
PHYS 130C
Part 1: Quantum Many-Body Physics

Qubits, Bosons and Fermions

◼ Introduction

◼ What are Quantum Many-Body Systems?

Quantum many-body systems are physical systems made up of a large number of inter-
acting constituents, governed by the laws of quantum mechanics. 

 Electrons in a solid, (CMP)

 Ultra-cold atoms in an optical lattice, (AMO)

 Elementary particles in a collider, (HEP)

 Qubits in a quantum computer. (QI)

When many particles are interacting together, their collective behavior often leads to com-
plex emergent phenomena that are dramatically different from just a few particles in 
isolation.

◼ What Make Them Interesting?

 Everything can be Emergent

 Emergent Particle: Dirac fermions in graphene

 Emergent Force: Gauge force in quantum magnets 



 Emergent Spacetime: ER = EPR

 Emergent Gravity: SYK model

Conclusion: Despite the seemingly simple building blocks, many-body systems can display 
phenomena that are rich, surprising, and deeply beautiful. 

 Connection to Real-World Technology

 High-temperature superconductor: strongly-correlated collective phenomenon of inter-
acting electrons

 Quantum computation: store and process information by quantum many-body 
entanglement
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 Mathematical and Conceptual Beauty

 Topological phases of matter

 Renormalization group (RG) theory

 Quantum entanglement and tensor network

 Emergent gauge theories

 Holography and AdS/CFT correspondence

◼ Qubits

◼ Single Qubit

A single qubit is the simplest quantum system, representing the quantum analog of a 
classical bit (a two-state system). Unlike a classical bit, which can only be either 0 or 1, a qubit 
can be in a superposition of both states simultaneously.

 Quantum States

 A pure state of a qubit is represented by a vector in a 2-dimensional Hilbert space, 
spanned by the basis states  and , which can be represented as one-hot vectors:

0〉 ≏ 1
0
, 1〉 ≏ 0

1
. (1)

 A generic state of a qubit is a linear combination of the basis states

ψ〉 = ψ0 0〉+ ψ1 1〉 ≏
ψ0

ψ1
, (2)

where ψ0, ψ1 ∈  and ψ02 + ψ1
2 = 1.

 Physical Observables

 In quantum mechanics, physical observables are represented by Hermitian operators. 
The only observable for a single qubit is its spin or polarization, often measured along 
different axis.

 The Pauli matrices are basis of Hermitian operators, corresponding to the spin observable 
along three orthogonal axes.
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X := 1〉 〈0+ 0〉 〈1 ≏ 0 1
1 0

,

Y :=  1〉 〈0-  0〉 〈1 ≏ 0 -

 0
,

Z := 0〉 〈0- 1〉 〈1 ≏ 1 0
0 -1

.

It is also useful to introduce the identity operator

I := 0〉 〈0+ 1〉 〈1 ≏ 1 0
0 1

, (4)

such that any Hermitian observable O can be written as

O = c I + x X + y Y + z Z , (5)

with c, x, y, z ∈ .

⚠️ Disclaimer: different notations of Pauli operators

 Quantum information: X , Y , Z and I ;

 Condensed matter physics: σ = (σx, σy, σz) = σ1, σ2, σ3 and σ0.

 Measuring a qubit in the computational basis (Z eigen basis) means measuring its Z 

observable. 
If the qubit is in the state , measuring in the  basis will:

 yield  with probability ψ02,

 yield  with probability ψ12.

◼ Two Qubits

A composite system of two qubits is described by a 4-dimensional Hilbert space, as the 
tensor product of the two individual qubit Hilbert spaces.

 Quantum States

 Each qubit has two basis states:  and , so two qubits have four basis states, arranged 
as follows:

qubit 2
0〉 1〉

qubit 1 0〉 00〉 01〉
1〉 10〉 11〉

We can choose to represent them as one-hot vectors:

0 1 2 3
00〉 01〉 10〉 11〉

≏ ≏ ≏ ≏
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1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

This is also called the computational basis (Z1 and Z2 eigen basis).

 The mathematical construction of  is a tensor product of  and  states, denoted 
as

01〉 = 0〉 ⊗ 1〉. (7)

How to make sense of ⊗ ?

 Practically, tensor product of two vectors means

0〉 ⊗ 1〉 = 01〉

≏ ≏ ≏

1
0

⊗
0
1

=

1 0
1

0 0
1

=

0
1
0
0

(8)

 Formally, tensor product is a binary operation that is linear in both factors:

(α0 0〉+ α1 1〉)⊗ (β0 0〉+ β1 1〉)

= α0 β0 0〉 ⊗ 0〉+ α0 β1 0〉 ⊗ 1〉+ α1 β0 1〉 ⊗ 0〉+ α1 β1 1〉 ⊗ 1〉

=
short

α0 β0 00〉+ α0 β1 01〉+ α1 β0 10〉+ α1 β1 11〉.

(9)

The only way to implement this algebra correctly on the vector level is to require the 
tensor product be computed as (see also Eq. (8))

α0

α1
⊗

β0

β1
=

α0
β0

β1

α1
β0

β1

=

α0 β0

α0 β1

α1 β0

α1 β1

. (10)

 Rules of tensor product on basis vectors

a〉 ⊗ b〉 = ab〉,

〈a ⊗ 〈b = 〈ab,
(11)

(a〉 〈b)⊗ (c〉 〈d) = ac〉 〈bd,

〈ac bd〉 = (〈a ⊗ 〈c) (b〉 ⊗ d〉) = 〈a b〉 〈c d〉.
(12)

 Physical Observables

 Introduce the Pauli operators X1, Y1, Z1 for the first qubit, and X2, Y2, Z2 for the second 
qubit, any physical observable of a two-qubit system is described by a Hermitian operator 
as a linear combination of the followings:
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 Trivial observable:

 = I ⊗ I . (13)

 Single-qubit observables:

qubit 1 :X1 = X ⊗ I , Y1 = Y ⊗ I , Z1 = Z ⊗ I ,

qubit 2 :X2 = I ⊗X , Y2 = I ⊗Y , Z2 = I ⊗Z .
(14)

 Two-qubit observables (joint measurements):

X1 X2 X1 Y2 X1 Z2
Y1 X2 Y1 Y2 Y1 Z2
Z1 X2 Z1 Y2 Z1 Z2

(15)

For example, by Z1 Y2, one means:

Z1 Y2 = (Z ⊗ I ) (I ⊗Y ) = Z ⊗Y . (16)

Altogether there are 16 basis observables.

 The tensor product of operator is defined as

A = 

ab

a〉Aab 〈b, B = 

cd

c〉Bcd 〈d,

 A⊗B = 

abcd

a〉 ⊗ c〉Aab Bcd 〈b ⊗ 〈d.
(17)

Practically, it is computed as

Z ⊗Y ≏
1 0
0 -1

⊗
0 -

 0

=

1 0 -

 0
0 0 -

 0

0 0 -

 0
-1 0 -

 0

=

0 - 0 0
 0 0 0
0 0 0 

0 0 - 0

.
(18)

In Mathematica, you can use KroneckerProduct to calculate tensor product of matrices, 
such as:

KroneckerProduct[PauliMatrix[3], PauliMatrix[2]] // MatrixForm

Represent the Hamiltonian H = X1 X2 +Y1 Y2 +Z1 Z2 as a 4 × 4 matrix in the computa-
tional basis. Diagonalize the matrix to find the eigen energies and corresponding eigen 
states.

Exc
1

By definition, operator tensor product has the following properties:

(A⊗B) (C ⊗D) = (AB)⊗ (C D), (20)

(αA+ βB)⊗C = αA⊗C + βB⊗C ,

A⊗ (βB + γ C ) = βA⊗B + γA⊗C ,
(21)
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Tr(A⊗B) = (TrA) (TrB). (22)

◼ Many Qubits

A N -qubit system is described by a 2N -dimensional Hilbert space, as tensor product of N  

single-qubit Hilbert spaces:

ℋ = ℋ1⊗ℋ2⊗ℋ3⊗…⊗ℋN . (23)

 Quantum States: a generic many-qubit quantum state 

ψ〉 = 

a1 a2 …

ψa1 a2 … a1 a2…〉 = 

[a]

ψ[a] [a]〉. (24)

Notation: bundled index [a] = a1 a2…aN , with ai = 0, 1, and

[a]〉 = a1〉 ⊗ a2〉 ⊗…⊗ aN 〉. (25)

 Physical Observables

 A generic operator takes the form of

O = 

a1 a2 …


b1 b2 …

a1 a2…〉Oa1 a2 …,b1 b2 … 〈b1 b2…

= 

[a],[b]

[a]〉O[a][b] 〈[b].
(26)

 Any operator O can be decomposed to a linear combination of Pauli operators P with 
some coefficients oP, 

O = 

P

oP P, (27)

where P takes the form of

P = P1⊗P2⊗… ⊗PN , (28)

with Pi ∈ {I , X , Y , Z }. 

 There are all together 4N  Pauli operators (including identity) for a N -qubit system.

 They form a set of complete and orthogonal operator basis.

 All Pauli operators can be generated by Xi and Zi, constructed as

ith factor


Xi = …⊗ I ⊗ I ⊗ X ⊗I ⊗ I ⊗… ,
Zi = …⊗ I ⊗ I ⊗ Z ⊗I ⊗ I ⊗… ,

(29)

or defined by the following algebraic definitions:
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Xi2 = Zi2 = ,

Xi Zi = -Zi Xi,

Xi Zj = Zj Xi (for i ≠ j).
(30)

for all i, j ∈ {1, 2,…, N }. 

 What about Yi? - It is simply defined as Yi := Xi Zi.

 Such that any Pauli operator can be written as

Pξ,ζ = ξ·ζ 

i

Xi
ξi


i

Zi
ζi ,

(31)

uniquely labeled by two binary vectors ξ = (ξ1, ξ2,…, ξN ) and ζ = (ζ1, ζ2,…, ζN ) with 
ξi, ζi = 0, 1. The factors of  are taken care by ξ·ζ, where ξ · ζ means the dot product of 
the binary vectors. 

Check that the following four operators all commute: 
X1 X2 X4, Z1 Z2 X3 X4, Y1 X2 Y3 Z4, X1 Z2 Z4,
using their operator algebra, without relying on explicit matrix representations.

Exc
2

Consider a four-qubit system, initially prepared in the ground state ψ〉 of the fol-
lowing Hamiltonian 
H = -Z1 X2 Z3 -Z2 X3 Z4 -Z3 X4 Z1 -Z4 X1 Z2.
(i) On state ψ〉, measure the 1st and 3rd qubits in X basis, suppose the outcome for 
the 1st qubit is X1 = -1, what should be the measurement outcome of X3?
(ii) After the measurement, suppose the system collapses to a new state ϕ〉. Compute 
the expectation value of X2 X4 and Z2 Z4 on the state ϕ〉.

HW
1

◼ Bosons

◼ Single-Mode Bosons

Bosons are identical particles that can occupy a single-particle mode by any natural number 
n = 0, 1, 2,…. 

 Quantum states: Boson occupation states

0〉 vacuum (empty)
1〉 one boson occupied
2〉 two bosons occupied
⋮ ⋮

n〉 n bosons occupied
⋮ ⋮

 They are distinct eigenstates of the boson number operator n ,
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n n〉 = n n〉, (33)

where n ∈  is the corresponding eigenvalue. 

 They form a complete set of orthonormal basis,

〈n n′〉 = δnn′. (34)

 They can be represented as one-hot vectors:

0〉 ≏

1
0
0
⋮

, 1〉 ≏

0
1
0
⋮

, 2〉 ≏

0
0
1
⋮

, … (35)

Comment: These vectors are infinite dimensional, because the Hilbert space dimension is 
infinite. In practice, we can (artificially) choose to truncate the Hilbert space dimension to 
some finite maximal boson number nmax (if we don’t care about states with that many 
bosons, as they are too high in energy).

 Any quantum state of single-mode bosons must be a linear superposition of the boson 
occupation states

ψ〉 = 

n∈

ψn n〉. (36)

 Boson Operators

 Boson creation operator: b† ↔†  Boson annihilation operator: b
They are Hermitian conjugate to each other.

 Actions on boson occupation states

b† n〉 = n + 1 n+1〉,

b n〉 = n n-1〉.
(37)

Interpretation: creation operator raise the boson number by one, and annihilation operator 
lowers the boson number by one, BUT there are square root factors (also known as boson 
enhancement factors) in the front.

 Boson number operator can be expressed as

n = b† b. (38)

Using Eq. (37) to show that Eq. (38) can reproduce Eq. (33) consistently.Exc
3

 Boson commutation relation
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[b, b] = b†, b† = 0,

b, b† = .
(40)

Note: commutator [A, B] := AB -B A.
In fact, this should be treated as the algebraic definition of the boson creation and annihila-
tion operators.

Use Eq. (37) to check that Eq. (40) holds for any state as operator identities.Exc
4

 Boson operators can be represented as matrices

b† ≏

0
1 0

2 0
⋱ ⋱

, b ≏

0 1
0 2

0 ⋱

⋱

, (42)

such that the number operator is diagonal as expected

b† b ≏

0
1
2

⋱

. (43)

Comment: These are infinite dimensional matrices, due to infinite dimensional Hilbert 
space. In practice, we can truncate them to finite dimension by setting a (artificial) max-
imal boson number nmax.

◼ Multi-Mode Bosons

Bosons can also occupy multiple single-particle modes. Here a particular single-particle 
mode can refer to any of the following:

 a momentum eigenstate (a plane wave) for bosons to follow,

 a position eigenstate (a site on an optical lattice) for atoms to stay,

 a cavity eigenstate (a wave mode) for photons to populate,

 a polarization mode (transverse/longitudinal) for phonon to take ...

Different single-particle modes will be labeled by different mode quantum number α (mode 
index).

 Quantum States: Tensor product of boson occupation states

[n]〉 =⊗
i
ni〉 = n1〉 ⊗ n2〉 ⊗ n3〉 ⊗…, (44)

where ni ∈  is the number of bosons occupying the ith mode. 
[n] = n1 n2 n3… denotes the sequence of boson occupation numbers.
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 They are joint eigenstates of boson number operators n i

∀ i : n i [n]〉 = ni [n]〉. (45)

 They form a complete set of orthonormal basis,

〈[n] [n′]〉 = 

i

δni ni′. (46)

 Any quantum many-body state of multi-mode bosons must be a linear superposition of 
these boson occupation states.

 Boson Operators

 For each mode i, define

Boson creation operator: bi
†
 ↔
†
 Boson annihilation operator: bi

 Actions on boson occupation states

bi
†
…ni-1 ni ni+1…〉 = ni + 1 …ni-1(ni + 1) ni+1…〉,

bi …ni-1 ni ni+1…〉 = ni …ni-1(ni - 1) ni+1…〉.
(47)

Comment: the boson creation/annihilation operator only acts on the tensor product Hilbert 
space of its own mode, and has no side effect on other modes.

 Boson number operator of mode i can be express as

n i = bi
† bi. (48)

 Boson commutation relations

[bi, bj] = bi
†, bj

†
 = 0,

bi, bj
†
 = δi j .

(49)

These relations should be considered as the algebraic definition of the boson creation and 
annihilation operator for multiple modes.

◼ Fermions

◼ Single-Mode Fermions

Fermions are identical particles that can occupy a single-particle mode by only zero or one 
particle, i.e. n = 0, 1 — a rule known as the Pauli exclusion principle.

 Quantum states: Fermion occupation states

0〉 vacuum (empty)
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1〉 one fermion occupied

and no more state. The Hilbert space dimension is 2.

 They are still distinct eigenstates of the fermion number operator n , 

n n〉 = n n〉. (50)

Just now the eigenvalue can only be n = 0, 1.

 They form a complete set of orthonormal basis, and can be represented as one-hot 
vectors:

0〉 ≏ 1
0
, 1〉 ≏ 0

1
. (51)

Question: This looks just the same as a single qubit, right?
Answer: Yes, indeed, a single-mode fermion and a single qubit are equivalent quantum 

systems. But multi-mode fermions and multi-qubit system will be different, as we will see.

 Fermion Operators

 Fermion creation operator: c† ↔†  Fermion annihilation operator: c
They are Hermitian conjugate to each other.

 Actions on fermion occupation states

c† 0〉 = 1〉, c† 1〉 = 0;

c 0〉 = 0, c 1〉 = 0〉.
(52)

Note: be careful to distinguish the vacuum state 0〉 (meaning that there is such a state, and 
the state contains no particle) and the zero vector 0 (meaning that there is no such a 
state). In quantum mechanics, a 0 probability amplitude indicates the state is impossible.

 Empty state can not be empty: it is impossible to remove a fermion from the 
vacuum state, because there was no fermion there. Therefore, we have

c 0〉 = 0. (53)

 Filled state can not be filled: it is impossible to add a second fermion to a mode 
when it is already occupied by one fermion — the Pauli exclusion principle. Therefore, 
we have

c† 1〉 = 0. (54)

Interestingly, Eq. (52) can be summarized in two lines

c† n〉 = 1- n 1-n〉,

c n〉 = n 1-n〉.
(55)

Interpretation: n ↔ 1- n toggles between n = 0 and n = 1 state, as expected. The peculiar  

 Fermion number operator can be expressed as

12     QuantumManyBody.nb



n = c† c. (56)

Use Eq. (55) to show that Eq. (56) can reproduce Eq. (33) consistently.Exc
5

 Fermion anticommutation relation

{c, c} = c†, c† = 0,

c, c† = .
(58)

Note: anticommutator {A, B} := AB +B A.
In fact, this should be treated as the algebraic definition of the fermion creation and annihi-
lation operators.

Use Eq. (55) to check that Eq. (58) holds for any state as operator identities.Exc
6

 For a single mode, fermion operators have simple 2 × 2 matrix representations in the {0〉, 
1〉} basis

c† ≏
0 0
1 0

, c ≏
0 1
0 0

, (61)

such that the number operator is diagonal as expected

c† c ≏
0 0
0 1

. (62)

 Jordan-Wigner transformation: If the fermion occupation states are mapped to the 
qubit states, fermion operators can also be represented as Pauli operators, as

c† =
X - Y

2
, c =

X + Y

2
, c† c =

I -Z

2
. (63)

◼ Multi-Mode Fermions

Fermions can also occupy multiple single-particle modes, labeled by different mode 
quantum number i (mode index).

 Quantum States: Tensor product of fermion occupation states

[n]〉 =⊗
i
ni〉 = n1〉 ⊗ n2〉 ⊗ n3〉 ⊗…, (64)

where ni ∈  is the number of fermions occupying the ith mode. 
[n] = n1 n2 n3… denotes the sequence of fermion occupation numbers.

 They are joint eigenstates of fermion number operators n i
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∀ i : n i [n]〉 = ni [n]〉. (65)

 They form a complete set of orthonormal basis,

〈[n] [n′]〉 = 

i

δni ni′. (66)

 Any quantum many-body state of multi-mode fermions must be a linear superposition of 
these fermion occupation states.

 Fermion Operators

 For each mode i, define

Fermion creation operator: ci
†
 ↔
†
 Fermion annihilation operator: ci

 Actions on fermion occupation states

ci
†
…ni-1 ni ni+1…〉 = (-)∑j<inj 1- ni …ni-1(1- ni) ni+1…〉,

ci …ni-1 ni ni+1…〉 = (-)∑j<inj ni …ni-1(1- ni) ni+1…〉.
(67)

Comment: the fermion creation/annihilation operator not only acts on its own mode. There 
is an important fermion sign that depends on the parity of the number of fermions occu-
pying the proceeding modes (for this to make sense, a canonical ordering of single-particle 
mode is required), because each exchange of two fermions will change the sign of the whole 
many-body state — a defining feature of fermions.

 Fermion number operator of mode i can be express as

n i = ci
† ci. (68)

 Fermion commutation relations

{ci, cj} = ci
†, cj

†
 = 0,

ci, cj
†
 = δi j .

(69)

These relations should be considered as the algebraic definition of the boson creation and 
annihilation operator for multiple modes.
Eq. (69) implies the following rules:

 No double action: double creation or annihilation of fermions on the same mode i is 
forbidden

ci ci = 0,

ci
† ci

†
= 0.

(70)
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 Exchange minus sign: exchanging two fermion operations of different modes (i ≠ j) 
will generate a minus sign (the fermion sign)

ci cj = -cj ci,

ci
† cj

†
= -cj

† ci
†,

ci
† cj = -cj ci

†,

ci cj
†
= -cj

† ci.

(71)

 Matter and anti-matter: ci
† ci counts the number of particles in the mode i, whereas 

ci ci
†
 counts the number of anti-particles in the same mode:

ci ci
†
= - ci

† ci. (72)

state particle anti-particle ci
† ci ci ci

†

0〉i empty occupied 0 1
1〉i occupied empty 1 0

Slogan: where no particle is found, an anti-particle is bound.

operator particle anti-particle
creation ci

† ci
annihilation ci ci

†

number ci
† ci ci ci

†

It turns out that all matter in our universe are made of fermions (leptons and quarks), 
so every matter has its anti-matter partner — a profound symmetry encoded in 
the quantum mechanical rules of fermion operators.

These rules provides a better understanding of how fermion creation and annihilation opera-
tors acts on fermion occupation states:

 Consider a fermion system of 5 single-particle modes, the vacuum state is denoted as (modes 
are arranged from left to right)

00 000〉 := 0〉1⊗ 0〉2⊗ 0〉3⊗ 0〉4⊗ 0〉5. (73)

 Any fermion occupation state can be constructed by applying fermion creation operators on 
the vacuum state

10 000〉 = c1
†
00 000〉,

01 000〉 = c2
†
00 000〉,

00 100〉 = c3
†
00 000〉,

10 100〉 = c1
† c3

†
00 000〉,

10 110〉 = c1
† c3

† c4
†
00 000〉.

(74)

 If we add fermions one by one to the system, the order matters:

Starting from the vacuum state,

 add fermion on mode 1 then mode 3 then mode 4:
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00 000〉

→ c1
†
00 000〉 = 10 000〉

→ c3
†
10 000〉 = c3

† c1
†
00 000〉 = -c1

† c3
†
00 000〉 = - 10 100〉

→ -c4
†
10 100〉 = -c4

† c1
† c3

†
00 000〉 = -c1

† c3
† c4

†
00 000〉 = - 10 110〉

(75)

 add fermion on mode 1 then mode 4 then mode 3:

00 000〉

→ c1
†
00 000〉 = 10 000〉

→ c4
†
10 000〉 = c4

† c1
†
00 000〉 = -c1

† c4
†
00 000〉 = - 10 010〉

→ -c3
†
10 010〉 = -c3

† c1
† c4

†
00 000〉 = c1

† c3
† c4

†
00 000〉 = 10 110〉

(76)

The resulting states are differed by a minus sign, due to the exchange of fermions between 
mode 3 and 4 effectively comparing the two processes.

Now we have a better understanding of the fermion sign factor (-)∑j<inj in Eq. (67), as the cre-
ation or annihilation operator has to commute through the existing creation operators on all the 
proceeding modes to reach its mode position in order to act on the vacuum state canonically to 
reconstruct the fermion occupation state.

◼ Jordan-Wigner Transformation

Jordan-Wigner transformation is an exact mapping between qubit systems and fermion 

systems.

 State correspondence

 Qubit: a1 a2…〉 with ai = 0, 1 — the ith qubit in the 0 or 1 state.

 Fermion: n1 n2…〉 with ni = 0, 1 — the ith mode being empty or occupied.

 Operator correspondence: The fermion operators can be written in terms of Pauli opera-
tors as

ci = 

j<i

Zj
Xi + Yi
2

,

ci
†
= 

j<i

Zj
Xi - Yi
2

.
(77)

Verify that the construction Eq. (77) satisfies the fermion anticommutation relation 
Eq. (69), therefore justified to be called fermion operators.

Exc
7

 The product ∏j<i Zj is called the Jordan-Wigner string, a non-local operator necessary to 
ensure the correct fermion anticommutation relation is reproduced. 
Comment: The non-locality of the Jordan-Wigner string has sparked deep reflection 
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among some physicists. 

 If we simply accept the anticommutation relations of fermionic operators as the 
defining property of fermions, then we can build a quantum many-body theory of 
fermions, without questioning their origin. 

 However, if we consider the universe to be, at the fundamental level, a quantum com-
puter—where every physical phenomenon ultimately arises from some computable 
quantum algorithm on foundational qubits—then it becomes difficult to imagine why 
all matter particles in the universe, as fermions, would have to be realized in such a 
complex, non-local manner. This line of thought has led to the discovery of topological 
order, a theoretical framework that provides a local physical origin for the non-local 
nature of fermions.

 Matrix representation: Despite of the complexity, Eq. (77) actually provides a system-
atic method to represent fermion operators as matrices, given that we know how to repre-
sent each Pauli matrix and how to tensor product them together.

Use Jordan-Wigner transformation to rewrite the following Hamiltonian of a fermion 
system to the Hamiltonian of a qubit system: 
H = -t ∑i ci+1

† ci + h.c.+V ∑i (ni -  / 2) (ni+1 -  / 2), 
where ni = ci

† ci and h.c. denotes the Hermitian conjugate of the term. Assume that 
the system is defined on an infinite 1D lattice. Express the qubit Hamiltonian in 
terms of Pauli operators.

HW
2

Quantum Many-Body Problems

◼ Overview

◼ What are the Problems?

Quantum many-body problem is the problem of predicting how physical properties of 
quantum many-body systems respond to the tuning parameters, environmental noises, measure-
ments or quantum operations.
A traditional task is

Ground state problem: predict how ground state properties respond to Hamiltonian 
parameters.

 Input: Hamiltonian H (g), parametrized by g = (g1, g2,…),

 Output: ground state Ψ0〉 of H (g) for any g, i.e.,

Ψ0〉 = argmin
Ψ〉

〈ΨH (g) Ψ〉, (85)
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such that given any observable O, one can predict its ground state expectation value 
〈O〉 = 〈Ψ0O Ψ0〉.

 Why care about ground state? — The ground state reveals properties of many-body systems 
at low temperature, which are crucial for understanding quantum phases (quantum 

magnet, superconductor, superfluid, topological insulator) and quantum phase transitions.

◼ What are the Challenges?

 Quantum Entanglement: When particle interact with each other, they become quantum 

entangled with each other. Entangled quantum systems are fundamentally non-decomposable 
due to non-local quantum information sharing among all the entangled parties. 

 Curse of Dimensionality: The Hilbert space dimension of quantum many-body system 

grows exponentially with the number of particles (or qubits) [Recall: N -qubit system Hilbert 
space dimension is 2N ], making it exponentially hard to solve for the ground state (or even 
just to write down the solution).

◼ Exact Diagonalization: A Brute-Force Approach

◻ Algorithm

 Input: Hamiltonian H  (we will omit its parameters for now).

 Step 1: represent the Hamiltonian H  as a matrix.

 Step 2: solve the eigen problem to find the eigenvalues (energy levels) and eigenvectors (corre-
sponding states) of H

H Ψn〉 = En Ψn〉. (86)

 Step 3: find the lowest energy eigenvalue E0, and pick out its corresponding eigenstate Ψ0〉.

 Output: Ψ0〉 will be a ground state of H .

◻ Explanation

◼ Transverse-Field Ising Model

◼ Model Hamiltonian

Consider a 1D lattice of N  qubits arranged in a ring (i.e., assuming periodic boundary 
condition)
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i =N i = 1
i = 2

i =N - 1
i =N - 2

 Hamiltonian

H = -J 

i=1

N

Zi Zi+1 - h

i=1

N

Xi, (89)

with the understanding that Zi+N = Zi under periodic boundary condition.

 Parameters:

 Ising coupling strength J : large J favors all qubits to be either all 0 or all 1, such that 
Zi Zi+1 = +1 for all neighbors, such that the Ising energy is minimized.

 Transverse field strength h: large h favors all qubits to be in superposition states 
+〉 ∝ 0〉+ 1〉, such that Xi = +1 for all qubits independently, such that the transverse field 
energy is minimized.

However, only their ratio J / h matters, as the overall energy scale can always be redefined.

◼ 2 Ising Symmetry

Symmetry: 2 Ising (spin flip) symmetry, implemented by the following unitary operator

U = 

i=1

N

Xi. (90)

 Under 2 symmetry transformation,

Zi → U Zi U † = -Zi,

Xi → U Xi U † = Xi,
(91)

the Ising spin operator Zi gets a minus sign (spin flipped), but the Hamiltonian H  in Eq. (89) 
remains unchanged.

 In other words, the system is symmetric ⇔ the Hamiltonian H  commutes with the sym-
metry operator U

[H , U ] = 0, (92)

for any parameters J and h in H .
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 The symmetry is named by the mathematical structure of a 2 group, which consists of two 
group elements 2 = {, U }, with the following group multiplication rules

·  U
  U
U U 

≅

+ 0 1
0 0 1
1 1 0

,

which is isomorphic to the mod-2 addition of 2 integers {0, 1} (hence the name).

◼ Two Limits

 Strong coupling limit J / h → ∞: ferromagnetic, ordered phase.

 Ground states: two fold degenerated

Ψ0〉 ∈ span {000…〉, 111…〉}. (93)

No matter which state we choose, the ground state will spontaneously break the 2 
symmetry.

 Spontaneous symmetry breaking: the Hamiltonian H  has a symmetry, but all its short-
range-entangled ground states necessarily breaks the symmetry. 

 If a discrete symmetry group G is spontaneously broken to its subgroup G ′, the ground 
state degeneracy (GSD) will be given by

GSD =
G

G′
, (94)

where G denotes the order (number of elements) of a group G.
 In our case, 2 → 1, GSD = 2 / 1 = 2.

 Weak coupling limit J / h → 0: paramagnetic, disordered phase.

 Ground state: unique

Ψ0〉 = +++…〉 =
1

2N /2


[a]

[a]〉, (95)

as an equal-amplitude superposition of all possible Ising (bit-string) configurations 
[a] = a1 a2… (ai = 0, 1). 

 Symmetric: the 2 symmetry is preserved (no symmetry breaking).
The two limits are in distinct phases, because whether or not the 2 symmetry is spontaneously 
broken has an yes-or-no answer.
Question: how does the system transition between these two phases?

◼ Representing the Hamiltonian

Let us try to do some numerics. We start by telling the computer what is our Hamiltonian, 
and represent each term in the Hamiltonian as a matrix.

 Let us first pick a finite system size N , and enumerate terms in our Hamiltonian. 
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Block[{Ν = 4, J, h, H},
H = -J Sum[RotateLeft[PadLeft[P["Z", "Z"], Ν, "I"], i], {i, Ν}] -

h Sum[RotateLeft[PadLeft[P["X"], Ν, "I"], i], {i, Ν}]]

-h (P[I, I, I, X] + P[I, I, X, I] + P[I, X, I, I] + P[X, I, I, I]) -

J (P[I, I, Z, Z] + P[I, Z, Z, I] + P[Z, I, I, Z] + P[Z, Z, I, I])

 As a symbolic programing language, Mathematica allows us to manipulate mathematical 
symbols directly, which makes it well-suited for algebraic manipulation, equation solving, and 
calculus.

 The key mechanism for the symbolic processing is its rule-based replacement system, 
which works by defining rules that determines how symbols are matched and replaced 
according to specific patterns.

Here is how it works:

 First define a rule set called “represent”, that replaces I , X, Y , Z by their corresponding 
Pauli matrices.

Block[{represent},
represent = {

"I"  SparseArray@PauliMatrix[0],
"X"  SparseArray@PauliMatrix[1],
"Y"  SparseArray@PauliMatrix[2],
"Z"  SparseArray@PauliMatrix[3]};

MatrixForm /@ {"I", "X", "Y", "Z"} //. represent]


1 0
0 1

, 
0 1
1 0

, 
0 -

 0
, 

1 0
0 -1



 Then extend the rule set by rules for Pauli operators

Block{represent},

represent =  ,

P[a_]  a,

P[a_, b__]  KroneckerProduct[a, P[b]];

MatrixForm /@ {P["X"], P["Z", "Z"], P["X", "I", "Z"]} //. represent


0 1
1 0

,

1 0 0 0
0 -1 0 0
0 0 -1 0
0 0 0 1

,

0 0 0 0 1 0 0 0
0 0 0 0 0 -1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 -1
1 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 -1 0 0 0 0
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Putting together the above constructions, we can represent the transverse-field Ising model 
Hamiltonian as a matrix for any given parameters J and h.

-4 J -h -h 0 -h 0 0 0 -h 0 0 0 0 0 0 0
-h 0 0 -h 0 -h 0 0 0 -h 0 0 0 0 0 0
-h 0 0 -h 0 0 -h 0 0 0 -h 0 0 0 0 0
0 -h -h 0 0 0 0 -h 0 0 0 -h 0 0 0 0
-h 0 0 0 0 -h -h 0 0 0 0 0 -h 0 0 0
0 -h 0 0 -h 4 J 0 -h 0 0 0 0 0 -h 0 0
0 0 -h 0 -h 0 0 -h 0 0 0 0 0 0 -h 0
0 0 0 -h 0 -h -h 0 0 0 0 0 0 0 0 -h
-h 0 0 0 0 0 0 0 0 -h -h 0 -h 0 0 0
0 -h 0 0 0 0 0 0 -h 0 0 -h 0 -h 0 0
0 0 -h 0 0 0 0 0 -h 0 4 J -h 0 0 -h 0
0 0 0 -h 0 0 0 0 0 -h -h 0 0 0 0 -h
0 0 0 0 -h 0 0 0 -h 0 0 0 0 -h -h 0
0 0 0 0 0 -h 0 0 0 -h 0 0 -h 0 0 -h
0 0 0 0 0 0 -h 0 0 0 -h 0 -h 0 0 -h
0 0 0 0 0 0 0 -h 0 0 0 -h 0 -h -h -4 J

◼ Solving the Eigen Problem

 Eigen solver. For numerical matrix, the eigen problems can be solved by an algorithm called 
Arnoldi iteration. One can request the number of eigen values and states to be calculated.

 Parametrization. For this purpose, we substitute numerical values for J and h. Since only 
J / h matters, we can choose to parametrize them as

J = g, h = 1- g, (96)

with g ∈ [0, 1], such that there is only a single parameter to tune, and the overall energy scale 
is bounded between ±N .

Block{Ν = 4, g = 0., H, represent, Es, Ψs},

represent = ;

H[J_, h_] := ReplaceRepeated[ ] ;

{Es, Ψs} = Eigensystem[N@H[g, 1 - g], 2, Method  {"Arnoldi", "Shift"  -Ν - 0.1}]

{{-4., -2.},
{{0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25,

0.25, 0.25, 0.25}, {0.009913, 0.300151, -0.293983, -0.00374487, 0.198388,
0.488626, -0.105508, 0.18473, -0.18473, 0.105508, -0.488626,
-0.198388, 0.00374487, 0.293983, -0.300151, -0.009913}}}

Let us visualize the lowest two states as a function of J / h.

22     QuantumManyBody.nb



J / h = ∞

-4. 0.252648 0000〉+ 0.967558 1111〉
-4. 0.967558 0000〉- 0.252648 1111〉

 Strictly speaking, the ground state degeneracy splits as long as the system is tuned away from 

the J / h → ∞ limit. However, the splitting is small in the strong coupling regime.

 It seems that the ground state interpolates between the two limits continuously.

Question: Where is the phase transition?
Phases and phase transitions are only well-defined in the thermodynamic limit (N → ∞).  

We should study how physical properties scales with system size N .

◼ Energy Gap Scaling

The energy density En /N  of the lowest two energy level v.s. the J / h parameter, showing 
how the ground state degeneracy splits.

0 0.2 0.5 1 2 5 ∞

-1.0

-0.9

-0.8

-0.7

J / h

E
n
/
N

N = 12

E0

E1

Define the energy gap

Δ = E1 -E0. (97)

 In the symmetry breaking phase (strong coupling), e.g. J / h = 2, the energy gap decays to 
zero with system size N  exponentially

Δ ∼ -αN . (98)
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N

Δ
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 In the symmetric phase (weak coupling), e.g. J / h = 1 / 2, the energy gap tends to a constant 
in the large N  limit.

Δ ∼ const. (99)

4 6 8 10 12
0.665
0.670
0.675
0.680
0.685
0.690

N

Δ

◼ Physical Observables

What can we learn from the ground state Ψ0〉 itself? We can study various physical 
observables

〈O〉 := 〈Ψ0O Ψ0〉. (100)

 Correlation function: used to indicate the ordered phase.

C (d) = 〈Zi Zi+d〉. (101)

It characterizes the correlation between Ising spins Zi and Zi+d separated by distance d on the 
lattice. Strong correlation indicates the spins are ordered.

 Long-distance correlation function v.s. J / h ratio, indicating phase transition (transition 
gets sharper as N → ∞)

0 0.2 0.5 1 2 5 ∞

0.0
0.2
0.4
0.6
0.8
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J / h

C
(N

/
2)

N = 12

 In the symmetry breaking phase (strong coupling), e.g. J / h = 2, the correlation function 
approaches to constant at long range

C (d) ∼ const. (102)
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 In the symmetric phase (weak coupling), e.g. J / h = 1 / 2, the correlation function decays 
to zero exponentially with the distance d.

C (d) ∼ -d/ξ, (103)

the decay length scale ξ is called the correlation length.
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 String operator: used to indicate the disordered phase. 

S(d) =  

j=i

i+d-1

Xi. (104)

String operator is a segment of symmetry operator of length d, which flips all the Ising spins 
in the segment. Its expectation value measure the probability to see the segment of spin being 
flipped under quantum fluctuation in the ground state. In the symmetric (disordered) phase, 
such probability should be high.

 Long-range string operator v.s. J / h ratio, indicating phase transition (transition gets 
sharper as N → ∞)
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 In the symmetry breaking phase (strong coupling), e.g. J / h = 2, the string operator 
decays to zero exponentially with the distance d.

S(d) ∼ -d/ξ. (105)
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 In the symmetric phase (weak coupling), e.g. J / h = 1 / 2, the string operator approaches 
to constant at long range.

S(d) ∼ const. (106)
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The above numerical result strongly suggests that there is a correspondence between C (d) and 
S(d) as we interchange J and h. 

◼ Kramers-Wannier Duality

Kramers-Wannier duality is an operator mapping, under which

Zi Zi+1 → Xi+1/2,

Xi → Zi-1/2 Zi+1/2.
(107)

Zi Zi+1

Xi+1/2

Xi

Zi-1/2 Zi+1/2

 It maps the Pauli operators acting the original qubits (in red) to the Pauli operators acting a 
new set of qubits (in blue) on the dual lattice (shifted by 1/2 lattice constant).

 Requirements: 
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 The algebraic relations (such as commutation relations) among these operators are pre-
served under the mapping. 

 The locality of the Hamiltonian is also preserved.
In fact, the Hamiltonian Eq. (89) gets mapped to

H = -J 

i=1

N

Xi+1/2 - h

i=1

N

Zi-1/2 Zi+1/2, (108)

on the dual lattice, effectively interchange the roles of J and h.

J / h ↔ h / J
lattice ↔ dual-lattice
order ↔ disorder
C (d) S(d)

disorder ↔ order
S(d) C (d)

Show that the correlation function C (d) and string operator S(d) maps to each other 
under Kramers-Wannier duality.

Exc
8

 Implication: under Kramers-Wannier duality, the ordered (disordered) phase of the original 
Ising model maps to the disordered (ordered) phase of the dual Ising model, but both models 
are identical, so if there is a single phase transition separating the ordered and disordered 
phases, it must happen at

J / h = 1. (111)

This is the critical point of the transverse-field Ising model.

◼ Bose-Hubbard Model

◼ Model Hamiltonian

Consider a 1D lattice of N  sites with periodic boundary condition.

 Hamiltonian

H = -t
i=1

N

bi+1
† bi + h.c.+

U

2


i=1

N

ni(ni - 1) - μ

i=1

N

ni, (112)

where  

 bi
†
 and bi are boson creation and annihilation operators on site-i, with bi+N = bi given 

the periodic boundary condition,
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 ni = bi
† bi denotes the boson number operator (we will omit the hat of n


 for simplicity).

 Parameters:

 Hopping amplitude t: measures boson mobility on the lattice. bi+1
† bi describes the process 

of moving a boson from site-i to the neighboring site-(i + 1), and the Hermitian conjugate 
term bi

† bi+1 describes the reverse process.

 On-site interaction strength U : also known as the Hubbard interaction, can be attrac-
tive (U < 0) or reclusive (U > 0). ni(ni - 1) / 2 counts the number of pairs that can form 

among ni bosons on a site, as interaction is pair-wise.

 Chemical potential μ: adjust to set the number of particles. 

👉  Remark: If we fix the total boson number Nb (i.e., assuming a canonical ensemble), we 
can drop the chemical potential term.

◼ U(1) Symmetry

The Hamiltonian enjoys a continuous U(1) symmetry, implemented by the following unitary 
operator

U (θ) =  θNb, (113)

where Nb is the U(1) charge operator that generates the unitary, and is given by

Nb = 

i

ni, (114)

which is also the operator of total boson number in the system.

 Under the U(1) symmetry transformation,

bi → U (θ) bi U (θ)† = - θ bi,

bi
†
→ U (θ) bi

† U (θ)† =  θ bi
†.

(115)

Prove Eq. (115) given the definition Eq. (113).Exc
9

The Bose-Hubbard model Hamiltonian H  in Eq. (112) is invariant under such opposite phase 
rotations of the boson creation and annihilation operators (as they always appear in pairs in 
H).

 The U(1) symmetry is associated with the conservation law of the boson number conserva-
tion, as the symmetry implies

[H , Nb] = 0. (119)

the charge operator Nb will not evolve in time, and is therefore conserved.
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 Because Nb is conserved, we can always restrict the Hilbert space to a fixed eigen-subspace of 
Nb, such that Nb becomes a number (the eigenvalue) other than an operator. 

◼ Hilbert Space

Suppose the system has totally Nb number of bosons, and the lattice has N  number of 
sites, the many-body Hilbert space dimension is

Db =
(Nb +N - 1)!

Nb ! (N - 1)!
, (120)

the number of ways to distribute Nb identical bosons across N  lattice sites = ways to insert 
(N - 1) dividers between Nb balls in a row.

1 2 3 4 5 6 7 8

 Following the above idea, all basis states can be enumerated given N  and Nb. Here is a simple 
example:

 0, 0, 3, 0, 1, 2, 0, 2, 1, 0, 3, 0,

1, 0, 2, 1, 1, 1, 1, 2, 0, 2, 0, 1, 2, 1, 0, 3, 0, 0

 The Hilbert space dimension grows exponentially with system size N  at any fixed density 
Nb /N . — Exactly solving the problem is hard for large systems.

◼ Representing the Hamiltonian

 We can use Mathematica to quickly build a symbolic system to implement the action of boson 
creation and annihilation operators on boson occupation states.

b[1] @ 0, 0, 0  0

b†[1] @ 0, 0, 0  1, 0, 0

b†[2]@*b[3] @ 0, 4, 3  15 0, 5, 2

b†[2]@*b[2] @ 0, 2, 1 + 2 0, 3, 0  2 0, 2, 1 + 6 0, 3, 0

 This enables us to apply the Hamiltonian Eq. (112) to each basis state and compute the 
resulting state.
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H @ 0, 0, 3  3 U 0, 0, 3 - 3 t 0, 1, 2 - 3 t 1, 0, 2

H @ 0, 1, 2  - 3 t 0, 0, 3 + U 0, 1, 2 - 2 t 0, 2, 1 - t 1, 0, 2 - 2 t 1, 1, 1

H @ 0, 2, 1  -2 t 0, 1, 2 + U 0, 2, 1 - 3 t 0, 3, 0 - 2 t 1, 1, 1 - t 1, 2, 0

H @ 0, 3, 0  - 3 t 0, 2, 1 + 3 U 0, 3, 0 - 3 t 1, 2, 0

H @ 1, 0, 2  - 3 t 0, 0, 3 - t 0, 1, 2 + U 1, 0, 2 - 2 t 1, 1, 1 - 2 t 2, 0, 1

H @ 1, 1, 1  - 2 t 0, 1, 2 - 2 t 0, 2, 1 -

2 t 1, 0, 2 - 2 t 1, 2, 0 - 2 t 2, 0, 1 - 2 t 2, 1, 0

H @ 1, 2, 0  -t 0, 2, 1 - 3 t 0, 3, 0 - 2 t 1, 1, 1 + U 1, 2, 0 - 2 t 2, 1, 0

H @ 2, 0, 1  -2 t 1, 0, 2 - 2 t 1, 1, 1 + U 2, 0, 1 - t 2, 1, 0 - 3 t 3, 0, 0

H @ 2, 1, 0  - 2 t 1, 1, 1 - 2 t 1, 2, 0 - t 2, 0, 1 + U 2, 1, 0 - 3 t 3, 0, 0

H @ 3, 0, 0  - 3 t 2, 0, 1 - 3 t 2, 1, 0 + 3 U 3, 0, 0

 We can collect coefficients in front of the basis states and organize them into the matrix 
representation.

3 U - 3 t 0 0 - 3 t 0 0 0 0 0

- 3 t U -2 t 0 -t - 2 t 0 0 0 0

0 -2 t U - 3 t 0 - 2 t -t 0 0 0

0 0 - 3 t 3 U 0 0 - 3 t 0 0 0

- 3 t -t 0 0 U - 2 t 0 -2 t 0 0

0 - 2 t - 2 t 0 - 2 t 0 - 2 t - 2 t - 2 t 0

0 0 -t - 3 t 0 - 2 t U 0 -2 t 0

0 0 0 0 -2 t - 2 t 0 U -t - 3 t

0 0 0 0 0 - 2 t -2 t -t U - 3 t

0 0 0 0 0 0 0 - 3 t - 3 t 3 U

◼ Solving the Eigen Problem

For a small system, we can diagonalize the Bose-Hubbard model Hamiltonian exactly and 
find the ground state at different U / t ratio.
Consider repulsive Hubbard interaction (U > 0):

U / t = 0.0
+0.196  〉

+0.139  〉 + (19 terms)
+0.098  〉 + (29 terms)
+0.08  〉 + (29 terms)
+0.057  〉 + (19 terms)
+0.04  〉 + (19 terms)
+0.018  〉 + (4 terms)
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 Weak Interaction regime (small U / t)

 Bosons are delocalized across the entire lattice. Each boson can be found anywhere in the 
system, independent of the other bosons. 

 Strong Interaction regime (large U / t)

 Bosons are localized. Each boson is confined to a lattice site, due to the strong on-site 
repulsive interaction that prevents bosons from hopping to neighboring sites.

 There is an energy gap to boson excitations. 

 There is a quantum phase transition separating the weak and strong interacting phases, 
known as the Kosterlitz-Thouless (KT) transition. [2016 Nobel Prize in Physics]

◼ Physical Observables

 Boson Correlation

G(d) = bi
† bi+d. (121)
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 Weak interacting phase: boson correlation G(d) decays in a power law (algebraically) 
with the distance d

G(d) ∼ d-α. (122)

 Strong interacting phase: boson correlation G(d) decays exponentially with the distance d

G(d) ∼ -d/ξ. (123)

 Our current exact diagonalization approach will not be able to further study these behav-
iors and pin down the KT transition, because the system size we can achieve is too small. 
Yet, it still provides us qualitative understanding of helpful physical pictures.

◼ Sachdev-Ye-Kitaev Model

◼ Majorana Fermion

Majorana fermions are fermions that are their own antiparticles. They are generated by 
Hermitian fermion operators χ† = χ.
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 Real and Imaginary Decomposition: Majorana fermions can be thought as the “real part” 
and “imaginary part” of the traditional fermion operator

ci =
1
2
(χ2 i-1 +  χ2 i)

ci
†
=
1
2
(χ2 i-1 -  χ2 i)

χ2 i-1 = ci
†
+ ci

χ2 i =  ci
†
- ci

(124)

 These Majorana fermion operators still acts on the states in the same fermion many-body 
Hilbert space. They are just linear combination of ci and ci

†.

 Anti-commutation Relations: Majorana fermion operators χi are defined by the following 
algebraic property:

{χi, χj} = 2 δi j. (125)

This is also the defining property of the Clifford algebra generators.

 Jordan-Wigner Transformation: Majorana fermion operator can be systematically repre-
sented as Pauli matrices

χ2 i-1 = 

j<i

Zj Xi, χ2 i = 

j<i

Zj Yi. (126)

◼ Model Hamiltonian

The Sachdev-Ye-Kitaev (SYK) model describes a system of N  Majorana modes with 
random, all-to-all interactions.

H = 

1≤i<j<k<l≤N

Jijkl χi χj χk χl, (127)

where

 χi are Majorana fermion operators,

 Jijkl are random coupling constants drawn from independent identical Gaussian distribu-
tions, with

Jijkl = 0, Jijkl2 =
2

N 3
. (128)

The SYK model serves as a bridge between different fields of physics, offering insights into 
quantum chaos, strongly correlated systems, and black hole physics.

◼ 2
F Symmetry

Any Hamiltonian of fermion system must at least respect the 2F fermion parity symmetry, 
which is implemented by the following unitary operator
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(-)F = (-1)∑ini , (129)

where

 ni = ci
† ci is the fermion number operator,

 ∑i ni counts the total number of fermions in the system,

 (-)F = +1 on those states with even number of fermions and -1 on those states with odd 
number of fermions, hence the name fermion parity.

 Fermion parity operator is a two-fold operator (like an Ising symmetry)

(-)F (-)F = . (130)

therefore, the symmetry group is 2. (A superscript F is usually put on 2F to indicate the 
Fermion parity symmetry — a fundamental symmetry unique to fermion systems).

 Under fermion parity transformation: all fermion operators changes sign

ci → (-)F ci (-)F = -ci,

ci
†
→ (-)F ci

†
(-)F = -ci

†,

χi → (-)F χi (-)
F = - χi.

(131)

But since each term in the Hamiltonian always contains even number of fermion operators, 
the fermion parity symmetry is always respected.

Prove Eq. (131) given the definition Eq. (129).Exc
10

 Fermion parity conservation: as a result, the Hamiltonian commutes with the fermion 
parity operator

H , (-)F = 0, (136)

such that the fermion parity is always conserved in fermion systems.

 Jordan-Wigner Transformation: the fermion parity operator can be represented as

(-)F = 

i

Zi. (137)

It indeed anti-commutes with all fermion operators, as expected.

◼ Matrix Representations

 First we can construct the matrix representation for Majorana fermion operators using 
Jordan-Wigner transformation Eq. (126).
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χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8

👉 Legend: each pixel corresponds to a matrix element. 
Color code: = 1, = , = -1, = -, = 0.

 Then we generate random coupling constant tensor Jijkl by random sampling, and con-
struct the SYK Hamiltonian H  by tensor contraction.

H (-)F

 Some matrix elements in H  are always 0, why?

 Inspect the fermion parity operator (-)F . It becomes clear that those matrix elements in 
H  are forbidden by the 2F symmetry, as they correspond to transitions between states of 
different fermion parities (thereby violating the fermion parity conservation).

 If we rearrange the basis state by fermion parity into even and odd parity subspaces, the 
Hamiltonian will be transformed to the block diagonal form.

H (-)F

 The block diagonal structure reduces the computational complexity for exact diagonaliza-
tion, as it enables us to diagonalize each block independently. — The complexity is reduced 
to 1 / 8+ 1 / 8 = 1 / 4 of the original task.

◼ Quantum Chaos

Chaos was originally introduced to describes classical dynamics that exhibit extreme sensi-
tivity to initial conditions, where a small difference in starting points leads to vastly different 
outcomes over time. This is often called the “butterfly effect.”
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 Examples of Classical Chaos:

 Weather Systems: long-term weather forecast is almost impossible.

 Double Pendulum: a simple pendulum is periodic, but you can’t predict the behavior of 
a pendulum hanging below another one.

 Three-Body Problem (in classical gravity): there is a famous Chinese science fiction [by 
Cixin Liu] about it ...

 Key Takeaway: unpredictable and random behavior can emerge in deterministic systems due 
to sensitivity to initial conditions.

Quantum Chaos is the study of chaotic behaviors in quantum systems, where traditional 
notions of classical chaos, like the butterfly effect, take on new forms. 

 Naively, quantum system should not exhibit chaos: because the time-evolution equation is 
linear, small changes in the initial state remain small.

 Instead, quantum chaos manifests through other features, such as

 Energy-level statistics, [1][2]

 Eigenstate thermalization hypothesis (ETH) and volume-law entanglement entropy, 

 Local operator growth and quantum information scrambling.

E. Wigner, Characteristic Vectors of Bordered Matrices
with Infinite Dimensions, Ann. Math. 62, 548 (1955).

[1]

F. J. Dyson, Statistical Theory of the Energy Levels of
Complex Systems. I, J. Math. Phys. (N.Y.) 3, 140 (1962).

[2]

◼ Energy-Level Statistics (Billiard)

Classical billiard is a point particle moving without friction on a table Ω, enclosed by rigid 
boundaries, such that the particle bouncing around by elastic collisions with the boundaries, 
conserving energy.

 Rectangle shape: the motion will be very regular (integrable). (the horizontal and vertical 
motions are decoupled, and both are periodic)

 Stadium shape: the motion will be chaotic.

Rectangle Stadium

Quantum billiard amounts to solving the Schrödinger equation within the billiard table 
region Ω.
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-
1

2
∇2ψn(x) = En ψn(x), (138)

where

 ψn(x) is the eigen wave function, restricted in x ∈ Ω (with the Dirichlet boundary condition 
ψn(x ∈ ∂Ω) = 0),

 En is the corresponding eigen energy (energy level).
Suppose the energy levels have been ordered

E0 ≤ E1 ≤ E2 ≤ … ≤ En ≤ En+1 ≤ …, (139)

we can define

 the energy level spacing

sn := En+1 -En, (140)

 the log level spacing ratio (to construct a dimensionless scale)

λn := log
sn+1
sn

. (141)

These variables will look pretty random across the spectrum, but we can collect their statistics, 
and study their probability distribution. Following are statistics of the lowest 1000 energy 
levels.

Rectangle Stadium
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 Rectangle case: the classical dynamics is integrable, the energy levels will be uncorrelated, 
and the level statistics p(s) follows Poisson distribution, correspondingly the distribution 
p(λ) will be boarder.  

 What is Poisson distribution? Sample N  independent, uniformly distributed random real 
numbers from [0, N ], sort them, and calculate the spacings s between consecutive values. In 
the large-N  limit, the spacings s will follow the Poisson distribution

p(s) = -s. (142)

 Stadium case: the classical dynamics is chaotic, the energy levels are correlated with level 
repulsion, and the level statistics p(s) follows Wigner-Dyson distribution (more specifi-
cally the GOE distribution here), correspondingly the distribution p(λ) will be more 
concentrated.

 What are Wigner-Dyson distributions? Sample independent Gaussian random numbers to 
construct N ×N  Hermitian matrices, and calculate the spacings s between consecutive 
eigenvalues. In the large-N  limit, the spacing s will follow the Wigner-Dyson distribution

p(s) ∝ sβ -α s2, (143)

where β depends on whether the matrix elements are:

 real - Gaussian Orthogonal Ensemble (GOE): β = 1,

 complex - Gaussian Unitary Ensemble (GUE): β = 2,

 quaternion - Gaussian Symplectic Ensemble (GSE): β = 4.

◼ Energy-Level Statistics (SYK)

Collect the energy-level statistics analysis to the SYK model. Focus on the distribution p(λ) 
of log level spacing ratio (as it has greater distinctiveness)

Legends : GOE GUE GSE

Poisson Wigner-Dyson
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 For various different Majorana mode number N , the SYK model always exhibits the 
Wigner-Dyson level statistics, indicating quantum chaotic behavior.

 Interestingly, the distribution cycles through the three Gaussian ensembles (GOE, GUE, 
GSE) with respect to N  with a period 8, a phenomenon that is profoundly related to the 
quantum anomaly associated with the 2F and time-reversal symmetry of the SYK model. 
[3]
Yi-Zhuang You, Andreas W. W. Ludwig, Cenke Xu. Sachdev-Ye-Kitaev Model and Thermaliza-
tion on the Boundary of Many-Body Localized Fermionic Symmetry Protected Topological 
States. arXiv:1602.06964

[3]
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