PHYS 130C

Part 1: Quantum Many-Body Physics

Qubits, Bosons and Fermions

m Introduction

m What are Quantum Many-Body Systems?

Quantum many-body systems are physical systems made up of a large number of inter-
acting constituents, governed by the laws of quantum mechanics.

e FElectrons in a solid, (CMP)
e Ultra-cold atoms in an optical lattice, (AMO)
e Elementary particles in a collider, (HEP)

e Qubits in a quantum computer. (QI)

When many particles are interacting together, their collective behavior often leads to com-

plex emergent phenomena that are dramatically different from just a few particles in
isolation.

s What Make Them Interesting?

e Everything can be Emergent

e Emergent Particle: Dirac fermions in graphene

e FEmergent Force: Gauge force in quantum magnets
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e Emergent Spacetime: ER = EPR

Conclusion: Despite the seemingly simple building blocks, many-body systems can display
phenomena that are rich, surprising, and deeply beautiful.

e Connection to Real-World Technology

e High-temperature superconductor: strongly-correlated collective phenomenon of inter-
acting electrons

e Quantum computation: store and process information by quantum many-body
entanglement
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e Mathematical and Conceptual Beauty
e Topological phases of matter
e Renormalization group (RG) theory
e Quantum entanglement and tensor network
e Emergent gauge theories

e Holography and AdS/CFT correspondence

m Qubits

m Single Qubit

A single qubit is the simplest quantum system, representing the quantum analog of a
classical bit (a two-state system). Unlike a classical bit, which can only be either 0 or 1, a qubit
can be in a superposition of both states simultaneously.

e Quantum States

e A pure state of a qubit is represented by a wector in a 2-dimensional Hilbert space,
spanned by the basis states  and , which can be represented as one-hot vectors:

(0 = (2)

e A generic state of a qubit is a linear combination of the basis states

10) = o [0) + ¥ |1) = (Zf) )

where ¥, 1 € C and |yo|? + |y1]? = 1.
e Physical Observables

e In quantum mechanics, physical observables are represented by Hermitian operators.
The only observable for a single qubit is its spin or polarization, often measured along
different axis.

e The Pauli matrices are basis of Hermitian operators, corresponding to the spin observable
along three orthogonal axes.
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01
X :=11)<0] +10) (1] ‘—“(1 0),

0 s
Y::i|1>(0|—i|0>(1|:(l, 0”),

Z :=10) 0| -1y (1| = ((1) _01)'

It is also useful to introduce the identity operator

10
I:= |0><0|+|1><1|:(0 1), 4

such that any Hermitian observable O can be written as
O=cl+zX+yY+227, (5)
with ¢, z, y, z € R.
Disclaimer: different notations of Pauli operators
e Quantum information: X, Y, Z and I;
12

e Condensed matter physics: o = (0%, 0¥, 0%) = (a , 0, 0'3) and .

e Measuring a qubit in the computational basis (Z eigen basis) means measuring its Z
observable.

If the qubit is in the state , measuring in the basis will:
e yield  with probability |,
e yield with probability |y1]?.

» Two Qubits

A composite system of two qubits is described by a 4-dimensional Hilbert space, as the
tensor product of the two individual qubit Hilbert spaces.

e Quantum States

e Fach qubit has two basis states: and , so two qubits have four basis states, arranged
as follows:

0y 11)
. [0Y[]00) 101)
aubit L olioy 11y

‘ qubit 2

We can choose to represent them as one-hot vectors:

o 1 2 3
100) 101) 110y |11)




o O =

0y(0y) (0
1({0]]0
Of[1]]0

0/\0)\0/)\1

This is also called the computational basis (Z; and Z, eigen basis).
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e The mathematical construction of is a tensor product of states, denoted
as
|01) = 10) ® |1). )
How to make sense of ® ?
e Practically, tensor product of two vectors means
0) ® [1) = |01)
It Is Is
0 0
De-|]
0 1) 0 (O) 10
1 0
e Formally, tensor product is a binary operation that is linear in both factors:
(a0 10) + @1 1)) ® (Bo [0) + B111))
=apBol0)®10)+ap B110)® 1) + a1 Bo 1) ®10) + a1 B1 1) ® 1) 9)
"2 4 By 100) + g B1 101) + a1 o [10) + a1 By [11).
The only way to implement this algebra correctly on the vector level is to require the
tensor product be computed as (see also Eq. (8))
( Bo ) @9 Bo
Qg
(G0)®(ﬁo): Bi)|_|@ b (10)
3] Bi 01( Bo ) a1 Bo
Bi a1 B
e Rules of tensor product on basis vectors
la) ® |b) = |ab),
(11)
(al ® (bl = (abl,
(lay <bh ® (Ic) {dl) = |ac) <bd],
(12)

(aclbd) = Kal ® (cl) (1) ® |d)) = (a|b) {c|d).

e Physical Observables

e Introduce the Pauli operators Xy, Y7, Z; for the first qubit, and X5, Y5, Z, for the second
qubit, any physical observable of a two-qubit system is described by a Hermitian operator
as a linear combination of the followings:

5
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Exc

e Trivial observable:

1=1®1.

e Single-qubit observables:

qubit1: X=X, Y1=YQI, 21 =21,
qubit2: Xo =1 X, Yo=IQ Y, Z=1® Z.

e Two-qubit observables (joint measurements):

X1 Xo| X1 Yo| Xy 25
EP. IR ER IR EN7)
AR

For example, by Z; Ys, one means:
21 Y,=(ZNHI®Y)=2QY.
Altogether there are 16 basis observables.

e The tensor product of operator is defined as
A=3"1a)y Agy (B, B= D 16) Bea (dl,
ab cd

> AR B= Z lay ® |c) Ayp Bea (bl ® (d].
abed

Practically, it is computed as

zov=(, 1 )e(; o)
(i) o o)

0

_E

0 —i 0-i\| |0
-1

O(u’O) (u'()) 0

In Mathematica, you can use KroneckerProduct to calculate tensor product of matrices,

such as:

KroneckerProduct[PauliMatrix[3], PauliMatrix[2]] // MatrixForm

Represent the Hamiltonian H = X7 Xo + Y7 Yo + Z; Z5 as a 4 x 4 matrix in the computa-
tional basis. Diagonalize the matrix to find the eigen energies and corresponding eigen

states.

By definition, operator tensor product has the following properties:

A®B(C®D)=(AB®(CD),

@A+BB®@C=a0aA® C+BB® C,
ABB+y()=BA®B+vyAxC,

13)

14

(15)

(16)

amn

(18)

(20

21
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Tr(A® B) = (Tr A) (Tr B). (22)

» Many Qubits

A N-qubit system is described by a 2"-dimensional Hilbert space, as tensor product of N
single-qubit Hilbert spaces:

H=HiQHo @ H3R ... ® Hpy. (23)
e Quantum States: a generic many-qubit quantum state
W= > Vaa.laa.)= ) yallal). 4)
a a ... [a]

Notation: bundled index [a] = a1 a3 ...ay, with a; = 0, 1, and
I[al) = la1) ® lag) @ ... ® |an). (25)
e Physical Observables

e A generic operator takes the form of

0= Z Z la1 a2 ...) O, ay ...ty by ... (b1 b2 ...

ap a ... bl bg

(26)
= > Ilal) Oy (011
[al,[b]

e Any operator O can be decomposed to a linear combination of Pauli operators P with
some coefficients op,

O = Z op P, (27)
P

where P takes the form of

P=PiP®..QPy, (28)

with P, e (I, X, Y, Z).
e There are all together 4" Pauli operators (including identity) for a N-qubit system.
e They form a set of complete and orthogonal operator basis.

e All Pauli operators can be generated by X; and Z;, constructed as

1th factor
L
LRIRI®R X QRARIQI® ...
L RI®I® Z®I0I[...

(29)

Xi
Zi

or defined by the following algebraic definitions:
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X} =277 =1,
XiZi=—7; X, (30)

for all 4, j {1, 2, ..., N}

e What about Y;? - It is simply defined as Y;:=i X, Z,.

e Such that any Pauli operator can be written as

Pee =] x5 |2, 31)

uniquely labeled by two binary vectors & = (¢1, éo, ..., én) and ¢ = ({1, &o, ..., {n) With
&, ¢ =0, 1. The factors of i are taken care by ¢4, where &-¢ means the dot product of
the binary vectors.

Exc Check that the following four operators all commute:
2 X1 Xo Xy, 21 Z9 X3 Xy, Y1 Xo Y3 24, Xy 25 24,

using their operator algebra, without relying on explicit matrix representations.
Consider a four-qubit system, initially prepared in the ground state ) of the fol-
lowing Hamiltonian
H=-7,Xo Z35—Zo X3 Zy— Z3 Xy 2 — Zy X1 Zo.

H;N (i) On state |y, measure the 1st and 3rd qubits in X basis, suppose the outcome for
the 1st qubit is X; = —1, what should be the measurement outcome of X3?
(ii) After the measurement, suppose the system collapses to a new state |¢). Compute
the expectation value of Xy X4 and 75 Z; on the state |@).

m Bosons

m Single-Mode Bosons

Bosons are identical particles that can occupy a single-particle mode by any natural number

n=0,1,2, ..

e Quantum states: Boson occupation states

[0y  vacuum (empty)
|1) one boson occupied
|2) two bosons occupied

ny n bosons occupied

e They are distinct eigenstates of the boson number operator 7,
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nlny = nln), (33)

where n € N is the corresponding eigenvalue.

e They form a complete set of orthonormal basis,

n|n'y = 6ppy- (34)

e They can be represented as one-hot vectors:

1 0 0
0 1 0
10) = ol 1) = ol 2y=1,] - (35)

Comment: These vectors are infinite dimensional, because the Hilbert space dimension is
infinite. In practice, we can (artificially) choose to truncate the Hilbert space dimension to

some finite mazimal boson number n,,, (if we don’t care about states with that many
bosons, as they are too high in energy).

e Any quantum state of single-mode bosons must be a linear superposition of the boson
occupation states

W)= D unln).

neN

(36)

e Boson Operators

e Boson creation operator: b' & Boson annihilation operator: b
They are Hermitian conjugate to each other.

e Actions on boson occupation states

b n)y = \Vn+1 |n+l),
biny = \n |n—1).

(37

Interpretation: creation operator raise the boson number by one, and annihilation operator
lowers the boson number by one, BUT there are square root factors (also known as boson
enhancement factors) in the front.

e Boson number operator can be expressed as

f=0b"b. (38)

Using Eq. (37) to show that Eq. (38) can reproduce Eq. (33) consistently.

e Boson commutation relation

9
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[ba b] = [bTa bT] = 07

40
(b, 5] = 1 0

Note: commutator [A, B] := A B- B A.
In fact, this should be treated as the algebraic definition of the boson creation and annihila-

tion operators.

Exc

A Use Eq. (37) to check that Eq. (40) holds for any state as operator identities.

e Boson operators can be represented as matrices

0 Oﬁ
L:\/TO b= 0\/5
0o -

b' , , (42)
N2 0
such that the number operator is diagonal as expected
0
. 1
b' b= . (43)

Comment: These are infinite dimensional matrices, due to infinite dimensional Hilbert
space. In practice, we can truncate them to finite dimension by setting a (artificial) max-
imal boson number n,..

m Multi-Mode Bosons

Bosons can also occupy multiple single-particle modes. Here a particular single-particle

mode can refer to any of the following:
e a momentum eigenstate (a plane wave) for bosons to follow,
e a position eigenstate (a site on an optical lattice) for atoms to stay,
e a cavity eigenstate (a wave mode) for photons to populate,

e a polarization mode (transverse/longitudinal) for phonon to take ...
Different single-particle modes will be labeled by different mode quantum number « (mode
index).

e Quantum States: Tensor product of boson occupation states

[[n]) = ®|nz> =n) ) ®IN3)® ..., (44)

where n; € N is the number of bosons occupying the ith mode.
[n] = nq ng ng ... denotes the sequence of boson occupation numbers.



e They are joint eigenstates of boson number operators 7;
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Y iz |[nl) = n;l[nl).

e They form a complete set of orthonormal basis,

Aty = | [on,u:

e Any quantum many-body state of multi-mode bosons must be a linear superposition of

these boson occupation states.

e Boson Operators

e For each mode i, define

. T A .
Boson creation operator: b;-L < Boson annihilation operator: b;

e Actions on boson occupation states

bz' o i1 My Mjp1 o) = AT+ 1 [...m_1(n; + 1) Ni+1 >,
bz‘ |...77/Z‘_1 n; Nitq ) = A/ |...ni_1(ni— 1) Nis1 >

11

(45)

(46)

(47

Comment: the boson creation/annihilation operator only acts on the tensor product Hilbert

space of its own mode, and has no side effect on other modes.

e Boson number operator of mode i can be express as

fii = b b;.

e Boson commutation relations

[bi7 b]] = [bL bJT] =0,

[b:, b] = 651

(43)

(49)

These relations should be considered as the algebraic definition of the boson creation and

annihilation operator for multiple modes.

m Fermions

m Single-Mode Fermions

Fermions are identical particles that can occupy a single-particle mode by only zero or one

particle, i.e. n =0, 1 — a rule known as the Pauli exclusion principle.

e Quantum states: Fermion occupation states

|0y  vacuum (empty)
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|1) one fermion occupied
and no more state. The Hilbert space dimension is 2.

e They are still distinct eigenstates of the fermion number operator 7,

nin) = n|n). (50)

Just now the eigenvalue can only be n =0, 1.

e They form a complete set of orthonormal basis, and can be represented as one-hot
vectors:

|0>:((1)),|1>:((1)). (51)

Question: This looks just the same as a single qubit, right?

Answer: Yes, indeed, a single-mode fermion and a single qubit are equivalent quantum
systems. But multi-mode fermions and multi-qubit system will be different, as we will see.
e Fermion Operators

e Fermion creation operator: ¢’ &, Fermion annihilation operator: c
They are Hermitian conjugate to each other.

e Actions on fermion occupation states
c"10) = 11), ¢"[1) = 0;

(52)

c|0y =0, c|1) =0).

Note: be careful to distinguish the vacuum state |0y (meaning that there is such a state, and
the state contains no particle) and the zero vector 0 (meaning that there is no such a
state). In quantum mechanics, a 0 probability amplitude indicates the state is impossible.

e Empty state can not be empty: it is impossible to remove a fermion from the
vacuum state, because there was no fermion there. Therefore, we have

c|0y = 0. (53)

e Filled state can not be filled: it is impossible to add a second fermion to a mode
when it is already occupied by one fermion — the Pauli exclusion principle. Therefore,
we have

¢ 1y = 0. (54)

Interestingly, Eq. (52) can be summarized in two lines

chiny=1-n |1-n),
clny = \n [1-n).

Interpretation: n «& 1 —n toggles between n =0 and n = 1 state, as expected. The peculiar

(55)

e Fermion number operator can be expressed as
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n=c ¢ (56)
E;c Use Eq. (55) to show that Eq. (56) can reproduce Eq. (33) consistently.
e Fermion anticommutation relation
{c, ¢} = {CT, CT} =0,
{c, cT} =1 68
Note: anticommutator {4, B} := A B+ B A.

In fact, this should be treated as the algebraic definition of the fermion creation and annihi-
lation operators.

Egc | Use Eq. (55) to check that Eq. (58) holds for any state as operator identities.

e For a single mode, fermion operators have simple 2 x 2 matrix representations in the {|0),
1)} basis

o000
“l10) " \oo)
such that the number operator is diagonal as expected

00
T
cc—(()l). (62)

e Jordan-Wigner transformation: If the fermion occupation states are mapped to the
qubit states, fermion operators can also be represented as Pauli operators, as
X-iY X+iY | 1-Z
cf = , C= , ¢ c=——. (63)
2 2 2
m Multi-Mode Fermions

(61)

Fermions can also occupy multiple single-particle modes, labeled by different mode
quantum number i (mode index).

e Quantum States: Tensor product of fermion occupation states

I[n]) = ®Ini> =) ®In)®@Ing) ® ...,

]

(64)

where n; € N is the number of fermions occupying the ith mode.

[n] = nq ng ng ... denotes the sequence of fermion occupation numbers.

e They are joint eigenstates of fermion number operators 7;
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Vi lnl) = n;lln). (65)

They form a complete set of orthonormal basis,

i1y = | [on, ;- (66)

7

e Any quantum many-body state of multi-mode fermions must be a linear superposition of

these fermion occupation states.

e Fermion Operators

e For each mode i, define

. . + T . o1 s .
Fermion creation operator: ¢; < Fermion annihilation operator: c;

e Actions on fermion occupation states

el ey My iy ) = (=) 1=y |nig (L= 1) nig .0,

(67)
Ciloee sy My Miyy o) = (=)2" \/E Lo (1 =) mygq ..0).

Comment: the fermion creation/annihilation operator not only acts on its own mode. There
is an important fermion sign that depends on the parity of the number of fermions occu-
pying the proceeding modes (for this to make sense, a canonical ordering of single-particle
mode is required), because each exchange of two fermions will change the sign of the whole
many-body state — a defining feature of fermions.

e Fermion number operator of mode i can be express as

" +

ni = ¢l ¢ (63)

Fermion commutation relations

{ci, ¢} = {CL C;} =0, (69)

{ci, c;} =0;; 1.

These relations should be considered as the algebraic definition of the boson creation and
annihilation operator for multiple modes.

Eq. (69) implies the following rules:

e No double action: double creation or annihilation of fermions on the same mode 7 is
forbidden

C; CZ'ZO7

(70)

cl ¢l =0.
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e Exchange minus sign: exchanging two fermion operations of different modes (i # j)
will generate a minus sign (the fermion sign)

C; Cj = —Cj Cj,
dd=—dd,
71)
=il (
1 ) T ] T
ci c} = —cj ci.

+
i
¢ ¢/ counts the number of anti-particles in the same mode:

e Matter and anti-matter: ¢, ¢; counts the number of particles in the mode 4, whereas

cici=1-c c. (72)

state| particle anti—particle|c-l—' ¢ ¢ic

|0); | empty  occupied 0 1
[1); |occupied  empty 1 0

Slogan: where no particle is found, an anti-particle is bound.

operator |particle anti-particle

creation cl ci
annihilation| ¢ c
number ¢ cicl

It turns out that all matter in our universe are made of fermions (leptons and quarks),
so every matter has its anti-matter partner — a profound symmetry encoded in
the quantum mechanical rules of fermion operators.

These rules provides a better understanding of how fermion creation and annihilation opera-
tors acts on fermion occupation states:

e Consider a fermion system of 5 single-particle modes, the vacuum state is denoted as (modes
are arranged from left to right)

[00000) :=10); ®10)2 ®10)3 ® [0)4 ® [0)s5. (73)

e Any fermion occupation state can be constructed by applying fermion creation operators on
the vacuum state

|10 000y = ¢} |00 000),

101000y = ¢} |00 000),

100 100) = ¢} |00 000y, (74)
110100) = ¢} ¢} 100000},

110110) = ¢] ¢} ¢} 100000).

e If we add fermions one by one to the system, the order matters:

Starting from the vacuum state,

e add fermion on mode 1 then mode 3 then mode 4:
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100 000)
- ¢} 100000) = |10 000)
- ¢5110000) = c; ¢; [00000) = —¢] ¢; 100000) = —[10100) (75
- =} 110100y = — ¢, ¢; 5 [00000) = — ¢} ¢ ¢, [00000) = |10 110)
e add fermion on mode 1 then mode 4 then mode 3:
100 000)
- ¢} 100000) = |10 000) 6

- ¢} 110000) = ¢, ¢; [00000) = —¢] ¢; 100000y = —=[10010)

- —c5 110010y = — ¢} ¢; ¢, [00000) = ¢| ¢; ¢, [00000) = [10110)
The resulting states are differed by a minus sign, due to the exchange of fermions between
mode 3 and 4 effectively comparing the two processes.

Now we have a better understanding of the fermion sign factor (-)%<" in Eq. (67), as the cre-
ation or annihilation operator has to commute through the existing creation operators on all the

proceeding modes to reach its mode position in order to act on the vacuum state canonically to
reconstruct the fermion occupation state.

m Jordan-Wigner Transformation

Jordan-Wigner transformation is an exact mapping between qubit systems and fermion
systems.

e State correspondence
e Qubit: |a; ag ...) with a; = 0, 1 — the ith qubit in the 0 or 1 state.
e Fermion: |ng ny ...) with n; = 0, 1 — the i¢th mode being empty or occupied.

e Operator correspondence: The fermion operators can be written in terms of Pauli opera-
tors as

¢ = l—IZ] Xi +2E Yl"

j<i

X_iy (77)

i— L Xy

C;-L=| |Z]T
j<i

Exc | Verify that the construction Eq. (77) satisfies the fermion anticommutation relation
7 Eq. (69), therefore justified to be called fermion operators.

e The product [];; Z; is called the Jordan-Wigner string, a non-local operator necessary to
ensure the correct fermion anticommutation relation is reproduced.

Comment: The non-locality of the Jordan-Wigner string has sparked deep reflection
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among some physicists.

e If we simply accept the anticommutation relations of fermionic operators as the
defining property of fermions, then we can build a quantum many-body theory of
fermions, without questioning their origin.

e However, if we consider the universe to be, at the fundamental level, a quantum com-
puter—where every physical phenomenon ultimately arises from some computable
quantum algorithm on foundational qubits—then it becomes difficult to imagine why
all matter particles in the universe, as fermions, would have to be realized in such a
complex, non-local manner. This line of thought has led to the discovery of topological
order, a theoretical framework that provides a local physical origin for the non-local

nature of fermions.

e Matrix representation: Despite of the complexity, Eq. (77) actually provides a system-
atic method to represent fermion operators as matrices, given that we know how to repre-
sent each Pauli matrix and how to tensor product them together.

Use Jordan-Wigner transformation to rewrite the following Hamiltonian of a fermion
system to the Hamiltonian of a qubit system:
HW | H = —tZz‘(C;ru ci+h.c.)+ Vyi(ni—1/2)(niq —1/2),

2 where n; = ¢} ¢; and h.c. denotes the Hermitian conjugate of the term. Assume that
the system is defined on an infinite 1D lattice. Express the qubit Hamiltonian in
terms of Pauli operators.

Quantum Many-Body Problems

m Overview

m What are the Problems?

Quantum many-body problem is the problem of predicting how physical properties of
quantum many-body systems respond to the tuning parameters, environmental noises, measure-
ments or quantum operations.

A traditional task is

Ground state problem: predict how ground state properties respond to Hamiltonian

parameters.

e Input: Hamiltonian H(g), parametrized by g = (g1, ¢, ...),

e Output: ground state |¥y) of H(g) for any g, i.e.,

[¥o) = argmin (¥| H(g) |¥), (85)

[¥)
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such that given any observable O, one can predict its ground state expectation value
(0) = (¥l O ¥p).

e Why care about ground state? — The ground state reveals properties of many-body systems
at low temperature, which are crucial for understanding quantum phases (quantum
magnet, superconductor, superfluid, topological insulator) and quantum phase transitions.

s What are the Challenges?

e Quantum Entanglement: When particle interact with each other, they become quantum
entangled with each other. Entangled quantum systems are fundamentally non-decomposable
due to non-local quantum information sharing among all the entangled parties.

e Curse of Dimensionality: The Hilbert space dimension of quantum many-body system
grows exponentially with the number of particles (or qubits) [Recall: N-qubit system Hilbert
space dimension is 2"], making it exponentially hard to solve for the ground state (or even

just to write down the solution).
m Exact Diagonalization: A Brute-Force Approach
o Algorithm

e Input: Hamiltonian H (we will omit its parameters for now).

e Step 1: represent the Hamiltonian H as a matriz.

e Step 2: solve the eigen problem to find the eigenvalues (energy levels) and eigenvectors (corre-

sponding states) of H
e Step 3: find the lowest energy eigenvalue Fy, and pick out its corresponding eigenstate [¥y).

e Qutput: [¥y) will be a ground state of H.

o Explanation

m Transverse-Field Ising Model

m Model Hamiltonian

Consider a 1D lattice of N qubits arranged in a ring (i.e., assuming periodic boundary

condition)



QuantumManyBody.nb 19

e Hamiltonian

N N
H=-J) % Zin~h) X (89)
1=1 1=1

with the understanding that Z;,y = Z; under periodic boundary condition.

e Parameters:

e Ising coupling strength J: large J favors all qubits to be either all 0 or all 1, such that
Z; Zi.1 = +1 for all neighbors, such that the Ising energy is minimized.

e Transverse field strength h: large h favors all qubits to be in superposition states
[+) oc |0) +|1), such that X; = +1 for all qubits independently, such that the transverse field
energy is minimized.

However, only their ratio J/h matters, as the overall energy scale can always be redefined.
m 7, Ising Symmetry

Symmetry: Z, Ising (spin flip) symmetry, implemented by the following unitary operator

U= HXZ-. (90)

e Under Z; symmetry transformation,
Zi—> UZ7 UJr = —Z,,;,

91
XZ‘—>UXZ'UT:XZ', ( )

the Ising spin operator Z; gets a minus sign (spin flipped), but the Hamiltonian H in Eq. (89)
remains unchanged.

e In other words, the system is symmetric < the Hamiltonian H commutes with the sym-

metry operator U

[H, U] =0, (92)

for any parameters J and h in H.



20 | QuantumManyBody.nb

e The symmetry is named by the mathematical structure of a Z, group, which consists of two
group elements Z5 = {1, U}, with the following group multiplication rules

|1 U +]0 1
}I‘Jl U = 0‘01,
UlU 1 1110

which is isomorphic to the mod-2 addition of Z, integers {0, 1} (hence the name).

s Two Limits

e Strong coupling limit J/h — co: ferromagnetic, ordered phase.
e Ground states: two fold degenerated
[¥o) € span {[000 ...), [111 ...)}. (93)

No matter which state we choose, the ground state will spontaneously break the Z,
symmetry.

e Spontaneous symmetry breaking: the Hamiltonian H has a symmetry, but all its short-
range-entangled ground states necessarily breaks the symmetry.

e If a discrete symmetry group G is spontaneously broken to its subgroup G’, the ground
state degeneracy (GSD) will be given by
|Gl

GSD = —,
req

94)

where |G| denotes the order (number of elements) of a group G.

= In our case, Zy - Z;, GSD=2/1=2.
e Weak coupling limit J/h - 0: paramagnetic, disordered phase.

e Ground state: unique

1

¥0) = +4+..0 = = ;I[a]% (95)

as an equal-amplitude superposition of all possible Ising (bit-string) configurations
[al = a1 az... (a;=0,1).
e Symmetric: the Z; symmetry is preserved (no symmetry breaking).

The two limits are in distinct phases, because whether or not the Z, symmetry is spontaneously
broken has an yes-or-no answer.

Question: how does the system transition between these two phases?

m Representing the Hamiltonian

Let us try to do some numerics. We start by telling the computer what is our Hamiltonian,
and represent each term in the Hamiltonian as a matrix.

e Let us first pick a finite system size N, and enumerate terms in our Hamiltonian.
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Block[{N =4, J, h, H},
H = -J Sum[RotateLeft[PadLeft[P["Z", "Z"], N, "I"], i], {1, N}] -
h Sum[RotateLeft[PadLeft[P["X"], N, "I"], 9], {i, N}]]

-h (P[I, I, I, X]+P[I,TI,X,I]+P[I,X,I,I]+P[X,I,TI,I])-
Jwp(1,1,2,2)+pP(1,2,2,1)+P(2,1,1,72)+P[2,72, I, 1I])

e As a symbolic programing language, Mathematica allows us to manipulate mathematical
symbols directly, which makes it well-suited for algebraic manipulation, equation solving, and
calculus.

e The key mechanism for the symbolic processing is its rule-based replacement system,
which works by defining rules that determines how symbols are matched and replaced
according to specific patterns.

Here is how it works:

e First define a rule set called “represent”, that replaces I, X, Y, Z by their corresponding
Pauli matrices.

Block[{represent},
represent = {
"I" » SparseArray@PauliMatrix[0],
"X" - SparseArraye@PauliMatrix[1],
"Y" - SparseArray@PauliMatrix[2],
"Z" - SparseArraye@PauliMatrix[3]};
MatrixForm /e {"I", "X", "Y", "Z"} //. represent]

Hoab lioh i o) [o )]

e Then extend the rule set by rules for Pauli operators

Block[{represent},

represent = { ,
Pl[a_] =» a,
Pl[a_, b__] » KroneckerProduct|a, P[b]]};

MatrixForm/e {P["X"], P["Z", "Z"], P["X", "I", "Z"]} //. represent]

O 6 06 01 06 0 0
© 0 0 0 06 -10 0
10 0 0 © 0 06 0 6 06 1 0
{(01>o—1oo 0000000-1}
10/ 06 -10|’|1 06 06 0 0 06 0 0
e 06 0 1 O -106 0 06 06 0 0
© 61 0 06 0 0 0
O 0 0 -106 0 0 0
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Putting together the above constructions, we can represent the transverse-field Ising model

Hamiltonian as a matrix for any given parameters J and h.

-43 -h -h 6 -h @ 06 6 -h 8 06 06 06 0 © (0]
-h 6 06 -h © -h 6 6 06 -h @ 06 06 0 © (0]
-h 6 06 -h © 6 -h 6 06 06 -h 06 06 0 ©0 0
® -h-h @ 06 06 06 -h 6 06 0 -h 06 0 ©0 0
-h @ 6 6 0@ -h -h @ 6 06 06 © -h 0 0 (0]
® -h @ 06 -h43J 06 -h 6 06 06 © 0 -h © (0]
(0] © -h 6 -h 6 6 -h 6 06 06 06 06 0 -h 0
0 © 6 -h © -h-h @ 6 6 6 6 06 06 0 -h
-h 6 06 6 0 0 6 06 0 -h -h 0 -h 06 © 0
® -h @ 06 06 06 06 06 -h 6 0 -h 06 -h © 0
0 ®© -h ® 06 06 6 0 -h 06 43 -h 06 0 -h 0
(0] ® 06 -h @ 6 6 0 6 -h -h 6 06 06 0 -h
0 © 06 6 -h 6 6 06 -h @ 06 6 0 -h-h 0
(0] © 6 06 06 -h 86 06 06 -h 6 6 -h 06 0 -h
0 6 6 6 06 0 -h @ 6 06 -h 6 -h 0 0 -h
0 © 6 6 06 0 0 -h ®8 06 0 -h 0 -h -h -473

m Solving the Eigen Problem

e Eigen solver. For numerical matrix, the eigen problems can be solved by an algorithm called
Arnoldi iteration. One can request the number of eigen values and states to be calculated.

e Parametrization. For this purpose, we substitute numerical values for J and h. Since only
J / h matters, we can choose to parametrize them as

J=g, h=1-yg, (96)
with g € [0, 1], such that there is only a single parameter to tune, and the overall energy scale
is bounded between + N.

B'Lock[{N =4, g=0., H, represent, Es, &s},

represent = {---} + ;

H[J_, h_] :=|ReplaceRepeated|:::] +

{Es, ©s} = Eigensystem[NeH[g, 1-g], 2, Method » {"Arnoldi", "Shift" » —N—O.l}]]

{{-4.,-2.1,
({0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25,
0.25, 0.25, 0.25}, {0.009913, 0.300151, -0.293983, -0.00374487, 0.198388,

0.488626, -0.105508, 0.18473, -0.18473, 0.105508, -0.488626,
-0.198388, 0.00374487, 0.293983, -0.300151, -0.009913}}}

Let us visualize the lowest two states as a function of J/h.



J/h=c

—4. 0.252648 10000) + 0.967558 |1111)
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e Strictly speaking, the ground state degeneracy splits as long as the system is tuned away from
the J/h - oo limit. However, the splitting is small in the strong coupling regime.

e It seems that the ground state interpolates between the two limits continuously.

Question: Where is the phase transition?

Phases and phase transitions are only well-defined in the thermodynamic limit (N - o). =

We should study how physical properties scales with system size N.

m Energy Gap Scaling

The energy density E,/ N of the lowest two energy level v.s. the J/h parameter, showing

how the ground state degeneracy splits.

N =12

-0.7}
= o)
S
R ol
09t /i
-1.0
0 0205 1

JIh

Define the energy gap
A= FE - Fy.

2

97

e In the symmetry breaking phase (strong coupling), e.g. J/h = 2, the energy gap decays to

zero with system size N exponentially

10

12

(98)
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e In the symmetric phase (weak coupling), e.g. J/h = 1/2, the energy gap tends to a constant
in the large N limit.

A ~ const. (99)

0.690 F§
0.685F
0.680F
0.675F
0.670F
0.665 £ L ! ! J
4 6 8 10 12
N

m Physical Observables

What can we learn from the ground state |¥y) itself? We can study various physical

observables
(0) = (¥l O ¥p). (100)

e Correlation function: used to indicate the ordered phase.

C(d) ={Z; Zisa)- (101)

It characterizes the correlation between Ising spins Z; and Z;,, separated by distance d on the
lattice. Strong correlation indicates the spins are ordered.

e Long-distance correlation function v.s. J/h ratio, indicating phase transition (transition

gets sharper as N — o)

N =12

1.0F
0.8f
0.6f
0.4}
0.2}
0.0k

C(N/2)

0 0205 1 2 5 o
J/h
e In the symmetry breaking phase (strong coupling), e.g. J/h = 2, the correlation function
approaches to constant at long range

C(d) ~ const. (102)
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0.930F
0.928¢
0.926 ¢
0.924¢
0.922¢
0.920¢
0.918¢
0.916 & i i i J
4 6 8 10 12
N

C(N/2)

e In the symmetric phase (weak coupling), e.g. J/h =1/2, the correlation function decays

to zero exponentially with the distance d.

C(d) ~ e %, (103)
the decay length scale ¢ is called the correlation length.
~ 0.10
(o]
~ 0.05
z
O
0.01
le 6 8 ll() 1I2
N
String operator: used to indicate the disordered phase.
i+d-1
S(d) =< ]—[ Xi>. (104)
j=i

String operator is a segment of symmetry operator of length d, which flips all the Ising spins
in the segment. Its expectation value measure the probability to see the segment of spin being
flipped under quantum fluctuation in the ground state. In the symmetric (disordered) phase,

such probability should be high.
e Long-range string operator v.s. J/h ratio, indicating phase transition (transition gets
sharper as N - o)
N =12

1.0F
0.8f
0.6f
0.4}
0.2}
0.0E

S(N/2)

0 0205 1 2 5 o
J/h
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e In the symmetry breaking phase (strong coupling), e.g. J/h = 2, the string operator

decays to zero exponentially with the distance d.

S(d) ~ e, (105)

0.10
0.05

S(N/2)

0.01

4 6 8 10 12
N

e In the symmetric phase (weak coupling), e.g. J/h =1/2, the string operator approaches

to constant at long range.

S(d) ~ const. (106)

0.930F
0.928¢
0.926 ¢
0.924¢
0.922¢
0.920¢
0.918¢
0.916¢

S(N/2)

4 6 8 10 12
N

The above numerical result strongly suggests that there is a correspondence between C'(d) and

S(d) as we interchange J and h.

» Kramers-Wannier Duality

Kramers-Wannier duality is an operator mapping, under which

Zi Zig1 > Xi+1/27 (107)
Xi = Zis1p Zivap-

Zi Zin X;
-o—o0 c*c o -o0—o i o0—o
—0—0—0—0— —0—0—o0—o0—
Xiv12 Zic12 Ziv1p

e It maps the Pauli operators acting the original qubits (in red) to the Pauli operators acting a
new set of qubits (in blue) on the dual lattice (shifted by 1/2 lattice constant).

e Requirements:
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e The algebraic relations (such as commutation relations) among these operators are pre-
served under the mapping.

e The locality of the Hamiltonian is also preserved.

In fact, the Hamiltonian Eq. (89) gets mapped to

N N
H=-J ZXZ‘+1/2 - h Z Zic12 Ziv1)2, (108)
i1 i1

on the dual lattice, effectively interchange the roles of J and h.
J/h o hiJ

lattice < dual-lattice
order < disorder

C(d) S(d)
disorder < order
S(d) C(d)

Exc | Show that the correlation function C(d) and string operator S(d) maps to each other
8 under Kramers-Wannier duality.

e Implication: under Kramers-Wannier duality, the ordered (disordered) phase of the original
Ising model maps to the disordered (ordered) phase of the dual Ising model, but both models
are identical, so if there is a single phase transition separating the ordered and disordered
phases, it must happen at

J/h=1. (111)

This is the critical point of the transverse-field Ising model.

m Bose-Hubbard Model

m Model Hamiltonian

Consider a 1D lattice of N sites with periodic boundary condition.

e Hamiltonian

il U
H=—t) (bl bi+hc)+ 5

1=1

N N
Zni(ni_l)_ﬂznia (112)
=1 -1

where

° bz and b, are boson creation and annihilation operators on site-i, with b,y = b; given
the periodic boundary condition,
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e n; = b] b; denotes the boson number operator (we will omit the hat of 7 for simplicity).
e Parameters:
e Hopping amplitude ¢: measures boson mobility on the lattice. b),; b; describes the process

of moving a boson from site-i to the neighboring site-(i + 1), and the Hermitian conjugate
term bT b;+1 describes the reverse process.

e On-site interaction strength U: also known as the Hubbard interaction, can be attrac-
tiwe (U < 0) or reclusive (U > 0). n;(n; — 1)/ 2 counts the number of pairs that can form
among n; bosons on a site, as interaction is pair-wise.

e Chemical potential u: adjust to set the number of particles.

Remark: If we fix the total boson number Nj (i.e., assuming a canonical ensemble), we
can drop the chemical potential term.

s U(1l) Symmetry

The Hamiltonian enjoys a continuous U(1) symmetry, implemented by the following unitary
operator

U®) = €'V, (113)

where N, is the U(1) charge operator that generates the unitary, and is given by

Ny = Z” (114)

which is also the operator of total boson number in the system.
e Under the U(1) symmetry transformation,

bi—> U® b, UO) =e™’ b,
by > U®) b UG = e'? b]. (115

Exc

9 Prove Eq. (115) given the definition Eq. (113).

The Bose-Hubbard model Hamiltonian H in Eq. (112) is invariant under such opposite phase
rotations of the boson creation and annihilation operators (as they always appear in pairs in

e The U(1) symmetry is associated with the conservation law of the boson number conserva-
tion, as the symmetry implies

[H, Ny] = 0. (119)

the charge operator N, will not evolve in time, and is therefore conserved.
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e Because N, is conserved, we can always restrict the Hilbert space to a fixed eigen-subspace of
Ny, such that Ny becomes a number (the eigenvalue) other than an operator.

= Hilbert Space

Suppose the system has totally N, number of bosons, and the lattice has N number of

sites, the many-body Hilbert space dimension is
(Nb + N - 1)!
Dy=—"—, (120)
Np! (N -1)!

the number of ways to distribute N, identical bosons across N lattice sites = ways to insert
(N —1) dividers between N, balls in a row.

1 2 3 4 5 6 7 8

e Following the above idea, all basis states can be enumerated given N and N;. Here is a simple
example:

{|e,0,3), |0, 1,2), |0,2,1), |0, 3,0),
\1,@, 2), \1, 1, 1), \1,2, o), \2, 0, 1), \2, 1,0), \3,0,0)}

e The Hilbert space dimension grows exponentially with system size N at any fized density
Ny / N. — Exactly solving the problem is hard for large systems.

m Representing the Hamiltonian

e We can use Mathematica to quickly build a symbolic system to implement the action of boson
creation and annihilation operators on boson occupation states.

b[l]@‘0,0,0>»0

bT[l]@‘0,0,0>—>‘l,0,0>

bT[Z]@*b[3}@‘O,4,3>e\/E e, 5, 2)
br[z]@*b[21@\o,2,1>+2 \o,3,o>+2 ‘0,2,1>+6 \0,3,0>

e This enables us to apply the Hamiltonian Eq. (112) to each basis state and compute the
resulting state.
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He|e,0,3)-3U [o,0,3)- x/_t‘0127\/_t‘102

He|o,1,2)--+/3 t|0,0,3)+U [0,1,2)-2t |0,2,1)-t |1,0,2)- ft\lll
H@‘0,2,1>+2t‘012+u‘021 \/_t’0,3,0 \Ft‘lll t|1,2,0)
He |o, 3, 0) > t|e,2,1)+3U |e,3,0)- ﬁt\l,z,o
H@‘l,0,2>+—\/7t‘0 0,3)-t [0, 1,2) +U’l,O,Z)—\/Et‘l,l,l>—2t‘2,0,l>
He |1,1,1) - S o42 t ‘O,l,2>7\/§t‘0,2,1>7

V2 t]1,0,2)-+2 t[1,2,0)-+2 t [2,0,1)-2 t |2,1,0)
He|1,2,0) -t [0,2,1)-+/3 t]0,3,0)-2 t [1,1, 1+u\1 2,0)-2t [2,1,0)
He |2,0,1)--2t [1,0,2)-+2 t |1,1, 1+u\2 0,1)-t [2,1,0)-+3 t [3,0,0)
H@‘2,1,0>+—\/7t‘111 )-2t [1,2,0)- ’2@1+U‘21@ \/Et‘3,0,0>
He |3, 0,0) - \/>t‘2,0,lf\/> 2,1,0)+3U [3,0,0)

e We can collect coefficients in front of the basis states and organize them into the matrix

representation.
30 -3t o 0o -+/3t
3t v 2t 0 t
0 2t U -3t o
0 o -3t 3U 0
3t -t 0 0 u
o -2t -2t o 2t
0 0 t 3t 0
0 0 0 0 2t
0 0 0 0 0
0 0 0 0 0

m Solving the Eigen Problem

(0]

2t
2t

0

A2t

0

2t
2t
2t

0

0 0 0 0
0 0 0 0
t 0 0 0

3t o 0 0
0 2t 0 0

A2t -2t -2t 0
u 0 2t 0
0 u t 43t
2t -t U -3t
0 -3t -3t 3uU

For a small system, we can diagonalize the Bose-Hubbard model Hamiltonian exactly and

find the ground state at different U/t ratio.

Consider repulsive Hubbard interaction (U > 0):

U/t=0.0

+0.196 | e o o o
+0.139| o o o
+0.098 | D
+0.08 |
+0.057 | :
+0.04 |

+0.018

)
y + (19 terms)

Y + (29 terms)

o o % ) + (29 terms)

oo Y + (19 terms)

e o0 ) + (19 terms)

o)

+ (4 terms)
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e Weak Interaction regime (small U/t)

e Bosons are delocalized across the entire lattice. Each boson can be found anywhere in the
system, independent of the other bosons.

e Strong Interaction regime (large U /1)

e Bosons are localized. Each boson is confined to a lattice site, due to the strong on-site
repulsive interaction that prevents bosons from hopping to neighboring sites.

e There is an energy gap to boson excitations.

e There is a quantum phase transition separating the weak and strong interacting phases,
known as the Kosterlitz-Thouless (KT) transition. [2016 Nobel Prize in Physics|

s Physical Observables

e Boson Correlation

G(d) = (b by a)- (121)

N=7 N,=7

1.0f
0.8}
0.6F
0.4}
0.2}
0.0k : : : n 3
0. 1.5 39 88 24. o

U/t

G(d=3)

e Weak interacting phase: boson correlation G(d) decays in a power law (algebraically)
with the distance d

G(d) ~ d™°. (122)
e Strong interacting phase: boson correlation G(d) decays exponentially with the distance d
G(d) ~ e . (123)

e Our current exact diagonalization approach will not be able to further study these behav-
iors and pin down the KT transition, because the system size we can achieve is too small.
Yet, it still provides us qualitative understanding of helpful physical pictures.

m Sachdev-Ye-Kitaev Model

m Majorana Fermion

Majorana fermions are fermions that are their own antiparticles. They are generated by
Hermitian fermion operators y' = y.
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e Real and Imaginary Decomposition: Majorana fermions can be thought as the “real part”
and “imaginary part” of the traditional fermion operator

(124)

¥ xa2i=i(cl-c)

1 . N
{ ci =5 (x2i1+1i x2i) {Xgi_l =c +¢
1 .

¢ =5 (x2i1—1 x2i)

e These Majorana fermion operators still acts on the states in the same fermion many-body
Hilbert space. They are just linear combination of ¢; and c|.

e Anti-commutation Relations: Majorana fermion operators y; are defined by the following
algebraic property:

{xis xj} = 265 (125)

This is also the defining property of the Clifford algebra generators.

e Jordan-Wigner Transformation: Majorana fermion operator can be systematically repre-
sented as Pauli matrices

X2i-1= HZj Xi, xoi= HZ]- Y. (126)

<t <t

» Model Hamiltonian

The Sachdev-Ye-Kitaev (SYK) model describes a system of N Majorana modes with

random, all-to-all interactions.

H= Z Jijkt Xi X5 Xk X1s (127)
1=i<j<k<I=sN

where
e v, are Majorana fermion operators,

e Jiji; are random coupling constants drawn from independent identical Gaussian distribu-
tions, with
— —— 2
Jijkl = 0, kal = ﬁ . (128)

The SYK model serves as a bridge between different fields of physics, offering insights into
quantum chaos, strongly correlated systems, and black hole physics.

Z¥ Symmetry

Any Hamiltonian of fermion system must at least respect the Z{ fermion parity symmetry,
which is implemented by the following unitary operator
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() = (= 1)En

(129)
where

o= c’f ¢; is the fermion number operator,

e Y. n; counts the total number of fermions in the system,

e (-)F = +1 on those states with even number of fermions and —1 on those states with odd
number of fermions, hence the name fermion parity.

e Fermion parity operator is a two-fold operator (like an Ising symmetry)

HFF =1

(130)
therefore, the symmetry group is Z,. (A superscript F is usually put on Z% to indicate the

Fermion parity symmetry — a fundamental symmetry unique to fermion systems).
e Under fermion parity transformation: all fermion operators changes sign
ci» () e =-a,
¢ > e () ==,

(131)
xi— O i =y

But since each term in the Hamiltonian always contains even number of fermion operators,
the fermion parity symmetry is always respected.
Exc

10 | Prove Eq. (131) given the definition Eq. (129).

e Fermion parity conservation: as a result, the Hamiltonian commutes with the fermion
parity operator

[H7 (_)F] = O:

(136)

such that the fermion parity is always conserved in fermion systems.

e Jordan-Wigner Transformation: the fermion parity operator can be represented as

=" =[]z

(137)

It indeed anti-commutes with all fermion operators, as expected.

m Matrix Representations

e First we can construct the matrix representation for Majorana fermion operators using
Jordan-Wigner transformation Eq. (126).

33
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X1 X2 X3 X4 X5 X6 X1 X8
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Legend: each pixel corresponds to a matrix element.
Color code: @l =1,]=i @=-1,@=-i[ |=0.

e Then we generate random coupling constant tensor J;;;; by random sampling, and con-
struct the SYK Hamiltonian H by tensor contraction.

H —-F

e Some matrix elements in H are always 0, why?

e Inspect the fermion parity operator (—)*. It becomes clear that those matrix elements in
H are forbidden by the 7 symmetry, as they correspond to transitions between states of
different fermion parities (thereby violating the fermion parity conservation).

e If we rearrange the basis state by fermion parity into even and odd parity subspaces, the
Hamiltonian will be transformed to the block diagonal form.

H —-F

|

||
O

e The block diagonal structure reduces the computational complexity for exact diagonaliza-

tion, as it enables us to diagonalize each block independently. — The complexity is reduced
to 1/8+1/8 =1/4 of the original task.

® Quantum Chaos

Chaos was originally introduced to describes classical dynamics that exhibit extreme sensi-

tivity to initial conditions, where a small difference in starting points leads to vastly different
outcomes over time. This is often called the “butterfly effect.”
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e Examples of Classical Chaos:

e Weather Systems: long-term weather forecast is almost impossible.

e Double Pendulum: a simple pendulum is periodic, but you can’t predict the behavior of
a pendulum hanging below another one.

e Three-Body Problem (in classical gravity): there is a famous Chinese science fiction |[by
Cixin Liu| about it ...

o Key Takeaway: unpredictable and random behavior can emerge in deterministic systems due
to sensitivity to initial conditions.

Quantum Chaos is the study of chaotic behaviors in quantum systems, where traditional
notions of classical chaos, like the butterfly effect, take on new forms.

e Naively, quantum system should not exhibit chaos: because the time-evolution equation is
linear, small changes in the initial state remain small.

e Instead, quantum chaos manifests through other features, such as

e Energy-level statistics, [1][2]

e Eigenstate thermalization hypothesis (ETH) and volume-law entanglement entropy,

e Local operator growth and quantum information scrambling.

[1] E. Wigner, Characteristic Vectors of Bordered Matrices
with Infinite Dimensions, Ann. Math. 62, 548 (1955).

[2] F. J. Dyson, Statistical Theory of the Energy Levels of
Complex Systems. I, J. Math. Phys. (N.Y.) 3, 140 (1962).

» Energy-Level Statistics (Billiard)

Classical billiard is a point particle moving without friction on a table Q, enclosed by rigid

boundaries, such that the particle bouncing around by elastic collisions with the boundaries,
conserving energy.

e Rectangle shape: the motion will be very regular (integrable). (the horizontal and vertical
motions are decoupled, and both are periodic)

e Stadium shape: the motion will be chaotic.

Rectangle Stadium

Quantum billiard amounts to solving the Schrédinger equation within the billiard table
region Q.
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1
_5 v? Yn(x) = E, Yn(x), (138)

where

e y,(x) is the eigen wave function, restricted in & € Q (with the Dirichlet boundary condition
Yn(x € 0Q) = 0),

e [, is the corresponding eigen energy (energy level).
Suppose the energy levels have been ordered

Ey<Ei<k=<..<E,<E,1=<.., (139)
we can define

e the energy level spacing

Sp = Lipyl — Ena (140)

e the log level spacing ratio (to construct a dimensionless scale)

Sn+l
A, = log[ ] (141)

Sn

These variables will look pretty random across the spectrum, but we can collect their statistics,
and study their probability distribution. Following are statistics of the lowest 1000 energy
levels.

Rectangle Stadium
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e Rectangle case: the classical dynamics is integrable, the energy levels will be uncorrelated,
and the level statistics p(s) follows Poisson distribution, correspondingly the distribution
p(A) will be boarder.

e What is Poisson distribution? Sample N independent, uniformly distributed random real
numbers from [0, N], sort them, and calculate the spacings s between consecutive values. In
the large-N limit, the spacings s will follow the Poisson distribution

p(s) = e’ (142)

e Stadium case: the classical dynamics is chaotic, the energy levels are correlated with level
repulsion, and the level statistics p(s) follows Wigner-Dyson distribution (more specifi-
cally the GOE distribution here), correspondingly the distribution p(A) will be more
concentrated.

e What are Wigner-Dyson distributions? Sample independent Gaussian random numbers to
construct N x N Hermitian matrices, and calculate the spacings s between consecutive
eirgenvalues. In the large- N limit, the spacing s will follow the Wigner-Dyson distribution

ps) o f e, (143)
where 8 depends on whether the matrix elements are:

e real - Gaussian Orthogonal Ensemble (GOE): g =1,

e complex - Gaussian Unitary Ensemble (GUE): 8 = 2,

e quaternion - Gaussian Symplectic Ensemble (GSE): g = 4.

» Energy-Level Statistics (SYK)

Collect the energy-level statistics analysis to the SYK model. Focus on the distribution p(a)
of log level spacing ratio (as it has greater distinctiveness)

Legends : GOE GUE GSE

Poisson Wigner-Dyson
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e For various different Majorana mode number N, the SYK model always exhibits the
Wigner-Dyson level statistics, indicating quantum chaotic behavior.

e Interestingly, the distribution cycles through the three Gaussian ensembles (GOE, GUE,
GSE) with respect to N with a period 8, a phenomenon that is profoundly related to the
quantum anomaly associated with the Z{ and time-reversal symmetry of the SYK model.
13]
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