
PHYS 130C
Part 3: Quantum Optics

Quantization of Light

◼ Classical Electromagnetic Wave

◼ Lagrangian Description

Lagrangian density for free electromagnetic field:

ℒ =
1

2
E2 -B2, (1)

 Electromagnetic field is the physical observable:

 E - electric field,

 B - magnetic field,

E = -∇Φ- ∂tA,

B = ∇ ×A.
(2)

 Note: the speed of light c = 1 is set to unity.

 Gauge field: (Φ, A) as generalized coordinates (state variables)

 Φ - scalar potential,

 A - vector potential.

◼ Maxwell Equations

The Maxwell equations describes the motion of electromagnetic field. In the free space 
(without sources), they are

∇ ×E + ∂tB = 0,

∇ ·B = 0,

∇ ·E = 0,

∇ ×B - ∂tE = 0.

(3)



 The first two equations follows from Eq. (2), by definition.

Verify that Eq. (2) implies the first two equations in Eq. (3).Exc
1

 The last two equations follows from the variational principle δℒ = 0,

δℒ

δΦ
= 0 ⇒ ∇ ·E = 0,

δℒ

δA
= 0 ⇒ ∇ ×B - ∂tE = 0.

(4)

Drive Eq. (4).Exc
2

◼ Gauge Structure and Gauge Fixing

Gauge structure: physical observables E and B are invariant under the following gauge 
transformations induced by any scalar field θ,

A → A+∇θ,

Φ → Φ- ∂t θ.
(5)

Show that the gauge transformation Eq. (5) leaves Eq. (2) invariant.Exc
3

 Gauge structure is a redundancy in the gauge theory: there are multiple state variables 
(gauge field Φ, A) encoding the same physical observables (electromagnetic field E, B).

 Gauge fixing is a procedure to eliminate the gauge redundancy, by using gauge transforma-
tion to (partially) fix the gauge field configuration. 

The Coulomb gauge is one commonly used gauge choice:

Φ = 0,

∇ ·A = 0.
(6)

Gauge fixing procedure:

 Freedom to use: θ field (through out the spacetime).

 If Φ ≠ 0, use Φ → Φ- ∂t θ to fix Φ = 0, by setting

θ = 
0

t
ⅆ t Φ + θt=0, (7)

where θt=0 is still free to tune through out the space.

 With Φ = 0 fixed, E = -∂tA, then the Coulomb law implies

∇ ·E = 0 ⇒ -∂t∇ ·A = 0 ⇒ ∇ ·A = ∇ ·At=0. (8)
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 At the t = 0 time slice, if ∇ ·At=0 ≠ 0, use At=0 → At=0 +∇θt=0 to fix ∇ ·At=0 = 0, by solving for 
θt=0 from

∇ ·At=0 +∇2 θt=0 = 0. (9)

Then ∇ ·A = 0 is also fixed. 
[Almost all freedom of θ has been used, only the global shift of θ is still free, which corre-
sponds to a global U(1) symmetry associated with electric charge conservation.]

Under Coulomb gauge, Φ = 0 is fixed, A remains as the generalized coordinate (with the 
constraint ∇ ·A = 0), the conjugate generalized momentum is

∂ℒ

∂(∂tA)
= -E. (10)

◼ Hamiltonian Description

Hamiltonian density for free electromagnetic field:

ℋ =
1

2
E2 +B2, (11)

Derive the Hamiltonian density Eq. (11) from the Lagrangian density Eq. (1).Exc
4

which might as well be written in terms of the generalized coordinate A and the generalized 
momentum -E as

ℋ =
1

2
E2 + (∇ ×A)2. (12)

 Hamiltonian dynamics

∂tA = -
∂ℋ

∂E
⇒ ∂tA = -E,

∂tE =
∂ℋ

∂A
⇒ ∂tE = -∇ × (∇ ×A) = ∇2A-∇(∇ ·A).

(13)

Use the Coulomb gauge ∇ ·A = 0, and combine the equations of motion, the vector potential 
satisfy a wave equation,

∂t
2A-∇2A = 0. (14)

◼ Electromagnetic Wave

The solution of Eq. (14) describes the electromagnetic wave in the free space,
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A(r, t) = 
k

Ak ⅇ-ⅈ ωk t+ⅈ k·r. (15)

 The angular frequency ωk must satisfy the dispersion relation

ωk = k, (16)

where the speed of light has been set to c = 1, compared to the general form of ωk = c k.

Verify that Eq. (15) is a general solution of Eq. (14), given Eq. (16).Exc
5

 Ak is the wave amplitudes (i.e. the Fourier components of A, as a complex vector) at each 
wave vector k. The gauge constraint ∇ ·A = 0 further requires

k ·Ak = 0, (17)

meaning that the electromagnetic wave is transverse. For any k, there are only two transverse 
directions, hence, two independent polarization directions, labeled by unit vectors ek,α 
(α = 1, 2), such that

Ak = Ak,1 ek,1 +Ak,2 ek,2 = 
α=1,2

Ak,α ek,α, (18)

where Ak,α is the wave amplitude of polarization α with wave vector k.

 The corresponding solution of electromagnetic field follows from E = -∂tA and B = ∇ ×A,

E(r, t) = ⅈ
k

ωk Ak ⅇ-ⅈ ωk t+ⅈ k·r,

B(r, t) = ⅈ
k

k ×Ak ⅇ-ⅈ ωk t+ⅈ k·r.
(19)

Here is an illustration of linearly polarized electromagnetic wave.
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◼ Quantization of Electromagnetic Field

◼ Canonical Quantization (Real Space)

Canonical quantization is a procedure to transition from classical mechanics to quantum 
mechanics. It is based on the principle of promoting classical observables (like position and 
momentum) to operators acting on a Hilbert space.
General Procedure:

 Identify the classical phase space: a classical system described by generalized coordinates qi 
and their conjugate momenta pi := ∂L / ∂q i.

 Promote classical variables to quantum operators:

qi → q i, pi → p i,

H → H

= H (q i, p i).

(20)

 Impose canonical commutation relations between conjugate pairs of coordinates and 
momenta (setting ℏ = 1):

q i, q j = p i, p j = 0,

q i, p j = ⅈ δij 𝟙.
(21)

(For simplicity, we will omit the operator symbol   in the following, with the understanding 
that any classical variable in quantum mechanics is promoted to an operator.)

Apply to electromagnetic field. Given that A and -E are generalized coordinates and 
momenta [recall Eq. (10)], their canonical commutation relations reads

[Ai(r), Aj(r′)] = [-Ei(r), -Ej(r′)] = 0,

[Ai(r), -Ej(r′)] = ⅈ δij δ(r - r′) 𝟙.
(22)
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 Field Operators: define the following (vectorial) operators

A(r) = (Ax(r), Ay(r), Az(r)),
E(r) = (Ex(r), Ey(r), Ez(r)),

(23)

at each point r in the space.

 Each component is a Hermitian operator (corresponding to a real variable in the classical 
limit)

Ai
†(r) = Ai(r),

Ei
†(r) = Ei(r).

(24)

 In general, A and E are non-commuting operators. They only commute (become indepen-
dent) if they are

 at different spacial positions,

 or along perpendicular directions.

◼ Canonical Quantization (Momentum Space)

Fourier transformation allows us to express field operators in the momentum space, 
rather than in real space, which can simplify calculations.

 Forward transformation:

Ak =  ⅆ3r A(r) ⅇ-ⅈ k·r,

Ek =  ⅆ3r E(r) ⅇ-ⅈ k·r.
(25)

 Backward transformation:

A(r) = 
k

Ak ⅇⅈ k·r,

E(r) = 
k

Ek ⅇⅈ k·r.
(26)

Note: ∑k := (2 π)-3 ∫ ⅆ3k to properly normalize.
The Fourier components Ak and Ek are also operators, constructed as linear combinations of 
A(r) and E(r) respectively.

 Ak and Ek are no longer Hermitian operators by themselves. Instead, their Hermitian conju-
gates are

Ak
† = A-k,

Ek
† = E-k.

(27)

 Commutation relations (with ℏ = 1):
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Ai,k, Aj,k′
†  = -Ei,k, -Ej,k′

†  = 0,

Ai,k, -Ej,k′
†  = ⅈ δij δkk′ 𝟙.

(28)

Verify Eq. (28), given Eq. (22).Exc
6

Further impose ∇ ·A = 0 (Coulomb gauge) and ∇ ·E = 0 (Gauss law) for electromagnetic field in 
the free space, the Fourier components Ak and Ek only contains the transverse modes, as in 
Eq. (18),

Ak = 
α=1,2

Ak,α ek,α,

Ek = 
α=1,2

Ek,α ek,α,
(29)

where ek,α (α = 1, 2) are orthogonal unit vectors, characterizing independent transverse polariza-
tion directions (i.e. k · ek,α = 0).

 Ak,α and Ek,α are not Hermitian operators. As inherited from Eq. (27), their Hermitian conju-
gates are

Ak,α
† = A-k,α,

Ek,α
† = E-k,α.

(30)

 Commutation relations (with ℏ = 1):

Ak,α, Ak′,α′
†  = -Ek,α, -Ek′,α′

†  = 0,

Ak,α, -Ek′,α′
†  = ⅈ δαα′ δkk′ 𝟙.

(31)

◼ Hamiltonian Operator

The Hamiltonian operator (under the Coulomb gauge)

H =
1

2

k,α

Ek,α
† Ek,α + ωk2 Ak,α

† Ak,α, (32)

where ωk = k is set by the dispersion relation.

Derive Eq. (32).Exc
7

 H  accounts for contributions from all possible wave modes, labeled by the wave vector k 
and the polarization index α.

 Ak,α and Ek,α are quantum operators satisfying the commutation relation in Eq. (31).

 Ek,α
† Ek,α originated from the E2 term, representing the kinetic energy of the electromag-

netic field.
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 ωk2 Ak,α
† Ak,α originated from the B2 term, representing the potential energy of the electromag-

netic field.

◼ Photons

For each mode of k and α, define the photon creation ak,α
†  and annihilation ak,α operators as

ak,α =
1

2
ωk

1/2 Ak,α - ⅈ ωk
-1/2 Ek,α,

ak,α
† =

1

2
ωk

1/2 Ak,α
† + ⅈ ωk

-1/2 Ek,α
† .

(33)

The inverse combination is

Ak,α =
1

2
ωk
-1/2ak,α + a-k,α

† ,

Ek,α =
ⅈ

2
ωk

1/2ak,α - a-k,α
† .

(34)

Derive Eq. (34) by inverting Eq. (33).Exc
8

 They satisfy the following commutation relations

[ak,α, ak′,α′] = ak,α
† , ak′,α′

†  = 0,

ak,α, ak′,α′
†  = δαα′ δkk′ 𝟙.

(35)

Derive Eq. (35) from Eq. (31), given the definition Eq. (33).Exc
9

 Photon number operator:

nk,α = ak,α
† ak,α. (37)

By quantum bootstrap, Eq. (35) requires that the eigenvalues of nk,α are quantized to 
natural numbers

nk,α = 0, 1, 2, … ∈ ℕ. (38)

 Photons are Bosons: their creation ak,α
†  and annihilation ak,α operators satisfy the 

bosonic commutation relations, and each photon mode (labeled by k and α) can be occu-
pied by an arbitrary number nk,α of photons.

◼ Photon Energy

The total energy of the electromagnetic field is
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H =  ⅆ3r
1

2
E2 +B2. (39)

From Eq. (32), H  can be written as

H = 
k,α

ωk nk,α +
1

2
. (40)

 Every photon mode is (mathematically) equivalent to a simple harmonic oscillator with quan-
tized energy levels. 

 Adding/removing each photon (nk,α → nk,α ± 1) will cause the total energy H  to increase/de-
crease by ωk = k (or ℏ ωk = ℏ c k, if the units are restored).

⇒ Energy quantization: each photon of wave vector k and polarization α carries ℏ ωk unit 
of energy.

 Even if nk,α = 0 (in the photon vacuum state), there is still 1
2
ℏ ωk energy associated with 

each photon mode, known as the vacuum energy.

Evac = 
k,α

ωk
2

= 
k

ωk. (41)

◼ Field Operators

The field operators can be recovered in terms of photon operators,

 Vector potential

A(r) =
1

2

k,α

ωk
-1/2 ek,αak,α ⅇⅈk·r + ak,α

† ⅇ-ⅈk·r. (42)

 Electromagnetic field

E(r) =
ⅈ

2

k,α

ωk
1/2 ek,αak,α ⅇⅈk·r - ak,α

† ⅇ-ⅈk·r,

B(r) =
ⅈ

2

k,α

ωk
-1/2 k × ek,αak,α ⅇⅈk·r - ak,α

† ⅇ-ⅈk·r.
(43)

Verify Eq. (42) and Eq. (43).Exc
10

◼ Photon Momentum

The total momentum carried by the electromagnetic field (a.k.a. the Poynting vector) is
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K =  ⅆ3r E ×B. (44)

Substitute Eq. (43) into Eq. (44), 

K = 
k,α

knk,α. (45)

Derive Eq. (45).Exc
11

 Adding/removing each photon (nk,α → nk,α ± 1) will cause the total  momentum K to 
increase/decrease by k (or ℏ k, if the units are restored).

⇒ Each photon of wave vector k and polarization α carries ℏ k amount of momentum.

◼ Photon Spin

The total spin angular momentum carried by the electromagnetic field is

S =  ⅆ3r E ×A. (46)

Substitute Eq. (43) into Eq. (46),

S = 
k,α

ⅈk

k
ak,1 ak,2

† - ak,1
† ak,2. (47)

Derive Eq. (47).Exc
12

The spin operator S is not diagonal in the photon polarization space, i.e. it mixes different 
polarization modes. 

 Define the circular polarization basis

ak,± =
1

2
(ak,1 + ⅈ ak,2),

ak,±
† =

1

2
ak,1

† - ⅈ ak,2
† ,

(48)

where ± labels the left/right circular polarized light.
The spin operator is now diagonalized

S = 
k,α

k

k
(nk,+ - nk,-), (49)

where nk,± = ak,±
† ak,± is the number of left/right circular polarized photons.
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 Each left/right circular polarized photon carries spin-1 angular momentum along/against 
the wave vector direction k / k (the light propagation direction).

◼ Quantum Vacuum Fluctuations

◼ Uncertainty Relation

There is an uncertainty relation between the electric and magnetic fields

varEk + varE-k

2

varBk′ + varB-k′

2
≥ ωk2 δkk′, (50)

where the variance can be defined for the electric (varEk) and the magnetic (varBk) field 
respectively at any wave vector k,

varEk := Ek
† ·Ek - Ek

† · 〈Ek〉,
varBk := Bk

† ·Bk - Bk
† · 〈Bk〉.

(51)

Prove the uncertainty relation Eq. (50).Exc
13

 Noise trade-off: It highlights the inherent quantum noise present in electromagnetic fields 
— reducing the noise in one field (E or B) inevitably leads to an increase in the noise of the 
other.

 Frequency dependence: The bound ωk2 grows with the mode frequency — higher frequency 
field exhibits stronger quantum noise.

Let us check the uncertainty relation explicitly on the photon number eigenstate (Fock 
state)

nk,1,nk,2;n-k,1,n-k,2〉. (56)

 The uncertainties of electric and magnetic fields are given by

varEk =

varBk = 
α

ωk
2

(nk,α + n-k,α + 1), (57)

therefore the uncertainty relation holds for all Fock states (∀ nk,α ∈ ℕ)

varEk varBk = ωk2 
α

1

2
(nk,α + n-k,α + 1)

2

≥ ωk2. (58)

Calculate the variances in Eq. (57) on the state Eq. (56).Exc
14

 Specifically, the uncertainty relation is saturated when 
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∀ : nk,α = 0, (59)

i.e. on the photon vacuum state vac〉 = 0,0;0,0〉. We say vac〉 is a minimal uncertainty 
state. 

 The finite amount of vacuum energy is also a consequence of the uncertainty relation. 
Given that

Ek
† ·Ek Bk

† ·Bk ≥ varEk varBk ≥ ωk2, (60)

The total energy is therefore bounded

E = 〈H 〉 =
1

2

k

Ek
† ·Ek + Bk

† ·Bk

≥
1

2

k

Ek
† ·Ek +

ωk2

Ek
† ·Ek

=
xk=Ek

† ·Ekωk

k

ωk
2

xk +
1

xk

≥ 
k

ωk = Evac.

(61)

The lower bound turns out to match the vacuum energy Evac, as discussed in Eq. (41).

◼ Casimir Effect: Vacuum Energy is Real

The ωk / 2 vacuum energy associated with each photon mode is real and has a measurable 
physical effect—the Casimir effect: two uncharged, parallel conducting plates in vacuum experi-
ence an attractive force due to quantum vacuum fluctuations of the electromagnetic field.

To avoid the complications, we are going to demonstrate the effect

 in (1+ 1) spacetime dimension,

 and for scalar field (like for sound waves).

Two plates (walls) separated by distance d. The standing wave between the plates:

ψn(x) = sin
n π x

d
. (62)
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d

n = 3

 n = 1, 2, 3, … is the mode index, labeling different wave modes on which bosons (like 
phonons) can occupy.

 Oscillation frequency (assuming linear dispersion)

ωn = kn =
n π

d
. (63)

The vacuum energy between the two plates:

Evac(d) = 
n=1

∞

ωn =
π

d

n=1

∞

n =!? -
π

12 d
. (64)

0.0 0.2 0.4 0.6 0.8 1.0
-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5

d

E
va

c

The energy Evac is lower when the plates are closer (smaller d) — the quantum vacuum fluctua-
tions wants to pull the plates together, mediating an attractive force between the plates!

How on earth can the sum of all natural numbers be - 1
12

?

 A brute-force yet incorrect answer (by Srinivasa Ramanujan):

S = 1 + 2 + 3 + 4 + 5 + 6 + …
4 S = 4 + 8 + 12 + …
-3 S = 1 - 2 + 3 - 4 + 5 - 6 + …

=x=1 1 - 2 x + 3 x2 - 4 x3 + 5 x4 - 6 x5 + …
= (1+ x)-2

=x=1 1 / 4

(65)

Therefore, S = -1 / 12. However, S is not a convergent series to start with, so the above manip-
ulations are illegitimate.

 Regularization — a correct understanding (by Terence Tao, see Ref. [1]): introduce a regular-
ization function η(n /N ) that smoothly suppresses large terms in the summation across a cut-
off scale N , while approximates the original divergent series as N → ∞:
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
n=1

∞

n η(n /N )
N→∞


n=1

∞

n. (66)

Examples:


n=1

∞

n ⅇ-n/N = N 2 -
1

12
+

1

240 N 2
+𝒪

1

N 4
,


n=1

∞ n

(n /N )3 + 1
=

2 πN 2

3 3
-

1

12
+𝒪

1

N 4
,


n=1

∞ n

(n /N )4 + 1
=

πN 2

4
-

1

12
+𝒪

1

N 4
,


n=1

∞ n

(n /N )2 + 12
=

N 2

2
-

1

12
-

1

60 N 2
+𝒪

1

N 4
,

…

(67)

Verify Eq. (67) by Mathematica.Exc
15

 The leading term diverge as N 2 (confirming the divergent nature of the series), but its 
coefficient depends on the choice of the regularization function η(n /N ), making it non-
universal.

 The sub-leading term is always -1 / 12, which is universal, independent of the choice of 
regularization. — This represents an intrinsic and invariant feature hidden beneath the 
apparent divergence of the series.

In the context of Casimir effect, the non-universal regularization reflects our ignorance about 
the behavior of high-frequency modes in a physical system.

 In reality, the mode frequency can grow indefinitely towards infinity (e.g. materials impose a 
natural cutoff at plasma frequency), the frequency summation must be regularized

Evac(d) = 
n=1

∞

ωn ⅇ-a ωn =
d

π a2
-

π

12 d
+…. (68)

 Consider the vacuum energy both inside and outside the plates,

Evac
total(d) = Evac(d) +Evac(L- d), (69)

assuming L → ∞ is the size of the full space outside, the attractive force between the plates 
is the only thing we can measure

FCasimir(d) = -∂d Evac
total(d)

= -
1

π a2
-

π

24 d2
+…. +

1

π a2
+

π

24 (L- d)2
+…. (70)
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=a→0,L→∞ -
π

24 d2
,

(70)

where the leading non-universal divergence cancels exactly. 
The Casimir force between conducting plates has been experimentally measured and confirmed 
[2,3]. — 1+ 2+ 3+… = -1 / 12 is real!
Terence Tao. The Euler-Maclaurin formula, Bernoulli numbers, the zeta function, and real-
variable analytic continuation. (2010)
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Quantum Coherence of Light

◼ Light-Matter Interaction

◼ Dipole Approximation

In most situations, the light-matter coupling is through the electric field E interacting 
with a dipole moment d of atoms or molecules, described by the Hamiltonian

Hcp = -E · d. (71)

The electric field operator is given by Eq. (43)

E(r) =
ⅈ

2

k,α

ωk
1/2 ek,αak,α ⅇⅈk·r - ak,α

† ⅇ-ⅈk·r. (72)

 Mode Parity: Eq. (72) can be further decomposed into

E (r) = Eeven(r) +Eodd(r), (73)

 the even parity part (i.e. Eeven(r) = Eeven(-r))

Eeven(r) =
ωk

1/2

2
cos(k · r) ek,α ⅈ ak,α - ak,α

† , (74)

 the odd parity part (i.e. Eodd(r) = -Eodd(-r))

Eodd(r) = -
ωk

1/2

2
sin(k · r) ek,α ak,α + ak,α

† . (75)

 Single-Mode Approximation: focus on a specific mode of fixed wavelength, parity (e.g. 
odd), and polarization, 
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E = -
ω1/2

2
sin(k · r) e a + a†. (76)

 ω - photon energy (mode frequency),

 e - the polarization vector of the mode,

 a†, a - the creation and annihilation operators of the mode, such that the electromag-
netic field energy is given by

Hem = ω a† a +
1

2
(77)

Under Eq. (76), the light-matter coupling Hamiltonian in Eq. (71) becomes

Hcp = g d a + a†, (78)

where

 g - the light-matter coupling strength (can have spacial dependence, following the mode 
profile in the space)

g =
ω

2

1/2
sin(k · r) (79)

 d - dipole operator describing how matter responses to electric field along the polarization e 
direction:

d = e · d. (80)

◼ A Two-Level Atom

Atoms are building blocks of matter. The electromagnetic field largely  electrons within 
them. Electrons occupy discrete energy levels, and transitions between these levels are respon-
sible for emission and absorption of light.

In many situations, it is sufficient to consider only two relevant levels of an atom:

ω0

g〉

e〉

- ω0

2

0

ω0

2

Energy

 g〉 - ground state of the atom,

 e〉 - exited state of the atom,
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 ω0 = Ee -Eg - atom excitation energy (energy level splitting, transition frequency).

This simplification leads to the concept of a two-level atom — also viewed as a qubit, for 
which Pauli operators can be defined:

σz = e〉 〈e - g〉 〈g,

σx = g〉 〈e + e〉 〈g.
(81)

 Inversion operator: σz splits the energy levels between g〉 and e〉,

Hatm =
ω0

2
σz. (82)

 Transition operator: σx mixes g〉 and e〉, leading to different dipole moments (by 
deforming the electron density):
Eigenvalue Eigenstate Wave func. Density dist.

σx = +1 1
2
(g〉 + e〉)

σx = -1 1
2
(g〉 - e〉)

This implies d ∝ -σx (any proportionality constant here can be absorbed into the coupling 
constant g below), and the light-matter compiling Hamiltonian in Eq. (78) becomes

Hcp = -g σx a† + a, (83)

for the two-level atom.

◼ Jaynes-Cummings Model

The Jaynes-Cummings model is a simplified model, describing the interaction between a two-
level atom (i.e. a qubit) and a single mode electromagnetic field.

Put together Eq. (77), Eq. (82) and Eq. (83), the Jaynes-Cummings model is given by the 
total Hamiltonian

H = Hatm +Hem +Hcp, (84)

which reads

H =
ω0

2
σz +ω a† a +

1

2
- g σx a† + a. (85)

 Raising and Lowering Operators: Introduce σ± to raise and lower the electron between 
levels
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σ+ = e〉 〈g,

σ- = g〉 〈e,
(86)

such that, by definition Eq. (81),

σx = σ+ + σ-. (87)

 Decoupled Operator Dynamics: In the decoupled limit g → 0, the operators evolves as

a(t) = a(0) ⅇ-ⅈ ω t, a†(t) = a†(0) ⅇⅈ ω t;

σ±(t) = σ±(0) ⅇ±ⅈ ω0 t.
(88)

Show that Eq. (88) satisfies the Heisenberg equation ∂t A = ⅈ [H , A] that governs the 
operator dynamics, for H  in the g → 0 limit.

Exc
16

 Rotating Wave Approximation: The light-matter coupling Hamiltonian Hcp can be 
expanded as

Hcp = -g (σ+ + σ-) a† + a

= -g σ+ a† + σ- a† + σ+ a +σ- a.
(89)

For small g, the approximate time dependence of these terms are

σ+ a† ~ ⅇⅈ (+ω0+ω) t,

σ- a† ~ ⅇⅈ (-ω0+ω) t,

σ+ a ~ ⅇⅈ (+ω0-ω) t,

σ- a ~ ⅇⅈ (-ω0-ω) t.

(90)

When the level spacing ω0 and the photon frequency ω are comparable (i.e. ω0 ≈ ω), 
ⅇ±ⅈ (ω0+ω) t (σ+ a† and σ- a) oscillate much more rapidly than ⅇ±ⅈ(ω0-ω) t (σ- a† and σ+ a), leading 
to their effect averaging out to zero over time. Thus Hcp reduces to

Hcp = -g σ- a† + σ+ a, (91)

under the rotating wave approximation.

 σ- a† := g〉 〈e ⊗ a† - atom decays from e〉 to g〉 to emit a photon.

 σ+ a := e〉 〈g ⊗ a - atom excites from g〉 to e〉 to absorb a photon.

The total Hamiltonian Eq. (85) reduces to

H =
ω0

2
σz +ω a† a +

1

2
- g σ- a† + σ+ a, (92)

which is widely referred to as the Jaynes-Cummings model.

◼ Rabi Oscillation

A two-level atom can emit and absorb a photon, exchanging energy coherently with the 
electromagnetic field in an oscillatory manner, leading to periodic transitions between its ground 
and excited states. — a phenomenon known as the Rabi oscillation.
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A two-level atom can emit and absorb a photon, exchanging energy coherently with the 
electromagnetic field in an oscillatory manner, leading to periodic transitions between its ground 
and excited states. — a phenomenon known as the Rabi oscillation.

To understand Rabi oscillation, consider two relevant states

 e〉 ⊗ n〉: excited state atom with n photons,

 g〉 ⊗ n+1〉: ground state atom with n + 1 photons.

They span a 2-dimensional Hilbert space,

ℋ = span {e〉 ⊗ n〉, g〉 ⊗ n+1〉}. (93)

in which the Jaynes-Cummings model can be represented as

H ≏
ω0

2
+ω n + 1

2
 -g n + 1

-g n + 1 - ω0

2
+ω n + 3

2


, (94)

or expanded in terms of Pauli matrices

H = E0 I +
Δ

2
Z - g n + 1 X, (95)

with

I =
1 0
0 1

, Z =
1 0
0 -1

, X =
0 1
1 0

, (96)

where

 E0 := ω (n + 1) is a background energy of the system,

 Δ := ω0 -ω is difference between the atomic level resonant frequency ω0 and the photon fre-
quency ω, also called the detuning.

 g is the coupling strength, and n is the photon number.

Starting from the initial state e〉 ⊗ n〉:

0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

t

pr
ob

ab
ili

ty

e〉 〈e
g〉 〈g

 The Rabi oscillation frequency is given by
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Ω = Δ2 + 4 g2(n + 1) . (97)

Prove Eq. (97).Exc
17

 Vacuum Rabi oscillations: Ω remains finite even if n = 0 ⇒ Rabi oscillation can occur in 
vacuum (typically inside a high-quality optical cavity).

◼ Coherent State

◼ Single-Mode Photon

Let us focus on a single photon mode. Eq. (42) and Eq. (43) are reduced to

A =
1

2
ω-1/2 e a ⅇⅈk·r + a† ⅇ-ⅈk·r,

E =
ⅈ

2
ω1/2 e a ⅇⅈk·r - a† ⅇ-ⅈk·r,

B =
ⅈ

2
ω-1/2 k × e a ⅇⅈk·r - a† ⅇ-ⅈk·r.

(98)

 a, a† - photon annihilation, creation operators, satisfying

a, a† = 𝟙. (99)

The photon vacuum state is defined by

a vac〉 = 0. (100)

We already known that the vacuum state vac〉 is a minimal uncertainty state of the electromag-
netic field.

◼ Definition

Are there any other minimal uncertainty states besides vac〉?

Yes, they are known as the coherent state (or called Glauber state). Each coherent state 
α〉 is labeled by a complex number α ∈ ℂ and defined as the the eigenstate of the annihilation 
operator a with the eigenvalue α.

a α〉 = α α〉. (101)

Note that the operator a is non-Hermitian, 

 its eigenvalues α ∈ ℂ can be complex,

 its eigenstates with different eigenvalues may not be orthogonal, i.e. 〈α1 α2〉 ≠ δ(α1 - α2).
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 Nevertheless, we do assume that α〉 is normalized, i.e. 〈α α〉 = 1.

Eq. (101) also implies

〈α a† = 〈α α*. (102)

Eq. (101) and Eq. (102) enables us to evaluate operator expectation values conveniently on the 
coherent state: 

〈α a α〉 = α,

〈α a† α〉 = α*,

〈α an α〉 = αn,

〈α a†n α〉 = (α*)n,

〈α a† a α〉 = α* α = α2,

〈α a a† α〉 = 〈α a† a + 𝟙 α〉 = α2 + 1.

(103)

◼ Physical Properties

Assuming the complex parameter α admits the polar decomposition

α = α ⅇⅈ φ. (104)

α

φ
α

Re α

Im α

ℂ

The observable expectation values on the coherent state α〉 are

 Linear properties in fields:

〈αA α〉 = (2 / ω)1/2 e α cos(k · r + φ),

〈αE α〉 = -(2 ω)1/2 e α sin(k · r + φ),

〈αB α〉 = -(2 / ω)1/2 k × e α sin(k · r + φ),
(105)

Derive Eq. (105) using Eq. (103).Exc
18

The coherent state α〉 of a photon mode (of wave vector k and polarization e) describes a 
snapshot of electromagnetic wave in the space with

 α - wave amplitude,

 φ - phase of the wave.
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 Quadratic properties in fields:

〈αE† ·E α〉 = 〈αB† ·B α〉 = 2 ω α2 sin2(k · r + φ) +
ω

2
. (106)

Derive Eq. (106) using Eq. (103).Exc
19

Therefore, for single-mode photon coherent state,

var E = 〈αE† ·E α〉 - 〈αE† α〉 · 〈αE α〉 =
ω

2
,

var B = 〈αB† ·B α〉 - 〈αB† α〉 · 〈αB α〉 =
ω

2
.

(107)

Saturating the uncertainty bound (for single-mode)

var E var B ≥ (ω / 2)2. (108)

Note: if we consider two polarization mode for each wave vector k, we would have 
var Ek = var Bk = ωk, thereby saturating the uncertainty bound var Ek var Bk ≥ ωk2in Eq. (50).
Conclusion: All coherent states are minimal uncertainty states  (regardless of the param-
eter α) — they are the “most classical” quantum states, with minimal quantum fluctuations.

◼ Fock State Representation

In terms of the Fock state basis n〉, a coherent state α〉 can be represented as

α〉 = ⅇ-
1
2
α2 

n=0

∞ αn

n !
n〉. (109)

Verify Eq. (109) by showing that α〉 constructed this way satisfies the definition 
Eq. (101).

Exc
20

 In particular, the vacuum state vac〉 := n=0〉 is also a coherent state with α = 0, and admits 
minimal uncertainty.

Use Eq. (109) to show: 

(i) the scalar product between two coherent states is given by 〈α β〉 = ⅇ-
1
2
α2+β2+α* β,

(ii) such that the transition probability between states α〉 and β〉 decays with the 
distance α - β in the complex plane as a Gaussian function, i.e. 〈α β〉2 = ⅇ-α-β2. 
-------
Lesson: although coherent states are not strictly orthogonal, as long as their complex 
parameters are sufficiently separated, their inner product becomes negligible, i.e. they 
are approximately orthogonal.

HW
1

 Based on Eq. (109), the probability to observe n photons in the coherent state α〉 is given by
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pα(n) = 〈n α〉2 =
α2 n

n !
ⅇ-α

2. (110)

 The mean photon number is determined by the expectation value of the photon number 
operator n = a† a,

〈n〉α = 〈α n α〉 = α2. (111)

Verify Eq. (111).Exc
21

We can rewrite Eq. (110) as

pα(n) =
〈n〉αn

n !
ⅇ-〈n〉α, (112)

which is the Poisson distribution.

◼ Time Evolution

The photon Hamiltonian H  is proportional to the photon number operator n = a† a,

H = ω n +
1

2
. (113)

The coherent states (except vac〉) are not energy eigenstates. ⇒ They evolve with time.

The time-evolution operator U (t) is generated by H  as

U (t) = ⅇ-ⅈH t/ℏ = ⅇ-
ⅈ ω t
2 ⅇ-ⅈ ω t n . (114)

Applying U (t) to α〉:

U (t) α〉 = ⅇ-
ⅈ ω t
2 α ⅇ-ⅈ ω t := ⅇ-

ⅈ ω t
2 α(t)〉. (115)

Show Eq. (115).Exc
22

So up to an overall phase factor ⅇ-ⅈ ω t/2 (originated from the zero-point energy), the parameter 
α = α ⅇⅈ φ evolves as
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α(t) = α(0) ⅇ-ⅈ ω t, (117)

such that

 the amplitude α remains the same,

 the phase φ → φ -ω t will rotate with time t by the angular frequency ω.

According to Eq. (105), the electromagnetic fields expectation value will evolve as

〈α(t)E α(t)〉 = -(2 ω)1/2 e α sin(k · r -ω t),

〈α(t)B α(t)〉 = -(2 / ω)1/2 k × e α sin(k · r -ω t),
(118)

describing the dynamics of the propagating electromagnetic wave throughout the spacetime.

The coherent state of electromagnetic field are quantum states that most closely resembles 
classical light.

 They minimize the quantum fluctuation in both phase and amplitude on top of the clas-
sical (average) behavior of wave, saturating their uncertainty bound.

 Large α ⇒ large average number of photons 〈n〉α = α2 in the coherent state ⇒ a macro-
scopic occupation of the same photon mode with quantum coherence, — making coherent 
states an ideal description of laser light (intense and coherent light).

◼ Superradiant Light

◼ Tavis-Cummings Model

The Tavis-Cummings model is an extension of the Jaynes-Cummings model, where a single 
mode electromagnetic field couples to a set of two-level atoms (i.e. many qubits), instead 
of a single two-level atom.

The Tavis-Cummings Hamiltonian is given by

H =
ω0

2

i=1

N

σi
z +ω a† a +

1

2
- g 

i=1

N

σi
- a† + σi

+ a. (119)

 N  - total number of atoms, each indexed by i = 1, 2, …, N .

 ω0 - atom excitation energy (energy level splitting, transition frequency).

 ω - photon energy (mode frequency),

 g - light-matter coupling strength.

When N = 1, Eq. (119) reduces to the Jaynes-Cummings Hamiltonian in Eq. (92).

The full Hilbert space is a tensor product of the atomic and photonic degrees of freedom
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atomic 2N -dim photonic (∞-dim)

ℋ = (span {g〉, e〉})⊗N ⊗ span {0〉, 1〉, 2〉, …}
(120)

 Goal: find the ground state (lowest energy state) of H .

 Challenge: exact diagonalization is computationally difficult, given the huge (infinite) Hilbert 
space dimension.

◼ U(1) Symmetry

The number of excitations Nexc (including both photons and atoms) is conserved in the 
Tavis-Cummings model.

Nexc = a† a +
i=1

N σi
z + 𝟙

2
. (121)

 Symmetry ⇔ Conservation Law: The excitation number conservation generates a U(1) 
symmetry, corresponding to the unitary operator (for any given U(1) rotation angle θ)

U (θ) = ⅇⅈ θ Nexc. (122)

 Under the U(1) symmetry transformation,

a → U (θ)† a U (θ) = ⅇⅈ θ a,

a† → U (θ)† a† U (θ) = ⅇ-ⅈ θ a†,

σi
± → U (θ)† σi

± U (θ) = ⅇ∓ⅈ θ σi
±.

(123)

Check Eq. (123).Exc
23

Therefore, the Tavis-Cummings Hamiltonian H  in Eq. (119) is invariant under the symmetry 
transformation, i.e. ∀ θ : [H , U (θ)] = 0.

◼ Mean-Field Approach

Idea: Replace the interacting many-body problem with several effective single-body (or single-
mode) problem by approximating the effect of all other freedoms with an average (mean) field.

 Variational Ansatz: Propose a trial (variational) state that disentangle the atomic and 
photonic degrees of freedom.

Ψ(α)〉 = ψ(α)〉atom⊗N ⊗ α〉photon. (125)

 Photons: assumed to be in a coherent state with complex parameter α

α〉photon = ⅇ-
1
2
α2 

n=0

∞ αn

n !
n〉. (126)
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Under U(1) symmetry transformation: α → ⅇⅈ θ α.

 Atoms: assumed to be identical product state of 

ψ(α)〉atom = ψe(α) e〉 + ψg(α) g〉, (127)

which could also depend on the parameter α.

 Objective: Minimize the expectation value of the Tavis-Cummings Hamiltonian H  with 
respect to the variational state.

min
α

EMF(α) := 〈Ψ(α)H Ψ(α)〉. (128)

Hope: the minimal energy state will be a good approximation of the true ground state within 
the variational subspace.

◻ Mean-Field Energy

 Photonic Expectation: The photons are in a coherent state α〉,

〈α a α〉 = α,

〈α a† α〉 = α*,

〈α a† a α〉 = α2.
(129)

Taking the expectation value of the photon part of H  in Eq. (119),

〈αH α〉 =
ω0

2

i=1

N

σi
z +ω α2 +

1

2
- g 

i=1

N

(σi
- α* + σi

+ α)

= ω α2 +
1

2
+

i=1

N

Hi(α),

(130)

which has decoupled into an overall photon energy plus a sum of N  identical effective atomic 
Hamiltonians Hi(α).

 Atomic Expectation: Hi(α) is the effective Hamiltonian for the ith atom on the photon 
coherent state background 

Hi(α) =
ω0

2
σi

z - g (σi
- α* + σi

+ α), (131)

which can be represented as a 2× 2 matrix in the {e〉, g〉} basis,

Hi(α) ≏
ω0 / 2 -g α
-g α* -ω0 / 2

, (132)

whose minimal energy expectation value is given by the lowest energy eigenvalue:

〈ψ(α)Hi(α) ψ(α)〉 = -
ω0

2

4
+ g2 α2 . (133)

Collecting Eq. (133) and Eq. (130), the mean-field energy EMF(α) defined in Eq. (128) is given 
by
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EMF(α) = ω α2 +
1

2
-N

ω0
2

4
+ g2 α2 . (134)

◻ Mean-Field Solutions
To find the optimal α that minimize EMF(α), solve for

∂EMF(α)

∂α
= 2 ω-N g2 ω0

2

4
+ g2 α2

-1/2

α* = 0. (135)

The solutions:

 Trivial solution: α = 0 (always valid)

 The mean-field energy reaches

EMF(0) =
ω

2
-N

ω0

2
. (136)

 The variational state becomes

Ψ(0)〉 = g〉atom
⊗N ⊗ 0〉photon, (137)

describing: all atoms in ground states & photon vacuum state.

 Non-trivial solution: around the circle of

α★ =
1

2 g ω
g4 N 2 - (ω ω0)2

N≫1 N g

2 ω
, (138)

0
Re α

Im α

α★

which are valid only if
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g >
ω ω0

N
. (139)

 The mean-field energy (always lower than EMF(0) as long as Eq. (139) holds)

EMF(α★) =
ω

2
-

1

4

g2 N 2

ω
+

ω ω0
2

g2
. (140)

 The variation state is

Ψ(α★)〉 = ψ(α★)〉atom
⊗N ⊗ α★〉photon. (141)

In the large-N  limit (N ≫ 1): photon in a coherent state α★〉 with the average photon 
number (light intensity)

〈n〉 = α★2 ~ N 2, (142)

and each atom in an equal-weight superposition of g〉 and e〉 with their relative phase 
locked to α★ / α★

ψ(α★)〉 ≃
1

2
g〉 +

α★

α★
e〉 . (143)

 Spontaneous Symmetry Breaking: Any choice of α★ = α★ ⅇⅈ θ breaks the U(1) sym-
metry spontaneously, i.e. H  respects the U(1) symmetry, but its (approximate) ground 
state Ψ(α★)〉 does not.

◼ Superradiant Phase

The nontrivial solution Ψ(α★)〉 describes the superradiant phase of light, exhibiting key 
features:

 Cooperative Radiation: Many atoms radiate coherently, such that the emitted light inten-
sity add constructively.

 Strong Intensity: Macroscopic photon occupation with 〈n〉 ~ N 2 (in contrast to the linear N -
scaling for independent spontaneous emission),

 Phase Coherence: Emitted photons are phase-locked, and the collective light-matter interac-
tion stabilizes the phase of α★, resulting in the spontaneous breaking of U(1) symmetry.

The superradiant transition phase diagram:
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The superradiant phenomenon is closely related to LASER (Light Amplification by Stimulated 
Emission of Radiation). They share the mechanism of stimulated emission. However, laser is 
a steady state operating in a driven, non-equilibrium regime. It uses an external pump to main-
tain a population inversion of atoms, where stimulated emission overcomes photon losses, 
leading to continuous and coherent light output.
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