PHYS 130C

Part 3: Quantum Optics

Quantization of Light

m Classical Electromagnetic Wave

m Lagrangian Description

Lagrangian density for free electromagnetic field:

1
-£= 5(E2—32)7

e Electromagnetic field is the physical observable:
e E - electric field,

e B - magnetic field,

E=-V0-0,A,
B=VxA.

e Note: the speed of light ¢ =1 is set to unity.
e Gauge field: (@, A) as generalized coordinates (state variables)
e & - scalar potential,

e A - vector potential.

s Maxwell Equations

The Maxwell equations describes the motion of electromagnetic field. In the free space
(without sources), they are

VxE+0:;B=0,
V-B=0,
V-E=0,

VXB—athO.

D
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e The first two equations follows from Eq. (2), by definition.

E
;c Verify that Eq. (2) implies the first two equations in Eq. (3).

e The last two equations follows from the variational principle 6£ = 0,
=0=>V-E=0,

5®
) “4)
5

L
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Exc .
A Drive Eq. (4).

m Gauge Structure and Gauge Fixing

Gauge structure: physical observables E and B are invariant under the following gauge
transformations induced by any scalar field 6,

A—> A+V0,
)
<I>—>(I)—6t6.

E
;C Show that the gauge transformation Eq. (5) leaves Eq. (2) invariant.

e (Gauge structure is a redundancy in the gauge theory: there are multiple state variables
(gauge field @, A) encoding the same physical observables (electromagnetic field E, B).

e Gauge fixing is a procedure to eliminate the gauge redundancy, by using gauge transforma-
tion to (partially) fix the gauge field configuration.

The Coulomb gauge is one commonly used gauge choice:

6
V-A=0. ©

Gauge fixing procedure:
e Freedom to use: 6 field (through out the spacetime).

o [f® %0, use ® - ®-49,0 to fix ® = 0, by setting

3
9=fdt<1>+et=0, (7
0

where 6, is still free to tune through out the space.
e With @ =0 fixed, F = —9; A, then the Coulomb law implies

V-E=0>-6,V-A=0>V-A=V-A4,,. ®)
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e At the t =0 time slice, if V- Ayg £ 0, use Asg > Ao+ VO to fix V- A,y = 0, by solving for
0;—¢ from
V-A,+V%0,=0. )
Then V- A =0 is also fixed.

[Almost all freedom of § has been used, only the global shift of 6 is still free, which corre-
sponds to a global U(1) symmetry associated with electric charge conservation.]

Under Coulomb gauge, ® = 0 is fixed, A remains as the generalized coordinate (with the
constraint V- A = 0), the conjugate generalized momentum is

oL
D01 A)

—E. (10)

s Hamiltonian Description

Hamiltonian density for free electromagnetic field:

1
H = 5 (E2+B2), (11)

Exc

A Derive the Hamiltonian density Eq. (11) from the Lagrangian density Eq. (1).

which might as well be written in terms of the generalized coordinate A and the generalized
momentum - F as

1
H = 5 (E* +(V x A)%). (12)
e Hamiltonian dynamics

OH
dA=-—>9,A=—F,
0, E = ” 50, E=-Vx(VxA) =V?A-V(V-A).

Use the Coulomb gauge V - A = 0, and combine the equations of motion, the vector potential
satisfy a wave equation,

FPA-VPA=0. (14)

= Electromagnetic Wave

The solution of Eq. (14) describes the electromagnetic wave in the free space,

3
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A(’P, t) = ZA"’ etk b k:.r' (15)
k
e The angular frequency wy must satisfy the dispersion relation
wy, = |k, (16)

where the speed of light has been set to ¢ = 1, compared to the general form of wy = c|kl.

E;c Verify that Eq. (15) is a general solution of Eq. (14), given Eq. (16).

e Ay is the wave amplitudes (i.e. the Fourier components of A, as a complex vector) at each

wave vector k. The gauge constraint V - A = 0 further requires

k-Aj=0, amn

meaning that the electromagnetic wave is transverse. For any k, there are only two transverse
directions, hence, two independent polarization directions, labeled by unit vectors ey,
(e =1, 2), such that

Ap=Ap1ep1+ A2 e = Z Ako €kas

(18)
a=1,2

where Ay, is the wave amplitude of polarization a with wave vector k.

€k,1

e The corresponding solution of electromagnetic field follows from E=-9;A and B=V x A,
E(r, t)= iZwk Ay e k~'r7
k

o 19
B(T, t) = nka Ak e Wk t+i k:‘r‘
k

Here is an illustration of linearly polarized electromagnetic wave.
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m Quantization of Electromagnetic Field

= Canonical Quantization (Real Space)

Canonical quantization is a procedure to transition from classical mechanics to quantum
mechanics. It is based on the principle of promoting classical observables (like position and
momentum) to operators acting on a Hilbert space.

General Procedure:

e Identify the classical phase space: a classical system described by generalized coordinates g;
and their conjugate momenta p; := 9L/ q;.

e Promote classical variables to quantum operators:

4 = Qi pi > Dis

2 A a (20
e Impose canonical commutation relations between conjugate pairs of coordinates and
momenta (setting # = 1):
[ah 6]]] = [i)ia @]] =0, 1)
[in i)]] = E'(Sij I
(For simplicity, we will omit the operator symbol & in the following, with the understanding
that any classical variable in quantum mechanics is promoted to an operator.)
Apply to electromagnetic field. Given that A and — E are generalized coordinates and
momenta [recall Eq. (10)], their canonical commutation relations reads
[Ai(r), Aj(r)] = [- E(r), - Ei(r)] =0,
(22)

[A(r), = Bj(r')] = i 655 6(r— ') 1
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e Field Operators: define the following (vectorial) operators
A(r) = (Ay(r), Ay(r), A(T)), 23)
E(r) = (Ey(T), Ey(7), EAT)),

at each point r in the space.

e Each component is a Hermitian operator (corresponding to a real variable in the classical
limit)

Af(r) = Ay(m),
. (24)
E!(r) = E(r).
e In general, A and E are non-commuting operators. They only commute (become indepen-
dent) if they are
e at different spacial positions,

e or along perpendicular directions.
» Canonical Quantization (Momentum Space)

Fourier transformation allows us to express field operators in the momentum space,
rather than in real space, which can simplify calculations.

e Forward transformation:

A= falgr A(r)e kT

(25)
E; = fd?’r E(r)e k.

e Backward transformation:

A(r) =) Ape'tr,
k

. (26)
E(r) = ZEk ek
k

Note: Yy, = 2n)3 f d?k to properly normalize.

The Fourier components A and FEj, are also operators, constructed as linear combinations of
A(r) and E(r) respectively.

e A; and Ej are no longer Hermitian operators by themselves. Instead, their Hermitian conju-
gates are

Ach = A*kv
b @7)
E - E,

e Commutation relations (with # = 1):
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[Ai,ka Aj-k’] = [_ Ei,ka _Ejk’] = 07

(28)
[Ai,ka _Ejk] =000k 1.

Exc

6 | Verify Eq. (28), given Eq. (22).

Further impose V- A =0 (Coulomb gauge) and V- E =0 (Gauss law) for electromagnetic field in
the free space, the Fourier components A, and Fj only contains the transverse modes, as in
Eq. (18),

Ay = Z Ako €kas

a=1,2

Ej = Z Bk €k
a=1,2

(29)

where ey, (@ =1, 2) are orthogonal unit vectors, characterizing independent transverse polariza-
tion directions (i.e. k- eg, = 0).

e Ay, and Ey, are not Hermitian operators. As inherited from Eq. (27), their Hermitian conju-

gates are
A;;:.a = A—k (&3]
. (30)
Ek7(l = E—kﬂ/
e Commutation relations (with # = 1):
[Ak,(l7 A”t}"a’] = [_ Ek,(l” - ]Z”a’] = 07 (31)
[Ak,a; _Ez/ﬂ/] = ié(,a/ 6kkr 1
s Hamiltonian Operator
The Hamiltonian operator (under the Coulomb gauge)
1 T 2 4t
H= 5 Z(E’W Fio + wy, Ak,a Akﬂ), (32)
k.«

where wy, = |k| is set by the dispersion relation.

Exc

7 | Derive Eq. (32).

e H accounts for contributions from all possible wave modes, labeled by the wave vector k
and the polarization index «.

e Ay, and Ey, are quantum operators satisfying the commutation relation in Eq. (31).

° E};ﬂ B}, originated from the E? term, representing the kinetic energy of the electromag-
netic field.

7
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o w? Az_’a Ay originated from the B? term, representing the potential energy of the electromag-
netic field.

m Photons

For each mode of k and @, define the photon creation a,*m and annihilation ay, operators as

1
172 Y
— (a)k/ Ao —iwy, / Ek,a)y

2
L

Ak«

(33)

aj

1/2 4+ . -1/2 o
(“)k Ak,a”wk Ek.a)‘

,a

The inverse combination is

1
-1/2 +
Ak,a = Wg (ak,a + auk_’a)a

. (34)
4
Ek,a = _2 wllc/2<ak,a - a:rk,a)'

Exc

3 Derive Eq. (34) by inverting Eq. (33).

e They satisfy the following commutation relations

[ak.,a, ak’,(y’] = [CLLQ, a’-ik-:’,a’] =0, .
[akar Oy o] = O Ot L. (35)

Exc

9 Derive Eq. (35) from Eq. (31), given the definition Eq. (33).

e Photon number operator:

Nkao = al'cﬂ Q.- (37)

By quantum bootstrap, Eq. (35) requires that the eigenvalues of ng, are quantized to
natural numbers

Mo =0,1,2, ... €N, (38)

e Photons are Bosons: their creation a};ﬂ and annihilation ag, operators satisfy the

bosonic commutation relations, and each photon mode (labeled by k and @) can be occu-
pied by an arbitrary number ng, of photons.

s Photon Energy

The total energy of the electromagnetic field is
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1
= [dir (B B) (39)

From Eq. (32), H can be written as

1
H= Zwk(nk,a + 5). (40)
k.«

e Every photon mode is (mathematically) equivalent to a simple harmonic oscillator with quan-

tized energy levels.

e Adding/removing each photon (ng, —» ng, + 1) will cause the total energy H to increase/de-
crease by wg, = |k| (or fiwy = i c|kl, if the units are restored).

= Energy quantization: each photon of wave vector k and polarization « carries # wy, unit
of energy.
e Even if ng, = 0 (in the photon vacuum state), there is still % f wy, energy associated with

each photon mode, known as the vacuum energy.

Eyae = Z % = Zklwk- 41

k,a

= Field Operators
The field operators can be recovered in terms of photon operators,

e Vector potential

1 . »
A(’I") = — Zw;lﬂ ek,a(ak,a @Ek.r + a’l:.a e_lk.r)‘ (42)
2 k.« |

e Electromagnetic field

i
1/2 ik -ik
B = = Sl el 7 )

2 k.«
(43)

i
172 ket ik
B(r)= — E w, " kX epoarq €T - ay,, e 7).
2 k.«

Exc

10 | Verify Eq. (42) and Eq. (43).

s Photon Momentum

The total momentum carried by the electromagnetic field (a.k.a. the Poynting vector) is
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K= |d*rExB. (44)

Substitute Eq. (43) into Eq. (44),

K= kank (45)
El"lc | Derive Eq. (45).

e Adding/removing each photon (ng, - ng + 1) will cause the total momentum K to

increase/decrease by k (or # k, if the units are restored).

= Each photon of wave vector k and polarization «a carries # k amount of momentum.

s Photon Spin
The total spin angular momentum carried by the electromagnetic field is
S= |drExA. (46)

Substitute Eq. (43) into Eq. (46),

S = o (ak,l a£,2 - aZ,l ak,Q)- 47)

Exc

12 | Derive Eq. (47).

The spin operator S is not diagonal in the photon polarization space, i.e. it mixes different
polarization modes.

e Define the circular polarization basis

1
A+ = — (A1 + 1@ Qg 2),
2
1 (48)
O = — (a1~ i i),
V2
where + labels the left /right circular polarized light.
The spin operator is now diagonalized
k
S = Z — (Mg — Nk, (49)
k. |k|

where ny . = a}?i k. is the number of left /right circular polarized photons.
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e Each left /right circular polarized photon carries spin-1 angular momentum along/against
the wave vector direction k/|k| (the light propagation direction).

® Quantum Vacuum Fluctuations

m Uncertainty Relation

There is an uncertainty relation between the electric and magnetic fields

varFp + varE_p, var By + var B_p
2 2

> Wi Ok (50)

where the variance can be defined for the electric (var Ey) and the magnetic (var By,) field
respectively at any wave vector k,

var By, := (E}, - Ey) - (E}) - (Ep), 1)
var By, := (B},- By) - (B},) - (Bu).

Exc

13 | Prove the uncertainty relation Eq. (50).

e Noise trade-off: It highlights the inherent quantum noise present in electromagnetic fields
— reducing the noise in one field (E or B) inevitably leads to an increase in the noise of the
other.

e Frequency dependence: The bound w} grows with the mode frequency — higher frequency
field exhibits stronger quantum noise.

Let us check the uncertainty relation explicitly on the photon number eigenstate (Fock
state)

(70,1, Mk, 2310 k15 M, 2) - (56)

e The uncertainties of electric and magnetic fields are given by

V&I‘Ek =
w
var By, = Z Zk (Mko + Nk + 1), (57)
therefore the uncertainty relation holds for all Fock states (¥ ng, € N)
1 2
var Fp var By, = a)i Z = (Mo +Nego+1)| = a)i. (58)
— 2
El);c | Calculate the variances in Eq. (57) on the state Eq. (56).

e Specifically, the uncertainty relation is saturated when
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¥V oing, =0, (59)

i.e. on the photon vacuum state |vac) =10,0;0,0). We say |vac) is a minimal uncertainty

state.

e The finite amount of vacuum energy is also a consequence of the uncertainty relation.
Given that

<E,1Tc . E’k> <B}; . Bk> > var B var B, = wi, (60)
The total energy is therefore bounded

E = (H) = % 2 (B Ex)+ (B By))

(61)

= Zwk = Evac-
k

z+1/x

x

The lower bound turns out to match the vacuum energy Ey,., as discussed in Eq. (41).

m Casimir Effect: Vacuum Energy is Real

The wg /2 vacuum energy associated with each photon mode is real and has a measurable
physical effect—the Casimir effect: two uncharged, parallel conducting plates in vacuum experi-
ence an attractive force due to quantum vacuum fluctuations of the electromagnetic field.

To avoid the complications, we are going to demonstrate the effect
e in (1+1) spacetime dimension,
e and for scalar field (like for sound waves).

Two plates (walls) separated by distance d. The standing wave between the plates:

Yn(x) = sin(n%dz). (62)
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e n=1,2 3, ... is the mode index, labeling different wave modes on which bosons (like
phonons) can occupy.

e Oscillation frequency (assuming linear dispersion)

nm
The vacuum energy between the two plates:
) T2 . T
Evac(d)zzwn: _Zni__' (64)
n=1 d n=1 12.d
-1.0
g -1.5
& 2.0
-2.5
-3.0 E
] L B P :
0.0 02 04 06 0.8 1.0

d
The energy Ey,. is lower when the plates are closer (smaller d) — the quantum vacuum fluctua-
tions wants to pull the plates together, mediating an attractive force between the plates!
How on earth can the sum of all natural numbers be —1—12?

e A brute-force yet incorrect answer (by Srinivasa Ramanujan):

S =1+ 2 + 3 + 4 + 5 + 6 + ...
485 = 4 + 8 + 12 + ...
-3§=1- 2 + 3 - 4 + 5 - 6 +..

=1 - 22 +32% — 443 + 520 — 645 + ... (65)
= (1+2)7?
=174

Therefore, S = —1/12. However, S is not a convergent series to start with, so the above manip-

ulations are illegitimate.

e Regularization — a correct understanding (by Terence Tao, see Ref. [1]): introduce a regular-
ization function n(n/ N) that smoothly suppresses large terms in the summation across a cut-

off scale N, while approximates the original divergent series as N — oo:
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= N-co -

Znn(n/N)—>Zn. (66)
Examples:

& 1 1 1

Zne‘"’/NzNQ——+ +O(—}

“ 12 240N% (N4

& n 27TN2 1 1

Z +O(—J,

= (n/N)3+1 343 12 Nt

3 Z”NQ_im(L) (67)

~ (n/N)4+1 4 12 \ntJ

& N? 1 1 1

S s

i ((n/ N2+ 1) 2 12 60N? N4

Exc

15 | Verify Eq. (67) by Mathematica.

e The leading term diverge as N? (confirming the divergent nature of the series), but its
coefficient depends on the choice of the regularization function n(n/ N), making it non-
universal.

e The sub-leading term is always —1/12, which is universal, independent of the choice of
regularization. — This represents an intrinsic and invariant feature hidden beneath the
apparent divergence of the series.

In the context of Casimir effect, the non-universal regularization reflects our ignorance about
the behavior of high-frequency modes in a physical system.

e In reality, the mode frequency can grow indefinitely towards infinity (e.g. materials impose a
natural cutoff at plasma frequency), the frequency summation must be regularized

d by

Eyyo(d) = Wy, et = — — —— 68
Z na* 12 d (68)

n=1
e Consider the vacuum energy both inside and outside the plates,

E2%(d) = Eyae(d) + Byae(L - d), (69)

vac

assuming L — oo is the size of the full space outside, the attractive force between the plates
is the only thing we can measure

FCasimir(d) - a EtOtal(d)

vac

( 1 b4 ) 1 b§
=|-— - R + + ...
ra® 24 d (71 a®  24(L - d)> (70)
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T
24 @2’

where the leading non-universal divergence cancels exactly.

a—0,L—>c0

The Casimir force between conducting plates has been experimentally measured and confirmed
[2,3]. —1+2+3+...=-1/12 is real!
[1] Terence Tao. The Euler-Maclaurin formula, Bernoulli numbers, the zeta function, and real-
variable analytic continuation. (2010)
[2] S. K. Lamoreaux. Demonstration of the Casimir Force in the 0.6 to 6 um Range. Phys. Rev.
Lett. 78, 5 (1998).

[3] Umar Mohideen, Anushree Roy. Precision Measurement of the Casimir Force from 0.1 to 0.9
microns. arXiv:physics/9805038 (1998).

Quantum Coherence of Light

m Light-Matter Interaction

m Dipole Approximation

In most situations, the light-matter coupling is through the electric field E interacting

with a dipole moment d of atoms or molecules, described by the Hamiltonian

Hy=-E-d. (71)

The electric field operator is given by Eq. (43)

i ; ‘
B = —= ol eualona 7 al, ) ™
k.«

e Mode Parity: Eq. (72) can be further decomposed into
E (r) = Eeven('r') + Eodd(r)y (73)

e the even parity part (i.e. Eeen(T) = Egyen(—T))
o
Eeyen(r) = —— cos(k- r) €k E.(a’k,a - }L;(y)? (74)
5 :

e the odd parity part (i.e. Eyqq(r) = — Eyqa(—1))
1/2
Wi . +
Eoqa(r) = — — sin(k- 1) egq (Gra + 0p)- (75)
5 ,
e Single-Mode Approximation: focus on a specific mode of fixed wavelength, parity (e.g.
odd), and polarization,


https://terrytao.wordpress.com/2010/04/10/the-euler-maclaurin-formula-bernoulli-numbers-the-zeta-function-and-real-variable-analytic-continuation/
https://terrytao.wordpress.com/2010/04/10/the-euler-maclaurin-formula-bernoulli-numbers-the-zeta-function-and-real-variable-analytic-continuation/
https://www.mit.edu/~kardar/research/seminars/Casimir/PRL-Lamoreaux.pdf
https://arxiv.org/abs/physics/9805038
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W2
E=-—sinkk-r) e(a+al) (76)
7 (a+a)

e w - photon energy (mode frequency),
e ¢ - the polarization vector of the mode,

e a', a - the creation and annihilation operators of the mode, such that the electromag-
netic field energy is given by

1
Hyy=w (aT a + 5) (77)

Under Eq. (76), the light-matter coupling Hamiltonian in Eq. (71) becomes

He, = gd(a+ad), (78)

where

e g - the light-matter coupling strength (can have spacial dependence, following the mode
profile in the space)

w\1/2
g= (5) sin(k-r) (79)
e ( - dipole operator describing how matter responses to electric field along the polarization e
direction:
d=e-d. (80)

m A Two-Level Atom

Atoms are building blocks of matter. The electromagnetic field largely electrons within
them. Electrons occupy discrete energy levels, and transitions between these levels are respon-
sible for emission and absorption of light.

In many situations, it is sufficient to consider only two relevant levels of an atom:
[nergy

cle)

wo

X

-5f - 1g)

e |9) - ground state of the atom,

e |¢) - exited state of the atom,
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e wy = E. - E, - atom excitation energy (energy level splitting, transition frequency).

This simplification leads to the concept of a two-level atom — also viewed as a qubit, for
which Pauli operators can be defined:

o’ =le) (el - 1g) (4l
z (81)
o =|g) el +1e) (gl
e Inversion operator: ¢ splits the energy levels between |g) and |e),
wp
Hatm = ? o’ (82)

e Transition operator: o mixes |g) and |e), leading to different dipole moments (by
deforming the electron density):

Eigenvalue FEigenstate = Wave func.  Density dist.

o= +1 %(|g>+|e>)$—df—olg
o= —1 %(Ig)—l@)-A?-_—Adi—O

This implies d o« -0 (any proportionality constant here can be absorbed into the coupling
constant g below), and the light-matter compiling Hamiltonian in Eq. (78) becomes

Heyp=-go”(a" +a), (83)

for the two-level atom.

m Jaynes-Cummings Model
The Jaynes-Cummings model is a simplified model, describing the interaction between a two-
level atom (i.e. a qubit) and a single mode electromagnetic field.

Put together Eq. (77), Eq. (82) and Eq. (83), the Jaynes-Cummings model is given by the
total Hamiltonian

H = Hatm + Hcm + Hcpa (84)

which reads
wy " 1 -
H:;o-z+w(a’a+§)—ga-””(a‘+a). (85)

e Raising and Lowering Operators: Introduce o* to raise and lower the electron between
levels
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ot =ley(yl,
o =1g)el,

(86)

such that, by definition Eq. (81),
c¥=0c"+0". (87
e Decoupled Operator Dynamics: In the decoupled limit g —» 0, the operators evolves as
a(t) = a(0) e, a'(t) = a'(0) '@,
+ + +i t (88)
o (t) = o(0) e,
Exc | Show that Eq. (88) satisfies the Heisenberg equation d; A = i [H, A] that governs the

16 operator dynamics, for H in the g —» 0 limit.

e Rotating Wave Approximation: The light-matter coupling Hamiltonian H,, can be
expanded as

Hy=-g(0"+07) (aT + a)

T T (89)

=-g(c*a'+o d" +0" a+o a).

For small g, the approximate time dependence of these terms are
0_+ aT - @i (+wp+w) t’

o aT ~ét (—woﬂu)f,’

(90)

O_+ a ~ eb (+w0—w)t7
o a~é (—wo—w)t‘

When the level spacing w; and the photon frequency w are comparable (i.e. wy ~ w),
et @l (g+ g7 and o~ a) oscillate much more rapidly than * @t (¢= ¢" and o* a), leading
to their effect averaging out to zero over time. Thus H,, reduces to

Hyp=-g(c” a +0" a), 91)
under the rotating wave approximation.
e o a':=|g)(e|]®a’ - atom decays from |e) to |g) to emit a photon.

e 0" a:=|e){g| ® a - atom excites from |g) to |e) to absorb a photon.

The total Hamiltonian Eq. (85) reduces to

wy , 1 .
H:;o-“rw(a’a+§)—g(o"a'+0'+a), 92)

which is widely referred to as the Jaynes-Cummings model.

m Rabi Oscillation
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A two-level atom can emit and absorb a photon, exchanging energy coherently with the
electromagnetic field in an oscillatory manner, leading to periodic transitions between its ground
and excited states. — a phenomenon known as the Rabi oscillation.

To understand Rabi oscillation, consider two relevant states
e |e) ® |n): excited state atom with n photons,

® |¢) ® [n+1): ground state atom with n+ 1 photons.

They span a 2-dimensional Hilbert space,

H =span{le) ® [n), |g) ®|n+1)}. (93)
in which the Jaynes-Cummings model can be represented as
Y hwin+ ) —gAn+l
H = 2 ( 2) 3 ) (94)
—gANn+l -2 +w(n+ 5)
or expanded in terms of Pauli matrices
A
H:EOI+§Z—g\/n+1X, (95)
with
10 10 01
(o1} 2=(o -1} ¥= (7o) ©0
where

e Fjy:=w(n+1)is a background energy of the system,

e A := wy— w is difference between the atomic level resonant frequency wg and the photon fre-

quency w, also called the detuning.

e g is the coupling strength, and n is the photon number.

Starting from the initial state |e) ® |n):

1.0
0.8}
0.6¢ 1— ley (el
0.4¢ 1— 19) (4l
0.2} :

0.0

probability

e The Rabi oscillation frequency is given by
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Q= JA2+4 ¢P(n+1). 97

Prove Eq. (97).

Exc
17

e Vacuum Rabi oscillations: Q) remains finite even if n = 0 = Rabi oscillation can occur in

vacuum (typically inside a high-quality optical cavity).

m Coherent State

m Single-Mode Photon

Let us focus on a single photon mode. Eq. (42) and Eq. (43) are reduced to

1 ' '
A= T wl?e (a @““" +a e_”k'r)7
2
i
E=— o'Pe(aeh—a ), (98)
\2
B = L w P kxe (aeikr —at e_ik'r),

V2

e a, a' - photon annihilation, creation operators, satisfying

[a, a'] =1 (99)

The photon vacuum state is defined by

a|vac) = 0. (100)

We already known that the vacuum state |[vac) is a minimal uncertainty state of the electromag-

netic field.

m Definition

Are there any other minimal uncertainty states besides |vac)?

Yes, they are known as the coherent state (or called Glauber state). Each coherent state
|y is labeled by a complexr number a € C and defined as the the eigenstate of the annihilation

operator a with the eigenvalue a.

ala) = ala). (101)

Note that the operator a is non-Hermitian,
e its eigenvalues a € C can be complex,

e its eigenstates with different eigenvalues may not be orthogonal, i.e. (ai|as) # é(a1 — @2).
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e Nevertheless, we do assume that |e) is normalized, i.e. (aja) = 1.

Eq. (101) also implies

(| a = (a| a. (102)

Eq. (101) and Eq. (102) enables us to evaluate operator expectation values conveniently on the
coherent state:

(al alay = a,
(al @' ey = o,

(a] a" |) = a”,

“n n (103)
(a (a)" |y = (@)",
(@ d ale) = a” @ =laf,
(@l a d |y = (el (a" a+1)]a) = |al* +1.
m Physical Properties
Assuming the complex parameter @ admits the polar decomposition
@ = |o| e'f. (104)

Ima

S
o]

The observable expectation values on the coherent state |a) are

e Linear properties in fields:

(@l A o) = 2/w)"? ela| cos(k- T+ ¢),
(@| E o) = -2 w)'? e |a|sin(k- T+ ), (105)
(@| Blo) = -2 /w)'? kx ela|sink-r+¢),

Exc

1g | Perive Eq. (105) using Eq. (103).

The coherent state |a) of a photon mode (of wave vector k and polarization e) describes a
snapshot of electromagnetic wave in the space with
e || - wave amplitude,

e ¢ - phase of the wave.
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e Quadratic properties in fields:
. w
(a| E"-Ela) ={a| B"- Bla) = 2 wlal* sin(k- r+¢) + . (106)

Exc

19 | Derive Eq. (106) using Eq. (103).

Therefore, for single-mode photon coherent state,

w
var E = (a| E"- E|la) —{a| E" |a)-(a| E |a) = —,
2 (107)
var B = (a| B"- Bla)-(a| B' |a)-{a| B |a) = 5
Saturating the uncertainty bound (for single-mode)
var Evar B = (w/2)°. (108)

Note: if we consider two polarization mode for each wave vector k, we would have
var By, = var By, = wg, thereby saturating the uncertainty bound var Ey var By = wiin Eq. (50).

Conclusion: All coherent states are minimal uncertainty states (regardless of the param-
eter @) — they are the “most classical’ quantum states, with minimal quantum fluctuations.

m Fock State Representation

In terms of the Fock state basis |n), a coherent state |@) can be represented as

n
lay = 3l ¢

7). (109)

n=0 n '

Exc | Verify Eq. (109) by showing that |a) constructed this way satisfies the definition
20 Eq. (101).

e In particular, the vacuum state |[vac) := |[n=0) is also a coherent state with ¢ = 0, and admits
minimal uncertainty.

Use Eq. (109) to show:

1 *
(i) the scalar product between two coherent states is given by (a|B) = e 2 (laF*+18F) a8
(ii) such that the transition probability between states |e@) and |B) decays with the

HW | distance |a - §| in the complex plane as a Gaussian function, i.e. [(@|8)* = ela=B,

Lesson: although coherent states are not strictly orthogonal, as long as their complex
parameters are sufficiently separated, their inner product becomes negligible, i.e. they
are approximately orthogonal.

e Based on Eq. (109), the probability to observe n photons in the coherent state |@) is given by
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|a'|2 " 2
Pa(n) = Knja)l* = —— ™. (110)
n:

l? =5
1.0
0.8}
0.6}
0.4}
0.2} .o

0.0 lae L1leea. .

) 10 15 20

Do ()

e The mean photon number is determined by the expectation value of the photon number
operator i = a' a,

(NYq = (a| Rla) = |al*. (111)

Exc

o1 | Verify Eq. (111).
We can rewrite Eq. (110) as

Pal(n) = W e e, (112)

n!

which is the Poisson distribution.
® Time Evolution

The photon Hamiltonian H is proportional to the photon number operator 7 = a' a,

1

The coherent states (except |vac)) are not energy eigenstates. > They evolve with time.
The time-evolution operator U(?) is generated by H as
Ut) = e 11 = e_%t e it (114)
Applying U(?) to |a):
Uty ley = e+ e ) = e la(b). (115)

Exc

9y | Show Eq. (115).

So up to an overall phase factor e @ #2 (originated from the zero-point energy), the parameter
@ = |a| €'¢ evolves as
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a(t) = a(0) e !, (117)

such that

e the amplitude |a| remains the same,

e the phase ¢ » ¢ — w t will rotate with time ¢ by the angular frequency w.

According to Eq. (105), the electromagnetic fields expectation value will evolve as
(@) E () = -2 w)'? elasink-7-w ),

(@) Blat)) = -2 /w)'? kxelalsink - r-wt), 9

describing the dynamics of the propagating electromagnetic wave throughout the spacetime.

The coherent state of electromagnetic field are quantum states that most closely resembles
classical light.

e They minimize the quantum fluctuation in both phase and amplitude on top of the clas-
sical (average) behavior of wave, saturating their uncertainty bound.

e Large || = large average number of photons (n), = |a|? in the coherent state = a macro-
scopic occupation of the same photon mode with quantum coherence, — making coherent
states an ideal description of laser light (intense and coherent light).

Superradiant Light

Tavis-Cummings Model

The Tavis-Cummings model is an extension of the Jaynes-Cummings model, where a single
mode electromagnetic field couples to a set of two-level atoms (i.e. many qubits), instead
of a single two-level atom.

The Tavis-Cummings Hamiltonian is given by

wq N 1 N
H:-Zo-f+w(a*a+—)—g (o7 " + 07 a). (119)
23 2 i=1
e N - total number of atoms, each indexed by ¢ =1, 2, ..., N.

e w) - atom excitation energy (energy level splitting, transition frequency).
e w - photon energy (mode frequency),

e g - light-matter coupling strength.
When N =1, Eq. (119) reduces to the Jaynes-Cummings Hamiltonian in Eq. (92).

The full Hilbert space is a tensor product of the atomic and photonic degrees of freedom
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atomic (2N —dim) photonic (co-dim)

N (120)
H = (span{lg), |e)h®" ® span {|0), 1), 2), ...}

e Goal: find the ground state (lowest energy state) of H.

e Challenge: exact diagonalization is computationally difficult, given the huge (infinite) Hilbert
space dimension.

= U(1) Symmetry

The number of excitations Ny (including both photons and atoms) is conserved in the
Tavis-Cummings model.

oi+1

5

N
New=a a+ Z (121)
=1

e Symmetry < Conservation Law: The excitation number conservation generates a U(1)
symmetry, corresponding to the unitary operator (for any given U(1) rotation angle 6)

U@©) = ¢ Nexe, (122)

e Under the U(1) symmetry transformation,
a- U®O aU® =e?a,
o > UG a" UG =ea, (123)
of - U@®) of U@®) =™

7

Exc

53 | Check Eq. (123).

Therefore, the Tavis-Cummings Hamiltonian H in Eq. (119) is invariant under the symmetry
transformation, i.e. V 0:[H, U@9)] = 0.

m Mean-Field Approach

Idea: Replace the interacting many-body problem with several effective single-body (or single-
mode) problem by approximating the effect of all other freedoms with an average (mean) field.

e Variational Ansatz: Propose a trial (variational) state that disentangle the atomic and
photonic degrees of freedom.

[¥(@)) = (@80 ® [@)photon- (125)

e Photons: assumed to be in a coherent state with complex parameter a

_1 |a‘2 -
|a’>photon =e? Z

n=0 n!

a,TL

[n). (126)
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(4

Under U(1) symmetry transformation: « - €% a.

e Atoms: assumed to be identical product state of
[ (@))atom = Vel@) |€) + Y g(@) |9), (127)
which could also depend on the parameter a.

e Objective: Minimize the expectation value of the Tavis-Cummings Hamiltonian H with
respect to the variational state.

min Byp(@) := (¥@)| H [#(@). (128)

Hope: the minimal energy state will be a good approximation of the true ground state within
the variational subspace.

o Mean-Field Energy

e Photonic Expectation: The photons are in a coherent state |a),
(el ala) = a,
(@l a'|a) = o, (129)
(al a’ ala) = |o*.

Taking the expectation value of the photon part of H in Eq. (119),

ol Hioy = 2 (o 1) S0 a0t a)
ol Hlay=— ) oi+wllal"+ - |- oA +oTa
2 i=1 2 gi:l
(130)

1 N
2
= - H; 5
w (|a| + 2)+ i; (@)

which has decoupled into an overall photon energy plus a sum of N identical effective atomic
Hamiltonians H;(a).

e Atomic Expectation: H;(a) is the effective Hamiltonian for the ith atom on the photon
coherent state background

()

0 .
Hi(a) = Y ;- g0 & + 07 @), (131)
which can be represented as a 2 x 2 matrix in the {|e), |g)} basis,
92 _
Hia) = (MO/ . I ) (132)
-ga* —wy/2

whose minimal energy expectation value is given by the lowest energy eigenvalue:

2
w
(@) Hye) (@) = — | /ZO + ¢ a2 (133)

Collecting Eq. (133) and Eq. (130), the mean-field energy Eyp(@) defined in Eq. (128) is given
by
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g 1 g 2,2
EMF((Y)Zw(Ial +—]—N — + g |al”. (134)
2 4
g=0.0474
1.0
% 0.5
ORI
E 0.05
R _o.5f

00 05 10 15 20
el / N'2

o Mean-Field Solutions
To find the optimal o that minimize Eyr(a), solve for
w = (2 w- NgQ[%g +q |a|2) I/Q]Q* =0. (135)
The solutions:
e Trivial solution: a = 0 (always valid)

e The mean-field energy reaches

w w(
Exyr(0) = — =N —. (136)
2 2

e The variational state becomes
1¥(0)) = 19)5iom ® 10)photon: (137)
describing: all atoms in ground states & photon vacuum state.

e Non-trivial solution: around the circle of

1 N>1 Ng
lay| = 100 g N? — (wwp)? =5 7o (138)
w w
Alm «

N

which are valid only if
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W W
g> | —. (139)
N

e The mean-field energy (always lower than Eyp(0) as long as Eq. (139) holds)

w 1(@#N? wo?
(g 0] (140)

Eyrp(ay,) = — - = 5
2 w g

4
e The variation state is
(@) = W(@))Fiom ® 1€ photon- (141)
In the large-N limit (N > 1): photon in a coherent state |a,) with the average photon
number (light intensity)
(n) = lau” ~ N?, (142)

and each atom in an equal-weight superposition of |g) and |e) with their relative phase
locked to a, /|a.l

(e
() = g+ — Ie>} (143)

1
ﬁ( @l

e Spontaneous Symmetry Breaking: Any choice of a, = |a,|e'? breaks the U(1) sym-
metry spontaneously, i.e. H respects the U(1) symmetry, but its (approximate) ground
state |¥(a,)) does not.

m Superradiant Phase
The nontrivial solution [¥(a,)) describes the superradiant phase of light, exhibiting key
features:

e Cooperative Radiation: Many atoms radiate coherently, such that the emitted light inten-
sity add constructively.

e Strong Intensity: Macroscopic photon occupation with (n) ~ N? (in contrast to the linear N-
scaling for independent spontaneous emission),

e Phase Coherence: Emitted photons are phase-locked, and the collective light-matter interac-
tion stabilizes the phase of a,, resulting in the spontaneous breaking of U(1) symmetry.

The superradiant transition phase diagram:
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The superradiant phenomenon is closely related to LASER (Light Amplification by Stimulated
Emission of Radiation). They share the mechanism of stimulated emission. However, laser is
a steady state operating in a driven, non-equilibrium regime. It uses an external pump to main-
tain a population inversion of atoms, where stimulated emission overcomes photon losses,
leading to continuous and coherent light output.



