter coupling Hamiltonian in Eq. (71) becomes

Hcp = g d a + a†, (78)

where

 g - the light-matter coupling strength (can have spacial dependence, following the mode 
profile in the space)

g =
ω

2

1/2
sin(k · r) (79)

 d - dipole operator describing how matter responses to electric field along the polarization e 
direction:

d = e · d. (80)

◼ A Two-Level Atom

Atoms are building blocks of matter. The electromagnetic field largely  electrons within 
them. Electrons occupy discrete energy levels, and transitions between these levels are respon-
sible for emission and absorption of light.

In many situations, it is sufficient to consider only two relevant levels of an atom:

ω0

g〉

e〉

- ω0

2

0

ω0

2

Energy

 g〉 - ground state of the atom,

 e〉 - exited state of the atom,
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 ω0 = Ee -Eg - atom excitation energy (energy level splitting, transition frequency).

This simplification leads to the concept of a two-level atom — also viewed as a qubit, for 
which Pauli operators can be defined:

σz = e〉 〈e - g〉 〈g,

σx = g〉 〈e + e〉 〈g.
(81)

 Inversion operator: σz splits the energy levels between g〉 and e〉,

Hatm =
ω0

2
σz. (82)

 Transition operator: σx mixes g〉 and e〉, leading to different dipole moments (by 
deforming the electron density):
Eigenvalue Eigenstate Wave func. Density dist.

σx = +1 1
2
(g〉 + e〉)

σx = -1 1
2
(g〉 - e〉)

This implies d ∝ -σx (any proportionality constant here can be absorbed into the coupling 
constant g below), and the light-matter compiling Hamiltonian in Eq. (78) becomes

Hcp = -g σx a† + a, (83)

for the two-level atom.

◼ Jaynes-Cummings Model

The Jaynes-Cummings model is a simplified model, describing the interaction between a two-
level atom (i.e. a qubit) and a single mode electromagnetic field.

Put together Eq. (77), Eq. (82) and Eq. (83), the Jaynes-Cummings model is given by the 
total Hamiltonian

H = Hatm +Hem +Hcp, (84)

which reads

H =
ω0

2
σz +ω a† a +

1

2
- g σx a† + a. (85)

 Raising and Lowering Operators: Introduce σ± to raise and lower the electron between 
levels
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σ+ = e〉 〈g,

σ- = g〉 〈e,
(86)

such that, by definition Eq. (81),

σx = σ+ + σ-. (87)

 Decoupled Operator Dynamics: In the decoupled limit g → 0, the operators evolves as

a(t) = a(0) ⅇ-ⅈ ω t, a†(t) = a†(0) ⅇⅈ ω t;

σ±(t) = σ±(0) ⅇ±ⅈ ω0 t.
(88)

Show that Eq. (88) satisfies the Heisenberg equation ∂t A = ⅈ [H , A] that governs the 
operator dynamics, for H  in the g → 0 limit.

Exc
16

 Rotating Wave Approximation: The light-matter coupling Hamiltonian Hcp can be 
expanded as

Hcp = -g (σ+ + σ-) a† + a

= -g σ+ a† + σ- a† + σ+ a +σ- a.
(89)

For small g, the approximate time dependence of these terms are

σ+ a† ~ ⅇⅈ (+ω0+ω) t,

σ- a† ~ ⅇⅈ (-ω0+ω) t,

σ+ a ~ ⅇⅈ (+ω0-ω) t,

σ- a ~ ⅇⅈ (-ω0-ω) t.

(90)

When the level spacing ω0 and the photon frequency ω are comparable (i.e. ω0 ≈ ω), 
ⅇ±ⅈ (ω0+ω) t (σ+ a† and σ- a) oscillate much more rapidly than ⅇ±ⅈ(ω0-ω) t (σ- a† and σ+ a), leading 
to their effect averaging out to zero over time. Thus Hcp reduces to

Hcp = -g σ- a† + σ+ a, (91)

under the rotating wave approximation.

 σ- a† := g〉 〈e ⊗ a† - atom decays from e〉 to g〉 to emit a photon.

 σ+ a := e〉 〈g ⊗ a - atom excites from g〉 to e〉 to absorb a photon.

The total Hamiltonian Eq. (85) reduces to

H =
ω0

2
σz +ω a† a +

1

2
- g σ- a† + σ+ a, (92)

which is widely referred to as the Jaynes-Cummings model.

◼ Rabi Oscillation

A two-level atom can emit and absorb a photon, exchanging energy coherently with the 
electromagnetic field in an oscillatory manner, leading to periodic transitions between its ground 
and excited states. — a phenomenon known as the Rabi oscillation.
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A two-level atom can emit and absorb a photon, exchanging energy coherently with the 
electromagnetic field in an oscillatory manner, leading to periodic transitions between its ground 
and excited states. — a phenomenon known as the Rabi oscillation.

To understand Rabi oscillation, consider two relevant states

 e〉 ⊗ n〉: excited state atom with n photons,

 g〉 ⊗ n+1〉: ground state atom with n + 1 photons.

They span a 2-dimensional Hilbert space,

ℋ = span {e〉 ⊗ n〉, g〉 ⊗ n+1〉}. (93)

in which the Jaynes-Cummings model can be represented as

H ≏
ω0

2
+ω n + 1

2
 -g n + 1

-g n + 1 - ω0

2
+ω n + 3

2


, (94)

or expanded in terms of Pauli matrices

H = E0 I +
Δ

2
Z - g n + 1 X, (95)

with

I =
1 0
0 1

, Z =
1 0
0 -1

, X =
0 1
1 0

, (96)

where

 E0 := ω (n + 1) is a background energy of the system,

 Δ := ω0 -ω is difference between the atomic level resonant frequency ω0 and the photon fre-
quency ω, also called the detuning.

 g is the coupling strength, and n is the photon number.

Starting from the initial state e〉 ⊗ n〉:

0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

t

pr
ob

ab
ili

ty

e〉 〈e
g〉 〈g

 The Rabi oscillation frequency is given by
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Ω = Δ2 + 4 g2(n + 1) . (97)

Prove Eq. (97).Exc
17

 Vacuum Rabi oscillations: Ω remains finite even if n = 0 ⇒ Rabi oscillation can occur in 
vacuum (typically inside a high-quality optical cavity).

◼ Coherent State

◼ Single-Mode Photon

Let us focus on a single photon mode. Eq. (42) and Eq. (43) are reduced to

A =
1

2
ω-1/2 e a ⅇⅈk·r + a† ⅇ-ⅈk·r,

E =
ⅈ

2
ω1/2 e a ⅇⅈk·r - a† ⅇ-ⅈk·r,

B =
ⅈ

2
ω-1/2 k × e a ⅇⅈk·r - a† ⅇ-ⅈk·r.

(98)

 a, a† - photon annihilation, creation operators, satisfying

a, a† = 𝟙. (99)

The photon vacuum state is defined by

a vac〉 = 0. (100)

We already known that the vacuum state vac〉 is a minimal uncertainty state of the electromag-
netic field.

◼ Definition

Are there any other minimal uncertainty states besides vac〉?

Yes, they are known as the coherent state (or called Glauber state). Each coherent state 
α〉 is labeled by a complex number α ∈ ℂ and defined as the the eigenstate of the annihilation 
operator a with the eigenvalue α.

a α〉 = α α〉. (101)

Note that the operator a is non-Hermitian, 

 its eigenvalues α ∈ ℂ can be complex,

 its eigenstates with different eigenvalues may not be orthogonal, i.e. 〈α1 α2〉 ≠ δ(α1 - α2).
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 Nevertheless, we do assume that α〉 is normalized, i.e. 〈α α〉 = 1.

Eq. (101) also implies

〈α a† = 〈α α*. (102)

Eq. (101) and Eq. (102) enables us to evaluate operator expectation values conveniently on the 
coherent state: 

〈α a α〉 = α,

〈α a† α〉 = α*,

〈α an α〉 = αn,

〈α a†n α〉 = (α*)n,

〈α a† a α〉 = α* α = α2,

〈α a a† α〉 = 〈α a† a + 𝟙 α〉 = α2 + 1.

(103)

◼ Physical Properties

Assuming the complex parameter α admits the polar decomposition

α = α ⅇⅈ φ. (104)

α

φ
α

Re α

Im α

ℂ

The observable expectation values on the coherent state α〉 are

 Linear properties in fields:

〈αA α〉 = (2 / ω)1/2 e α cos(k · r + φ),

〈αE α〉 = -(2 ω)1/2 e α sin(k · r + φ),

〈αB α〉 = -(2 / ω)1/2 k × e α sin(k · r + φ),
(105)

Derive Eq. (105) using Eq. (103).Exc
18

The coherent state α〉 of a photon mode (of wave vector k and polarization e) describes a 
snapshot of electromagnetic wave in the space with

 α - wave amplitude,

 φ - phase of the wave.
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 Quadratic properties in fields:

〈αE† ·E α〉 = 〈αB† ·B α〉 = 2 ω α2 sin2(k · r + φ) +
ω

2
. (106)

Derive Eq. (106) using Eq. (103).Exc
19

Therefore, for single-mode photon coherent state,

var E = 〈αE† ·E α〉 - 〈αE† α〉 · 〈αE α〉 =
ω

2
,

var B = 〈αB† ·B α〉 - 〈αB† α〉 · 〈αB α〉 =
ω

2
.

(107)

Saturating the uncertainty bound (for single-mode)

var E var B ≥ (ω / 2)2. (108)

Note: if we consider two polarization mode for each wave vector k, we would have 
var Ek = var Bk = ωk, thereby saturating the uncertainty bound var Ek var Bk ≥ ωk2in Eq. (50).
Conclusion: All coherent states are minimal uncertainty states  (regardless of the param-
eter α) — they are the “most classical” quantum states, with minimal quantum fluctuations.

◼ Fock State Representation

In terms of the Fock state basis n〉, a coherent state α〉 can be represented as

α〉 = ⅇ-
1
2
α2 

n=0

∞ αn

n !
n〉. (109)

Verify Eq. (109) by showing that α〉 constructed this way satisfies the definition 
Eq. (101).

Exc
20

 In particular, the vacuum state vac〉 := n=0〉 is also a coherent state with α = 0, and admits 
minimal uncertainty.

Use Eq. (109) to show: 

(i) the scalar product between two coherent states is given by 〈α β〉 = ⅇ-
1
2
α2+β2+α* β,

(ii) such that the transition probability between states α〉 and β〉 decays with the 
distance α - β in the complex plane as a Gaussian function, i.e. 〈α β〉2 = ⅇ-α-β2. 
-------
Lesson: although coherent states are not strictly orthogonal, as long as their complex 
parameters are sufficiently separated, their inner product becomes negligible, i.e. they 
are approximately orthogonal.

HW
1

 Based on Eq. (109), the probability to observe n photons in the coherent state α〉 is given by
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pα(n) = 〈n α〉2 =
α2 n

n !
ⅇ-α

2. (110)

 The mean photon number is determined by the expectation value of the photon number 
operator n = a† a,

〈n〉α = 〈α n α〉 = α2. (111)

Verify Eq. (111).Exc
21

We can rewrite Eq. (110) as

pα(n) =
〈n〉αn

n !
ⅇ-〈n〉α, (112)

which is the Poisson distribution.

◼ Time Evolution

The photon Hamiltonian H  is proportional to the photon number operator n = a† a,

H = ω n +
1

2
. (113)

The coherent states (except vac〉) are not energy eigenstates. ⇒ They evolve with time.

The time-evolution operator U (t) is generated by H  as

U (t) = ⅇ-ⅈH t/ℏ = ⅇ-
ⅈ ω t
2 ⅇ-ⅈ ω t n . (114)

Applying U (t) to α〉:

U (t) α〉 = ⅇ-
ⅈ ω t
2 α ⅇ-ⅈ ω t := ⅇ-

ⅈ ω t
2 α(t)〉. (115)

Show Eq. (115).Exc
22

So up to an overall phase factor ⅇ-ⅈ ω t/2 (originated from the zero-point energy), the parameter 
α = α ⅇⅈ φ evolves as
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α(t) = α(0) ⅇ-ⅈ ω t, (117)

such that

 the amplitude α remains the same,

 the phase φ → φ -ω t will rotate with time t by the angular frequency ω.

According to Eq. (105), the electromagnetic fields expectation value will evolve as

〈α(t)E α(t)〉 = -(2 ω)1/2 e α sin(k · r -ω t),

〈α(t)B α(t)〉 = -(2 / ω)1/2 k × e α sin(k · r -ω t),
(118)

describing the dynamics of the propagating electromagnetic wave throughout the spacetime.

The coherent state of electromagnetic field are quantum states that most closely resembles 
classical light.

 They minimize the quantum fluctuation in both phase and amplitude on top of the clas-
sical (average) behavior of wave, saturating their uncertainty bound.

 Large α ⇒ large average number of photons 〈n〉α = α2 in the coherent state ⇒ a macro-
scopic occupation of the same photon mode with quantum coherence, — making coherent 
states an ideal description of laser light (intense and coherent light).

◼ Superradiant Light

◼ Tavis-Cummings Model

The Tavis-Cummings model is an extension of the Jaynes-Cummings model, where a single 
mode electromagnetic field couples to a set of two-level atoms (i.e. many qubits), instead 
of a single two-level atom.

The Tavis-Cummings Hamiltonian is given by

H =
ω0

2

i=1

N

σi
z +ω a† a +

1

2
- g 

i=1

N

σi
- a† + σi

+ a. (119)

 N  - total number of atoms, each indexed by i = 1, 2, …, N .

 ω0 - atom excitation energy (energy level splitting, transition frequency).

 ω - photon energy (mode frequency),

 g - light-matter coupling strength.

When N = 1, Eq. (119) reduces to the Jaynes-Cummings Hamiltonian in Eq. (92).

The full Hilbert space is a tensor product of the atomic and photonic degrees of freedom
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atomic 2N -dim photonic (∞-dim)

ℋ = (span {g〉, e〉})⊗N ⊗ span {0〉, 1〉, 2〉, …}
(120)

 Goal: find the ground state (lowest energy state) of H .

 Challenge: exact diagonalization is computationally difficult, given the huge (infinite) Hilbert 
space dimension.

◼ U(1) Symmetry

The number of excitations Nexc (including both photons and atoms) is conserved in the 
Tavis-Cummings model.

Nexc = a† a +
i=1

N σi
z + 𝟙

2
. (121)

 Symmetry ⇔ Conservation Law: The excitation number conservation generates a U(1) 
symmetry, corresponding to the unitary operator (for any given U(1) rotation angle θ)

U (θ) = ⅇⅈ θ Nexc. (122)

 Under the U(1) symmetry transformation,

a → U (θ)† a U (θ) = ⅇⅈ θ a,

a† → U (θ)† a† U (θ) = ⅇ-ⅈ θ a†,

σi
± → U (θ)† σi

± U (θ) = ⅇ∓ⅈ θ σi
±.

(123)

Check Eq. (123).Exc
23

Therefore, the Tavis-Cummings Hamiltonian H  in Eq. (119) is invariant under the symmetry 
transformation, i.e. ∀ θ : [H , U (θ)] = 0.

◼ Mean-Field Approach

Idea: Replace the interacting many-body problem with several effective single-body (or single-
mode) problem by approximating the effect of all other freedoms with an average (mean) field.

 Variational Ansatz: Propose a trial (variational) state that disentangle the atomic and 
photonic degrees of freedom.

Ψ(α)〉 = ψ(α)〉atom⊗N ⊗ α〉photon. (125)

 Photons: assumed to be in a coherent state with complex parameter α

α〉photon = ⅇ-
1
2
α2 

n=0

∞ αn

n !
n〉. (126)
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Under U(1) symmetry transformation: α → ⅇⅈ θ α.

 Atoms: assumed to be identical product state of 

ψ(α)〉atom = ψe(α) e〉 + ψg(α) g〉, (127)

which could also depend on the parameter α.

 Objective: Minimize the expectation value of the Tavis-Cummings Hamiltonian H  with 
respect to the variational state.

min
α

EMF(α) := 〈Ψ(α)H Ψ(α)〉. (128)

Hope: the minimal energy state will be a good approximation of the true ground state within 
the variational subspace.

◻ Mean-Field Energy

 Photonic Expectation: The photons are in a coherent state α〉,

〈α a α〉 = α,

〈α a† α〉 = α*,

〈α a† a α〉 = α2.
(129)

Taking the expectation value of the photon part of H  in Eq. (119),

〈αH α〉 =
ω0

2

i=1

N

σi
z +ω α2 +

1

2
- g 

i=1

N

(σi
- α* + σi

+ α)

= ω α2 +
1

2
+

i=1

N

Hi(α),

(130)

which has decoupled into an overall photon energy plus a sum of N  identical effective atomic 
Hamiltonians Hi(α).

 Atomic Expectation: Hi(α) is the effective Hamiltonian for the ith atom on the photon 
coherent state background 

Hi(α) =
ω0

2
σi

z - g (σi
- α* + σi

+ α), (131)

which can be represented as a 2× 2 matrix in the {e〉, g〉} basis,

Hi(α) ≏
ω0 / 2 -g α
-g α* -ω0 / 2

, (132)

whose minimal energy expectation value is given by the lowest energy eigenvalue:

〈ψ(α)Hi(α) ψ(α)〉 = -
ω0

2

4
+ g2 α2 . (133)

Collecting Eq. (133) and Eq. (130), the mean-field energy EMF(α) defined in Eq. (128) is given 
by
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EMF(α) = ω α2 +
1

2
-N

ω0
2

4
+ g2 α2 . (134)

◻ Mean-Field Solutions
To find the optimal α that minimize EMF(α), solve for

∂EMF(α)

∂α
= 2 ω-N g2 ω0

2

4
+ g2 α2

-1/2

α* = 0. (135)

The solutions:

 Trivial solution: α = 0 (always valid)

 The mean-field energy reaches

EMF(0) =
ω

2
-N

ω0

2
. (136)

 The variational state becomes

Ψ(0)〉 = g〉atom
⊗N ⊗ 0〉photon, (137)

describing: all atoms in ground states & photon vacuum state.

 Non-trivial solution: around the circle of

α★ =
1

2 g ω
g4 N 2 - (ω ω0)2

N≫1 N g

2 ω
, (138)

0
Re α

Im α

α★

which are valid only if
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g >
ω ω0

N
. (139)

 The mean-field energy (always lower than EMF(0) as long as Eq. (139) holds)

EMF(α★) =
ω

2
-

1

4

g2 N 2

ω
+

ω ω0
2

g2
. (140)

 The variation state is

Ψ(α★)〉 = ψ(α★)〉atom
⊗N ⊗ α★〉photon. (141)

In the large-N  limit (N ≫ 1): photon in a coherent state α★〉 with the average photon 
number (light intensity)

〈n〉 = α★2 ~ N 2, (142)

and each atom in an equal-weight superposition of g〉 and e〉 with their relative phase 
locked to α★ / α★

ψ(α★)〉 ≃
1

2
g〉 +

α★

α★
e〉 . (143)

 Spontaneous Symmetry Breaking: Any choice of α★ = α★ ⅇⅈ θ breaks the U(1) sym-
metry spontaneously, i.e. H  respects the U(1) symmetry, but its (approximate) ground 
state Ψ(α★)〉 does not.

◼ Superradiant Phase

The nontrivial solution Ψ(α★)〉 describes the superradiant phase of light, exhibiting key 
features:

 Cooperative Radiation: Many atoms radiate coherently, such that the emitted light inten-
sity add constructively.

 Strong Intensity: Macroscopic photon occupation with 〈n〉 ~ N 2 (in contrast to the linear N -
scaling for independent spontaneous emission),

 Phase Coherence: Emitted photons are phase-locked, and the collective light-matter interac-
tion stabilizes the phase of α★, resulting in the spontaneous breaking of U(1) symmetry.

The superradiant transition phase diagram:
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The superradiant phenomenon is closely related to LASER (Light Amplification by Stimulated 
Emission of Radiation). They share the mechanism of stimulated emission. However, laser is 
a steady state operating in a driven, non-equilibrium regime. It uses an external pump to main-
tain a population inversion of atoms, where stimulated emission overcomes photon losses, 
leading to continuous and coherent light output.
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