
PHYS 130C
Part 2: Quantum Information Theory

From Classical to Quantum Information

◼ Classical Probability

◼ Random Variable and Probability

A random variable X is a variable that can take random values x in a set  = {x1, x2,…} of 
all possible values, with an assignment of a probability p(x) to each value x ∈ , quantifying 
the degree of belief or certainty to observe X taking on the value x.

 Only specifying the set  of possible values is not enough to define a random variable, 
assigning the probability p(x) is essential. 
Example: X = a random image of muffin. The following images are all possible, but not 
equally likely.

 Probability assignment describes our current state of knowledge about the random variable. 
(It can be subjective.)

 The probability assignment should be updated, if our knowledge has been changed by observa-
tions (providing new evidence).

Example:

Tossing a coin. x = head, tail.

 Prior probability before observation

x head tail
p(x) 1

2
1
2

(1)

 Posterior probability after observing head up.



x head tail
p(x) 1 0 (2)

Observation removes uncertainty and provides information.
Properties:

 Positivity:

p(x) ≥ 0. (3)

 Normalization:



x∈

p(x) = 1.
(4)

◼ Expectation Value

The expectation value (mean, average, first-moment) of a random variable X:

〈x〉 = [X] = 

x∈

x p(x).
(5)

Expectation value also can be defined for a function of the random variable f (X),

〈f (x)〉 = [f (X)] = 

x∈

f (x) p(x).
(6)

Properties:

 Double expectation

[[X]] = [X]. (7)

 Linearity (for two random variables X and Y  and a constant α)

[X +Y ] = [X] + [Y ],

[αX] = α [X].
(8)

More generally, for multiple random variables Xi (i = 1, 2,…) linearly combined together,

 

i

αi Xi = 

i

αi [Xi]. (9)

◼ Information

Answering every independent yes-or-no question provides 1 bit of information.
Example: Binary pooled testing

Among eight individuals, there is one (and only one) contracted COVID. How many tests are 
needed to identify the COVID positive individual?
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 Sample collection (encoding scheme)

1 2 3 4 5 6 7 8

 Test result analysis (decoding scheme)

- + - + - + - +

- + - +

- +

1 2 3 4 5 6 7 8

? ? ? ?

? ?

?

In a binary search, answering n independent yes-or-no questions will simultaneously do the 
following:

 Identify a unique outcome out of 2n equally-likely possibilities,

 Collapse the probability from p = 
1
2

n
 to p = 1 for the observed outcome,

 Provide n bits of information:

p =
1

2

n
 n = - log2 p = -

log p

log 2
. (10)

log 2 = 1 bit is treated as an information unit.

The amount of information I  gained from the observation of a probability p outcome is

I = - log p. (for a particular outcome) (11)

Example: average information

Observing a random variable X with the following (prior) probability

x a b c d
p(x) 1

2
1
4
1
8
1
8
. (12)

 Information gain can be different for different observation outcomes

I (a) = - log(1 / 2) = log 2 = 1 bit,

I (b) = - log(1 / 4) = 2 log 2 = 2 bit,

I (c) = - log(1 / 8) = 3 log 2 = 3 bit,

I (d) = - log(1 / 8) = 3 log 2 = 3 bit.

(13)
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 However, different outcome happens with different probability. What is average amount of 
information that we can obtain from observing X (regardless of its outcome)?

I (X) = I (a) p(a) + I (b) p(b) + I (c) p(c) + I (d) p(d)

= 1×
1

2
+ 2×

1

4
+ 3×

1

8
+ 3×

1

8
bit

= 1.75 bit.

(14)

In conclusion, given a random variable X , the expected information gained from a full observa-
tion of X is

I (X) = -〈log p(x)〉 = -

x∈

p(x) log p(x).
(15)

◼ Entropy

The Shannon entropy measures the uncertainty (lack of information, ignorance) remained 
in a random variable X , determined by the probability distribution p(x),

S(X) = -

x∈

p(x) log p(x).
(16)

 Entropy is always non-negative (follows from 0 ≤ p(x) ≤ 1)

S(X) ≥ 0. (17)

 S(X) = 0 means the value of X is known for certain (no randomness).

 Large S(X) indicates large uncertainty in X.

 Entropy can be changed by observation, as observation can remove/reduce uncertainty from a 
random variable.

Example:

 A binary random variable X (with  = {false, true})

p(false) = 1- p,

p(true) = p,
(18)

where 0 ≤ p ≤ 1. Entropy of X

S(X) = -p log p - (1- p) log (1- p). (19)
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 S(X) = 0 when p = 0 (X = false for sure) or p = 1 (X = true for sure).

 S(X) is maximized at p = 1 / 2, where X is most uncertain. The maximum entropy of a 
binary random variable is 1 bit.

◼ Mutual Information

Mutual information I (X :Y ) quantifies the amount of information shared between two 
random variables X and Y .

I (X :Y ) = S(X) + S(Y ) - S(X , Y ), (20)

where, given the joint distribution p(x, y) for (x, y) ∈ ×:

 S(X) = -∑x p(x) log p(x) is the entropy of X — the uncertainty in X regardless of Y , with 
p(x) = ∑y p(x, y) being the marginal distribution of X.

 S(Y ) = -∑y p(y) log p(y) is the entropy of X — the uncertainty in Y  regardless of X, with 
p(y) = ∑x p(x, y) being the marginal distribution of Y .

 S(X , Y ) = -∑x,y p(x, y) log p(x, y) is the joint entropy of X and Y  — the uncertainty of the 
joint distribution.

Alternatively,

I (X :Y ) = S(X) - S(X Y ) = S(Y ) - S(Y X), (21)

where

 S(X Y ) = -∑x,y p(x, y) log p(x y) is the conditional entropy of X given Y  — the remaining 
uncertainty in X after knowing Y .

 S(Y X) = -∑x,y p(x, y) log p(y x) is the conditional entropy of Y  given X — the remaining 
uncertainty in Y  after knowing X.

Show that S(X Y ) = S(X , Y ) - S(Y ) and S(Y X) = S(X , Y ) - S(X), therefore Eq. (21) 
is consistent with the definition in Eq. (20).

Exc
1

Eq. (21) implies that I (X :Y ) measures the reduction in uncertainty of one variable due to 
knowledge of the other, hence the name “mutual information”.

 If X and Y  are independent, I (X :Y ) = 0.
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 If X and Y  are perfectly correlated, I (X :Y ) is maximized.
Key properties:

 Non-negativity: I (X :Y ) ≥ 0,

 Symmetry: I (X :Y ) = I (Y :X).

Example: X and Y  are two binary random variables (classical bits), perfectly correlated with 
each other, described by the joint distribution p(x, y):

p(x, y) x
p(y)

0 1

y
0 1

2 0
1
2

1 0 1
2

1
2

p(x) 1
2
1
2

(22)

One can compute that

S(X) = 1 bit, S(Y ) = 1 bit, S(X , Y ) = 1 bit,

I (X :Y ) = (1+ 1- 1) bit = 1 bit.
(23)

In fact, for two classical bits, the maximal mutual information between them is at most 1bit. 
However, as we will see later, the mutual information between two quantum bits can exceed this 
limit, due to quantum entanglement.

◼ Quantum Density Matrix

◼ Pure and Mixed States

In quantum mechanics, the state of a system is described by a state vector ψ〉. However, in 
many realistic situations, due to our ignorance, we are not entirely sure about what the state 
really is, the state vector ψ〉 itself can become a random variable.

 Pure state: A pure state is described by a single state vector ψ〉, representing maximum 

knowledge about the system’s quantum state.

 Mixed state: A mixed state describes a system in which we have only partial information, 
typically as a statistical mixture of pure states.
— Meaning that the state of the system will be randomly sampled from an ensemble of states 
ℰ = {ψ1〉, ψ2〉,…}, with an assignment of a probability pi to each state ψi〉 ∈ ℰ, describing 
the likelihood of the system to be in that state.

◼ Density Matrix

Density matrix (or density operator, or state operator) provides a unified mathemat-
ical description for both pure and mixed states.

 For a pure state ψ〉, the corresponding density matrix is
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ρ = ψ〉 〈ψ, (24)

which is also the projection operator of the state.

 For a mixed state specified by a statistical ensemble of pure states {ψi〉} with pi being the 
probability of the system being in the pure state ψi〉, the corresponding density matrix is

ρ = 

i

pi ψi〉 〈ψi. (25)

 By properties of probability, pi ≥ 0 and ∑i pi = 1.

 If pi concentrate in one specific state, e.g. p1 = 1 and p2 = p3 = … = 0, then ρ = ψ1〉 〈ψ1 

reduces to a pure state. 
 Pure state is a limit (ideal case) of mixed states.

In general, a density matrix should satisfy the following defining properties:

 Hermitian: ρ† = ρ.

 Normalization (trace identity): Tr ρ = 1.

 Positive (semi)definite: ∀ ψ〉 : 〈ψ ρ ψ〉 ≥ 0.

Verify that the mixed state density matrix in Eq. (25) indeed satisfies all the proper-
ties above.

Exc
2

◼ Observable Expectation Value
What is the point of the density matrix?

Motivation: an alternative way to think about the expectation value of an observable O:

 For pure state ψ〉: there are two equivalent ways to express 〈O〉

〈O〉 = 〈ψO ψ〉 = Tr ψ〉 〈ψO = Tr ρO. (26)

Oψ ψ = ψ ψ O
ρ

Comment: Introducing ρ does not seem to be necessary in this case, it is sufficient to work 
with ψ〉.

 For mixed states, what should be the most reasonable approach to calculating 〈O〉? 

with probability : the system is in the state : on which 〈O〉 should be :
p1 ψ1〉 〈ψ1O ψ1〉

p2 ψ2〉 〈ψ2O ψ2〉

p3 ψ3〉 〈ψ3O ψ3〉

⋮ ⋮ ⋮
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therefore, the ensemble average must be given by

〈O〉 = 

i

pi 〈ψiO ψi〉

= Tr

i

pi ψi〉 〈ψiO.
(27)

One can see, the density matrix ρ = ∑i pi ψi〉 〈ψi emerges in the expression exactly as Eq. (25), 
such that all the state-dependent information can be packed into ρ, and the observable 
expectation value can be universally evaluated by

〈O〉 = Tr ρO, (28)

regardless whether the state ρ is pure or mixed.

 For mixed states, the density matrix description is indispensable, because the mixed 
state density matrix ρ cannot be decomposed into the form of ψ〉 〈ψ (rank-1 matrix) in 
general, meaning that there is no state vector description for mixed states.

◼ Quantum State Tomography

How are density matrices determined?

Quantum state tomography refers to the reconstruction of the density matrix of an 
unknown state from repeated measurements on identical copies of the state.

 For a single qubit, by measuring 〈X〉, 〈Y 〉, 〈Z〉, the density matrix can be reconstructed as

ρ =
1

2
(+ 〈X〉X + 〈Y 〉Y + 〈Z〉 Z ). (29)

It is also convenient to combine Pauli operators into a vector of operators

σ = (σx, σy, σz) := (X , Y , Z ), (30)

such that Eq. (29) can be written in a more compact form as

ρ =
1

2
(+ 〈σ〉 ·σ). (31)

Show that Eq. (31) is the density matrix that is consistent with the expectation 
values and properly normalized.

Exc
3

 For multi-qubit system, Eq. (29) can be generalized

ρ =
1

2N


P

〈P〉P. (32)

where
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 P - sums over all Pauli operators in an N -qubit system (there are 4N  of them, including )

 〈P〉 - the expectation value of the Pauli observable P, inferred from repeated measurement 
(however, measuring all 4N  observables requires exponentially amount of resources, hence a 
full quantum state tomography is not feasible for large systems).

◼ Spectral Decomposition

Does density matrix correspond to a physical observable?

As a Hermitian operator, density matrix also correspond to a physical observable: the 
probability itself.

 Every Hermitian operator admits a spectral decomposition, so does the density matrix ρ

ρ = 

i

pi ϕi〉 〈ϕi. (33)

 pi are eigenvalues of ρ, with the physical meaning of probability for the system to take the 
ϕi〉 state, satisfying pi ≥ 0 and ∑i pi = 1,

 ϕi〉 are corresponding eigenvectors of ρ, forming a set of orthonormal basis, also known as 
the natural orbitals.

 Note that pi and ϕi〉 may not necessary coincide with the mixed state ensemble in Eq. (25) 
that was originally used to construct the density matrix.
Example: Consider a mixed state of a single qubit with 1 / 2 probability to be 0〉, and 1 / 2 
probability to be  +〉 =

1
2
(0〉+ 1〉). Its density matrix is

ρ =
1

2
0〉 〈0+

1

2
+〉 〈+

≏
1

4
3 1
1 1

.
(34)

However, its eigen decomposition can look very different

ρ = p1 ϕ1〉 〈ϕ1+ p2 ϕ2〉 〈ϕ2,

p1 =
2+ 2
4

≈ 0.853553 : ϕ1〉 ≏

2+ 2
2
1

2 2+ 2 

≈
0.92388
0.38268

,

p2 =
2- 2
4

≈ 0.146447 : ϕ2〉 ≏

-
1

2 2+ 2 

2+ 2
2

≈
-0.38268
0.92388

.

(35)

Lessons to learn:
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 Ambiguity in Mixed State Interpretation: Different sets of pure states with different 
probabilities can lead to the same resulting density matrix, meaning there can be multiple 
possible interpretations of a mixed state as a combination of pure states.

 Spectral decomposition of density matrix provides a canonical interpretation of mixed 
state in terms of mixture of distinct (orthogonal) pure states. 

 Distinction between

 Quantum superposition (linear combination of state vectors): ψ〉 = α1 ψ1〉+ α2 ψ2〉+… 

— the result is still a pure state.

 Statistical mixture (convex sum of density matrices): ρ = p1 ρ1 + p2 ρ2 +… — the result 
is generally a mixed state.

Example: An equal amplitude quantum superposition of 0〉 and 1〉 states is

+〉 =
1

2
(0〉+ 1〉). (36)

Its corresponding density matrix is

+〉 〈+ ≏
1

2
1 1
1 1

. (37)

An equal probability statistical mixture of 0〉 and 1〉 would be

ρ =
1

2
0〉 〈0+

1

2
1〉 〈1 ≏ 1 0

0 1
. (38)

Eq. (37) and Eq. (38) differed by the off-diagonal matrix elements — the signature of 
quantum coherence in the density matrix.

◼ Purity

Given a density matrix, is it pure or mixed?

The eigenvalues {pi} obtained from spectral decomposition of the density matrix ρ pro-
vide the key to determining whether the state is pure or mixed: 

 Pure state: only one eigenvalue p1 = 1, and all others are zero. 
In this case,



i

pi2 = 1+ 0+ 0+… = 1.
(39)

 Mixed state: more than one non-zero eigenvalues, i.e. pi > 0 for multiple i.
In this case, given that ∑i pi = p1 + p2 +… = 1,



i

pi2 = p12 + p22 +… < 1.
(40)

Purity: to quantify how close the state ρ is to being a pure state,

10     QuantumInformation.nb



Tr ρ2 = 

i

pi2 (41)

 By construction, Tr ρ2 ∈ [0, 1]. 

 Purity Tr ρ2 is invariant under basis transformation ρ → U ρU † (which is also seen from the 
fact that it only has to do with the eigenvalues {pi} not the eigenvectors of ρ)

 Purity provides a basis-independent approach to determine if a state ρ is pure or mixed:

ρ is pure if Tr ρ2 = 1,
mixed if Tr ρ2 < 1.

(42)

◼ von Neumann and Rényi Entropy

von Neumann entropy of a density matrix

S (1) = -Tr ρ log ρ. (43)

 Eq. (43) should be understood as

S (1) = -

i

pi log pi, (44)

in terms of the eigenvalues pi of the density matrix ρ. [Note: 0 ln 0 should be treated as 0 in 
this calculation]

 This matches the Shannon entropy Eq. (16) of a probability distribution in the information 
theory.

Consider a generic single-qubit density matrix of the following form
ρ =

1
2
(+m ·σ),

where m is a three-component real vector. Calculate its von Neumann entropy S (1). 
Show that S (1) = 0 when m = 1, and S (1) = log 2 when m = 0. 

HW
1

Rényi entropy of a density matrix

S (n) =
1

1- n
log Tr ρn. (45)

In terms of the eigenvalues pi,

S (n) =
1

1- n
log

i

pin. (46)

 n is the Rényi index.

 n = 0: max-entropy, simply counts the log of the Hilbert space dimension S (0) = log dimℋ .

 n → 1 limit: equivalent to the von Neumann entropy, i.e. S (1) = limn→1 S (n).
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Show that in the n → 1 limit, the Rényi entropy reduces to the von Neumann entropy.Exc
4

 n = 2: the 2nd Rényi entropy is directly related to purity by S (2) = - log Tr ρ2.

 n = ∞: min-entropy, lower bound of all Rényi entropies, S (∞) = - log maxi pi.

 The spectrum of the density matrix, i.e. all eigenvalues pi, can be reconstructed from the 
family of Rényi entropies (by solving the following equations, in principle).



i

pin = e(1-n) S (n)
(for n = 1, 2,…, dimℋ).

(47)

◼ Entropy and Knowledge

The Rényi entropy (including the von Neumann entropy as a special case) can characterize 
how much the ensemble is mixed.

ρ is pure if S (n) = 0,
mixed if S (n) > 0,

for n = 1, 2,…. (48)

Pure state has no entropy. A pure state represents the maximal knowledge we can have of a 
system.

Entropy measures our ignorance about the quantum system. If the ensemble is pure, the 
system is in a definite quantum state, hence no entropy. If the ensemble is mixed, there are 
several possible states that the system can take, our ignorance is quantified by the entropy.

 Jensen’s inequality: Rényi entropy is generally decreasing with the Rényi index,

log dimℋ = S (0) ≥ S (1) ≥ S (2) ≥ … ≥ S (∞) ≥ 0. (49)

The equality is achieved (simultaneously) if all pi are equal.

∀ i : pi =
1

dimℋ
 ∀ n ≥ 0 : S (n) = log dimℋ . (50)

In this case, all Rényi entropies reach the maximum, and the ensemble is maximally mixed. 
The density matrix is proportional to identity matrix for maximally mixed ensemble.

ρ =
1

dimℋ
. (51)

Any quantum state can be realized with equal possibility in a maximally mixed ensemble  we 
are completely ignorant about the system  entropy is therefore maximized.

Maximally mixed qubit: SU(2) symmetric, no preferred spin direction, i.e. 〈σ〉 = 0. Then 
according to Eq. (31),

ρ =  / 2 ≏
1

2
1 0
0 1

. (52)
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 Application: if the qubit basis corresponds to the left-circular and right-circular photon 
polarization, then the density matrix in Eq. (52) describes the natural light ensemble of 
photons.

 All Rényi entropies are identically log 2 for a maximally mixed qubit,

S (n) =
1

1- n
log

1

2n
+
1

2n
= log 2 = 1 bit. (53)

 This is the maximal entropy that a qubit could have: our ignorance about a qubit is at most 1 
bit. This is why a qubit is called a quantum bit.

Let us conclude our discussion in the following table:

ensemble pure mixed maximally mixed
entropy 0 log dimℋ

knowledge max none

◼ Quantum Entanglement

◼ Product and Entangled States

◻ Pure State Entanglement

Consider a pure quantum state of a composite system AB, described by the state vector 
ψAB〉.

 ψAB〉 is a product state, if it can be expressed as

ψAB〉 = ψA〉 ⊗ ψB〉, (54)

i.e. tensor product of individual states of its subsystems A and B.

 ψAB〉 is a entangled state, if it is not a product state, i.e.

ψAB〉 ≠ ψA〉 ⊗ ψB〉. (55)

Key characters:
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product state entangled state
The state of one
subsystem can be described
independently of the other.

The subsystems are
correlated in a way that
cannot be described classically.

All information
is contained locally in
each separate subsystem.

Some information is
shared between subsystems,
and can not be accessed
from either subsystem.

Measurement of one
subsystem does not affect the
state of the other subsystem.

Measurement
on one subsystem can
instantaneously affect the
state of the other subsystem,
a phenomenon known as
quantum nonlocality.

Examples: For a two-qubit system,

 Suppose ψA〉 = z0 0〉+ z1 1〉, ψB〉 = w0 0〉+w1 1〉, the most general product state must take the 
form of

ψA〉 ⊗ ψB〉 = (z0 0〉+ z1 1〉)⊗ (w0 0〉+w1 1〉)

= z0 w0 00〉+ z0 w1 01〉+ z1 w0 10〉+ z1 w1 11〉.
(56)

 The following states, known as Bell states, are entangled states:

ψAB
++ 〉 =

00〉+ 11〉

2
, ψAB+- 〉 =

01〉+ 10〉

2
,

ψAB
-+ 〉 =

00〉- 11〉

2
, ψAB-- 〉 =

01〉- 10〉

2
.

(57)

Prove that states in Eq. (57) can not be written as product states like Eq. (56).Exc
5

Question: Is the state 1
2
(00〉+ 01〉+ 10〉+ 11〉) entangled or not?

It is not obvious to see if a state is entangled or not  we need to develop measures of entangle-
ment, such that by measuring these quantities, we can decide how much the state is entangled… 

(to be discussed later).

◻ Mixed State Entanglement

For mixed states, the composite system AB is described by its density matrix ρAB

 ρAB is a product state, if the it can be written as tensor product of density matrices of its 
subsystems

ρAB = ρA⊗ ρB. (58)
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 ρAB is a separable state, if the it is a statistical mixture of product states

ρAB = 

i

pi ρA
(i)

⊗ ρB
(i).

(59)

 ρAB is an entangled state, if it is not separable, i.e.

ρAB ≠ 

i

pi ρA
(i)

⊗ ρB
(i),

(60)

 This is a subtle point: sometimes a density matrix may appear entangled, but there might 
exists a non-trivial decomposition that reveals the state is actually separable. 

 Determining whether a mixed state is separable or entangled is a computationally chal-
lenging task, and is known to be NP-hard!

◼ Reduced Density Matrix

The reduced density matrix ρA provides an effective description of the state of the sub-
system A, derived from the full density matrix ρAB of the composite system.

ρA = TrB ρAB, (61)

where TrB denotes the partial trace over subsystem B.

 Mathematical definition of partial trace:

TrB ρAB = 

i

〈iB ρAB i〉B, (62)

where {i〉B} is any set of orthonormal basis for subsystem B.

 Physical meaning: taking partial trace ignores the information related to subsystem B while 
retaining the information remaining in subsystem A. It corresponds to “tracing out” or aver-
aging over the unobserved degrees of freedom of B.

Why is ρA an effective description? Why the partial trace?

ρA captures the state of subsystem A in the sense that it encodes all the information needed 
to compute expectation values of observables acting only in A.

 Existence of ρA: For any observable OA acting only in A, ρA must provide an equivalent way 
to evaluate 〈OA〉 as using ρAB:

〈OA〉 = Tr(ρAB OA⊗ IB) = Tr(ρA OA). (63)

OA

ρA B =

OA

ρA

For Eq. (63) to hold for any choice of OA, we should require
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ρA B = ρA

which provides a construction: ρA = TrB ρAB.

 Uniqueness of ρA: For any different state ρA′ ≠ ρA, there must exist at least one observable 
OA, such that Tr ρA

′ OA ≠ Tr ρA OA. By matching all observable expectation values 〈OA〉 in 
Eq. (63), the state ρA is uniquely determined, meaning that ρA = TrB ρAB is the only valid 
construction.

◼ Entanglement Entropy

The entanglement entropy of the qubit A in a two-qubit state ψ〉 is given by

S(A) = -Tr ρA ln ρA. (64)

where ρA is the reduced density matrix of qubit A obtained by tracing out qubit B in the 
full density matrix ψ〉 〈ψ, following the general approach in Eq. (61),

ρA = TrB ψ〉 〈ψ. (65)

One may also define a more general Rényi version as

S (n)(A) =
1

1- n
ln Tr ρA

n , (66)

such that S(A) = limn→1 S (n)(A).
Example I: take a spin-singlet state of two spin-1/2 particles,

ψ〉 =
1

2
(↑ ↓〉- ↓ ↑〉). (67)

 Full density matrix

ψ〉 〈ψ ≏
1

2

0
1
-1
0

( 0 1 -1 0 ) =
1

2

0 0 0 0
0 1 -1 0
0 -1 1 0
0 0 0 0

. (68)

 Partial trace over qubit B  reduced density matrix of qubit A

ρA = TrB ψ〉 〈ψ

≏
1

2

tr 0 0
0 1

tr 0 0
-1 0

tr 0 -1
0 0

tr 1 0
0 0

=
1

2
1 0
0 1

.
(69)

Note that ρA indeed describes a maximally mixed qubit.
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 Compute the entropy of the reduced density matrix,

S(A) = -Tr ρA ln ρA = ln 2 = 1 bit. (70)

Example II: take the product state of two spin-1/2 particles,

ψ〉 =
1

2
(↑ ↑〉+ ↑ ↓〉+ ↓ ↑〉+ ↓ ↓〉). (71)

 Full density matrix

ρ = ψ〉 〈ψ ≏
1

4

1
1
1
1

( 1 1 1 1 ) =
1

4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

. (72)

 Partial trace over qubit B  reduced density matrix of qubit A

ρA = TrB ρ

≏
1

4

tr 1 1
1 1

tr 1 1
1 1

tr 1 1
1 1

tr 1 1
1 1

=
1

2
1 1
1 1

.
(73)

 Compute the entropy of the reduced density matrix,

S(A) = -Tr ρA ln ρA = -(0 ln 0 + 1 ln 1) = 0 bit. (74)

Conclusion: The entanglement entropy characterizes the amount of quantum entangle-
ment between subsystem A and its complement A (which is B here), given that the full system 

A⋃A is pure.

ψ〉 (pure) product entangled maximally entangled
ρA pure mixed maximally mixed

S (n)(A) 0 ln dimℋ

entanlement none max

For diagnostic purpose (to distinguish product state from entangled state), any Rényi index 
n = 1, 2, ... will work.

Why entropy provides a measure of entanglement? Quantum entanglement: the nonlocal 
nature of quantum information in an entangled state (i.e. information shared jointly among 
subsystems)  separating out a subsystem would lead to lost of information  hence the produc-
tion of (entanglement) entropy.

Open questions: The system must be pure, otherwise there are other source of entropy produc-
tions. What about entanglement in a mixed state? Good to describe bipartite entanglement. 
What about multipartite entanglement?
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◼ Mutual Information

The mutual information between qubit A and qubit B is

I (A :B) = S(A) + S(B) - S(A⋃B). (75)

Or more generally, one may define the Rényi version,

I (n)(A :B) = S (n)(A) + S (n)(B) - S (n)(A⋃B). (76)

I (n)(A :B) = the amount of information shared by A and B.
Example: take the spin-singlet state, we have

S (n)(A) = S (n)(B) = 1 bit,

S (n)(A⋃B) = 0 bit,
(77)

hence 2 bit mutual information (regardless of the Rényi index n)

I (n)(A :B) = S (n)(A) + S (n)(B) - S (n)(A⋃B) = 2 bit. (78)

This is a surprising result!

 For classical systems, the mutual information between two classical bits will never exceed 
1 bit. How can we tell more than 1 bit of information about B by measuring A?

 The maximal mutual information between two classical bits is achieved when they are per-
fectly correlated, e.g.

p(10) = p(01) = 1 / 2, p(11) = p(00) = 0. (79)

 Entanglement is more than correlation: the extra bit of quantum information shared 
between qubits A and B is their quantum entanglement, that goes beyond the classical 
correlation.

For a two-qubit system, the 2nd Rényi (n = 2) mutual information I (2)(A :B) between the 
two qubits is related to the spin observables in a relatively simple way

I (2)(A :B) = log 1+
|| 〈σA⊗σB〉 ||2 - || 〈σA〉 ||2 || 〈σB〉 ||2

1+ || 〈σA〉 ||2 1+ || 〈σB〉 ||2
. (80)

Note: || 〈σA⊗σB〉 ||2 = ∑i,j=x,y,z σA
i ⊗ σB

j

2
 and || 〈σA〉 ||2 = ∑i=x,y,z σA

i 
2.

 Classical state: statistical superposition

ρ =
1

2
↑ ↓〉 〈↑ ↓+

1

2
↓ ↑〉 〈↓ ↑, (81)

 Observables
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〈σA〉 = 〈σB〉 = (0, 0, 0),

〈σA⊗σB〉 =

0 0 0
0 0 0
0 0 -1

.
(82)

 Mutual information

I (2)(A :B) = log1+ || 〈σA⊗σB〉 ||2 = log(1+ 1) = log 2 = 1 bit. (83)

 Quantum state: quantum superposition

ρ = ψ〉 〈ψ,

ψ〉 =
1

2
(↑ ↓〉- ↓ ↑〉).

(84)

 Observables

〈σA〉 = 〈σB〉 = (0, 0, 0),

〈σA⊗σB〉 =

-1 0 0
0 -1 0
0 0 -1

.
(85)

 Mutual information

I (2)(A :B) = log1+ || 〈σA⊗σB〉 ||2 = log(1+ 3) = log 4 = 2 bit. (86)

In a spin-singlet state, not only σAz σB
z  is perfectly correlated, but σAx σB

x  and σA
y

σB
y are also 

perfectly correlated. Such additional correlations (by changing measurement basis) can not be 
realized by classical bits. The additional information channel enables the two-qubit system to 
store all its two bits of quantum information purely as shared information between qubits, 
without using any “local access” of information. 

◼ EPR Pair and Bell Inequality

 The Bell states, or the Einstein-Podolsky-Rosen (EPR) pair states, refers to two qubits 
(spins) in maximally entangled pure states. The spin-singlet state in Eq. (84) is one such 
example,

ψ〉 =
1

2
(↑ ↓〉- ↓ ↑〉). (87)

Suppose a machine can repeatedly prepare spin-singlet EPR pairs and distribute the spins 
separately to Alice and Bob,

EPR state
Alice Bob

source
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Alice and Bob can measure their own spins and record the measurement outcome. After the 
measurement, the pair of spins are discarded. New EPR pairs will be acquired from the source.

Let σA (or σB) be the spin observable of Alice’s (or Bob’s) spin. On the spin-singlet state, 
their expectation values are

〈σA〉 = 〈σB〉 = (0, 0, 0),

〈σA⊗σB〉 =

-1 0 0
0 -1 0
0 0 -1

.
(88)

If Alice and Bob both measure σz, they will find

σA
z = -σB

z = 
+1 p = 1 / 2
-1 p = 1 / 2

. (89)

 Quantum explanation: can be inferred from 〈σA
z 〉 = 〈σB

z 〉 = 0 and 〈σAz σB
z 〉 = -1. 

 This is not too surprising: just a perfect correlation between two random variables. Classi-
cally, one may model the perfect correlation by a hidden variable:

Alice Bob

p = 1 / 2

0 1

Alice Bob

p = 1 / 2

1 0

If Alice and Both both measure σx, they will find

σA
x = -σB

x = 
+1 p = 1 / 2
-1 p = 1 / 2

. (90)

 Quantum explanation: can be inferred from 〈σA
x 〉 = 〈σB

x 〉 = 0 and 〈σAx σB
x 〉 = -1. 

 To model this classically: we will need to introduce another hidden variable to encode the 
perfect correlation in σx channel.

Alice Bob

p = 1 / 2

?0 ?1

Alice Bob

p = 1 / 2

?1 ?0

As Alice and Bob can choose to measure either σz or σx at their free will  Classically, both 
hidden variables about σz and σx must be sent with the qubit. (Although a single state vector 
ψ〉 is sufficient to explain all situations in the quantum way).

If Alice measures σAz  and Bob measures σBx , they will find independently that

σA
z = 

+1 p = 1 / 2
-1 p = 1 / 2

, σB
x = 

+1 p = 1 / 2
-1 p = 1 / 2

. (91)

 Quantum explanation: can be inferred from 〈σA
z 〉 = 〈σB

x 〉 = 0 and 〈σAz σB
x 〉 = 0. 
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 The classical hidden variables can reproduce this behavior only if they follow the joint 
distribution

Alice Bob p
00 11 1 / 4
01 10 1 / 4
10 01 1 / 4
11 00 1 / 4

(92)

So far so good. But Alice and Bob can also decide to measure σy, or more generally, any 
linear combination of their observables … What if Alice measures nA ·σA and Bob measures 
nB ·σB? (where nA and nB are unit vectors) Their outcomes will follow the joint distribution

nA ·σA nB ·σB p
+1 +1 (1-nA ·nB) / 4
+1 -1 (1+nA ·nB) / 4
-1 +1 (1+nA ·nB) / 4
-1 -1 (1-nA ·nB) / 4

(93)

The probability that Alice and Bob obtain opposite outcomes is

p(nA ·σA = -nB ·σB) =
1+nA ·nB

2
. (94)

 Quantum explanation: can be inferred from 〈nA ·σA〉 = 〈nB ·σB〉 = 0 and 
〈nA ·σA nB ·σB〉 = -nA ·nB. 

 Classically, to reproduce all these, we will need many (could be infinitely many) hidden vari-
ables, one for each choice of the measurement axis n. (This is ugly but not fatal yet.)

Alice Bob

10010… 01101…

p (10010…)

There should be complicated correlation among hidden variables in an attempt to match 
quantum predictions (but the attempt may fail). Suppose two of the hidden variables happen to 
determine the outcome of n1 ·σ and n2 ·σ. After marginalizing (summing) over all the other 
hidden variables, the marginal distribution should be

Alice Bob p
…00… …11… (1+n1 ·n2) / 4
…01… …10… (1-n1 ·n2) / 4
…10… …01… (1-n1 ·n2) / 4
…11… …00… (1+n1 ·n2) / 4

. (95)

Now consider Alice and Bob can choose to measure any one of the three observables n1 ·σ, 
n2 ·σ and n3 ·σ (on their own qubits respectively, where n1,2,3 are unit vectors).
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 Classically, there must be three hidden variables associated with the three observables, fol-
lowing some marginal distribution

Alice Bob p
…000… …111… p1
…001… …110… p2
…010… …101… p3
…011… …100… p4
…100… …011… p5
…101… …010… p6
…110… …001… p7
…111… …000… p8

. (96)

The probability must sum up to 1, i.e.

p1 + p2 +…+ p8 = 1. (97)

 If Alice measures n1 ·σA and Bob measures n2 ·σB, the probability that they obtain oppo-
site outcomes is

p(n1 ·σA = -n2 ·σB) = p1 + p2 + p7 + p8. (98)

 If Alice measures n2 ·σA and Bob measures n3 ·σB, the probability that they obtain oppo-
site outcomes is

p(n2 ·σA = -n3 ·σB) = p1 + p4 + p5 + p8. (99)

 If Alice measures n3 ·σA and Bob measures n1 ·σB, the probability that they obtain oppo-
site outcomes is

p(n3 ·σA = -n1 ·σB) = p1 + p3 + p6 + p8. (100)

Put together,

p(n1 ·σA = -n2 ·σB) + p(n2 ·σA = -n3 ·σB) + p(n3 ·σA = -n1 ·σB)
= 3 p1 + p2 + p3 + p4 + p5 + p6 + p7 + 3 p8
= 1+ 2 p1 + 2 p8

(101)

This leads to a (version of) Bell inequality. 

p(n1 ·σA = -n2 ·σB) + p(n2 ·σA = -n3 ·σB) + p(n3 ·σA = -n1 ·σB) ≥ 1. (102)

 Now what is the quantum mechanical prediction? Recall the quantum result in Eq. (94), 
the Bell inequality would require

1+n1 ·n2
2

+
1+n2 ·n3

2
+
1+n3 ·n1

2
≥ 1, (103)

for three unit vectors n1, n2 and n3.
Consider a special case, where the three vectors are 120° to each other in a plane.

22     QuantumInformation.nb



n1

n2

n3

n1 ·n2 = n2 ·n3 = n3 ·n1 = -1 / 2. (104)

Then Eq. (103) would require

1

4
+
1

4
+
1

4
=
3

4
≱ 1, (105)

which is violates Bell inequality.

The violation of Bell inequality indicates that no classical model of local hidden variables can 
ever reproduce all the predictions of quantum mechanics. This is the Bell’s theorem.

John S. Bell (1928-1990)
The Nobel (No-Bell) Prize in Physics 2022

Alain Aspect John F. Clauser Anton Zeilinger
for experiments with entangled photons,

establishing the violation of Bell inequalities
and pioneering quantum information science

How strictly does Bell inequality tell us about entanglement?
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Consider a two-spin state ψ〉 = cos α ↑ ↓〉- sin α ↓ ↑〉, where α ∈ [0, π / 4] is a phase 
angle to tune ψ〉 from a product state to a maximally entangled state.
(i) Calculate the 2nd Rényi entanglement entropy S (2)(A) of qubit A (as a function of 
α).
(ii) Evaluate 〈ψ σA ψ〉, 〈ψ σB ψ〉 and 〈ψ σA⊗σB ψ〉.
(iii) Let n1, n2, n3 be three unit vectors 120° to each other in the xz-plane, evaluate 
the left-hand-side of the Bell inequality
 p(n1 ·σA = -n2 ·σB) + p(n2 ·σA = -n3 ·σB) + p(n3 ·σA = -n1 ·σB)
as a function of α.

HW
2

We can plot the l.h.s. of the Bell inequality v.s. the 2nd Rényi entanglement entropy for dif-
ferent α:
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 For pure state, such as ψ〉 in the above example, entanglement entropy S (2)(A) > 0 ⇔ the 
state is entangled. But the Bell inequality is not always violated.  It is an entanglement 
witness.

 For mixed state, entropy no longer provides a good measure of quantum entanglement. We 
had to rely on Bell inequalities and other entanglement witness.

Quantum Information Processing

◼ Unitary Operations

◼ Time Evolution

How does a quantum state evolve over time?

 Pure state: the state vector ψ(t)〉 encodes complete information about the quantum system 

at time t. If ψ(0)〉 is know at t = 0, there must be a deterministic rule to find ψ(t)〉 at any 
time t:
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ψ(t)〉 = U (t) ψ(0)〉, (106)

where U (t) is the time-evolution operator.

 Mixed state: the density matrix ρ(t) describes a statistical ensemble of pure states {ψi〉} with 
probabilities {pi}

ρ(t) = 

i

pi ψi(t)〉 〈ψi(t). (107)

 Assumption: the probabilities {pi} remains unchanged under deterministic time-evolution. 
(The probability transfer process is stochastic.)

 Since every pure state ψi(t)〉 evolves independently under Eq. (106), the density matrix 
evolves as

ρ(t) = U (t) ρ(0)U (t)†. (108)

Unitarity: the time-evolution operator U (t) of an isolated quantum system must be unitary, 
to ensure no information is lost during the evolution (both forward and backward in time).

 Distinct states remain distinct:

〈ϕ(0) ψ(0)〉 = 0  〈ϕ(t) ψ(t)〉 = 〈ϕ(0)U (t)† U (t) ψ(0)〉 = 0. (109)

 Identical states remain identical:

〈ψ(0) ψ(0)〉 = 1  〈ψ(t) ψ(t)〉 = 〈ψ(0)U (t)† U (t) ψ(0)〉 = 1. (110)

Let {i〉} be a set of orthonormal basis, i.e. 〈i j〉 = δi j, Eq. (109) and Eq. (110) imply:

〈iU (t)† U (t) j〉 = δi j ⇔ U (t)† U (t) = , (111)

which, by definition, proves that U (t) is unitary. 

◼ Dynamic Equations

Every unitary operator is generated by some Hermitian operator. The Hermitian generator of 
the unitary time-evolution operator is called the Hamiltonian H , representing the energy 
observable of the quantum system

U (t) = exp -


ℏ
H t . (112)

 Schrödinger Equation describes the time-evolution dynamics of a pure state

 ℏ ∂t ψ(t)〉 = H ψ(t)〉. (113)

Verify that Eq. (113) is consistent with Eq. (106) given Eq. (112).Exc
6
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 von Neumann Equation describes the time-evolution dynamics of a mixed state

 ℏ ∂t ρ(t) = [H , ρ(t)], (114)

where [H , ρ] = H ρ- ρH  denotes the commutator.

Verify that Eq. (114) is consistent with Eq. (108) given Eq. (112).Exc
7

Example: single-qubit system governed by the Hamiltonian

H =
ω

2
Z ≏

ω

2
1 0
0 -1

. (115)

 Initial density matrix (in the diagonal basis of H)

ρ(0) ≏
ρ00 ρ01

ρ10 ρ11
. (116)

 Time-evolved density matrix (set ℏ = 1)

ρ(t) ≏
ρ00 ρ01 - ω t

ρ10  ω t ρ11
. (117)

The diagonal elements are invariant, the off-diagonal elements rotates in time following e± ω t 

(with an angular frequency of ω).

◼ Quantum Circuits

Quantum computation leverages unitary evolution to manipulate quantum states and 
process quantum information. These unitary operations are realized through quantum cir-
cuits, which consist of quantum gates — the building block that apply unitary transforma-
tions to one or more qubits.

 Single-Qubit Gates: acts on a single qubit, represented as 2 × 2 unitary matrices.

 Pauli Gates: implement bit flip or phase flip

X ≏
0 1
1 0

, Y ≏
0 -

 0
, Z ≏

1 0
0 -1

. (118)

X Y Z

 Hadamard Gate: creates superpositions, transforms between X and Z basis.

H ≏
1

2

1 1
1 -1

. (119)

H

 Phase Gate: introduces a relative phase rotation between 0〉 and 1〉.
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Rϕ ≏
1 0
0  ϕ

. (120)

Rϕ

 Two-Qubit Gates: acts on two qubits, represented by 4 × 4 unitary matrices.

 CNOT Gate: the first (control) qubit determines whether the second (target) qubit is bit 
flipped.

CNOT ≏

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

. (121)

X
or

 CZ Gate: the first (control) qubit determines whether the second (target) qubit is phase 
flipped.

CZ ≏

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1

. (122)

Z
or

 SWAP Gate: interchange two qubits.

SWAP ≏

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

. (123)

or

 Three-Qubit Gates: acts on three qubits, represented by 8 × 8 unitary matrices.

 Toffoli Gate (Controlled-controlled-NOT): the first two (control) qubits jointly deter-
mines whether the last (target) qubit is bit flipped.
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CCNOT ≏

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

.

This gate is often used in universal quantum computation.

Quantum gates can be combined to build quantum circuits. For example, the following 
quantum circuit 

0〉
0〉
0〉
0〉
0〉
0〉

H

in
pu
t

ou
tp
ut

time

prepares a Greenberger-Horne-Zeilinger (GHZ) state, also known as the Schrödinger 
cat state:

GHZ〉 =
000…0〉+ 111…1〉

2
. (125)

Quantum circuits are graphically represented as quantum circuit diagrams, where

 Wires:

 Horizontal lines represents qubits.

 Time flows from left to right.

 Gates: Placed along the wires to represent unitary operations acting on the corresponding 
qubits.

Universal gate sets — a set of quantum gates is universal if any unitary operation can be 
approximated to arbitrary accuracy using only gates from the set. There are multiple choices:

 {H , Rϕ} ⋃ {CNOT}: Single-qubit rotation + entanglement

 {H , S = Rπ/2, CNOT} ⋃ {T = Rπ/4}: Clifford gates + magic
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 {CCNOT} ⋃ {H }: Classical universality + quantum superposition

◼ Quantum Measurements

◼ Observables

In quantum mechanics, observables (physical quantities) are represented by Hermitian 
operators L, satisfying L = L†. Any Hermitian operator L admits a spectral decomposition:

L = 

i

λi〉 λi 〈λi, (126)

where

 the eigenvalues λi ∈  are real numbers, representing the possible measurement outcomes;

 the corresponding eigen states are λi〉, forming an orthonormal basis 〈λi λj〉 = δi j, also called 
the measurement basis of L.

◼ Projective Measurement

Measurement of a Hermitian observable L is described by a set of projection operators Pλ, 
labeled by the observation value λ,

Pλ = 

λi=λ

λi〉 〈λi. (127)

 Hermiticity: Pλ
†
= Pλ,

 Orthogonality:

Pλ Pλ′ = δλλ′ Pλ. (128)

In particular, Pλ
2 = Pλ is the defining property of projection operators.

 Normalization condition:



λ

Pλ = .
(129)

Show that the projection operators in Eq. (127) satisfy Eq. (128) and Eq. (129).Exc
8

 Projective measurement on pure states:

 Pre-measurement state: ψ〉.

 Probability distribution: Measure L, the probability to observe L = λ is

p(λ) = 〈ψ Pλ ψ〉. (130)
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 Post-measurement state (with post-selection):

ψ〉
observe λ

measure L
ψ′〉 =

Pλ ψ〉

〈ψ Pλ ψ〉

. (131)

 Projective measurement on mixed states:

 Pre-measurement state: ρ.

 Probability distribution: Measure L, the probability to observe L = λ is

p(λ) = Tr ρPλ. (132)

 Post-measurement state (with post-selection):

ρ
observe λ

measure L
ρ′ =

Pλ ρPλ

Tr ρPλ

. (133)

Post-selection refers to selecting out the quantum system after a specific measurement out-
come L = λ is observed, effectively discarding cases of all other possible outcomes.

 With post-selection: the system will collapse to the specific post-measurement state

ρ
observe λ

measure L
ρ′ =

Pλ ρPλ

Tr ρPλ

(134)

 Without post-selection: the system will be in a statistical mixture of all possible post-measure-
ment states

ρ
ignore outcome

measure L
ρ′ = 

λ

p(λ)
Pλ ρPλ

Tr ρPλ

= 

λ

Pλ ρPλ. (135)

Example: single-qubit system measured in Z basis. The Z observable

Z = 0〉 〈0- 1〉 〈1 (136)

has only two eigenvalues +1 and -1 (i.e. the possible measurement outcomes), corresponding to

P+1 = 0〉 〈0 ≏ 1 0
0 0

,

P-1 = 1〉 〈1 ≏ 0 0
0 1

.
(137)

Given the prior density matrix

ρ ≏
ρ00 ρ01

ρ10 ρ11
, (138)

measure the Z observable,
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 with probability p+1 = Tr ρP+1 = ρ00, the outcome Z = +1 will be observed, and the system 

collapses to

ρ′ =
P+1 ρP+1

Tr ρP+1
≏
1 0
0 0

; (139)

 with probability p-1 = Tr ρP-1 = ρ11, the outcome Z = -1 will be observed, and the system 

collapses to

ρ′ =
P-1 ρP-1

Tr ρP-1
≏
0 0
0 1

; (140)

 without post selection, the post-measurement state will be

ρ′ ≏ ρ00
1 0
0 0

+ ρ11
0 0
0 1

=
ρ00 0
0 ρ11

, (141)

where the off-diagonal matrix element disappeared in the density matrix ρ′, a phenomenon 
known as measurement-induced decoherence. 

A spin-1 particle has three Sz eigenstates, denoted as +1〉, 0〉, and -1〉. Suppose the 
particle was originally in the maximally mixed state, described by
ρ =

1
3
(+1〉 〈+1+ 0〉 〈0+ -1〉 〈-1). 

Consider measuring the Sx2 observable,
Sx2 =

1
2
(+1〉+ -1〉) (〈+1+ 〈-1) + 0〉 〈0.

(i) Compute the eigenvalues of Sx2, and construct the corresponding projection opera-
tors.
(ii) What is the probability of each measurement outcome?
(iii) Determine the post-measurement state ρ′ fore each measurement outcome, and 
analyze whether the post-measurement state ρ′ is pure or mixed in each cases.

HW
3

◼ Indirect Measurement

Unitary evolution and measurement (state collapse) seem to be two irreconcilably dif-
ferent quantum dynamics. Are they related in any way?

Every measurement involves a system and an apparatus.

⊗
apparatus

∅〉 +〉 -〉

system 0〉 0 ∅〉 0+〉 0-〉

1〉 1 ∅〉 1+〉 1-〉

(142)

 Consider the system is a qubit to be measured in Z basis (two basis states: 0〉 and 1〉).

 The apparatus has three states: ∅〉 null (before measurement), +〉 positive (indicating Z = +1 
outcome), -〉 negative (indicating Z = -1 outcome).

 The system and apparatus together is a composite quantum system of 6-dimensional Hilbert 
space, with the 6 basis states in Eq. (142) arranged in the following order
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{0 ∅〉, 0+〉, 0-〉, 1 ∅〉, 1+〉, 1-〉}. (143)

The apparatus was designed such that when the measurement button is pressed, it will interact 
with the system by the joint unitary evolution, described by

U = 0+〉 〈0 ∅- 0 ∅〉 〈0++ 0-〉 〈0-

+ 1-〉 〈1 ∅- 1 ∅〉 〈1-+ 1+〉 〈1+.
(144)

Show that U  in Eq. (144) is indeed unitary (and therefore can be realized by a time-
evolution in principle).

Exc
9

Most importantly, under the unitary evolution

0 ∅〉 → U 0 ∅〉 = 0+〉,

1 ∅〉 → U 1 ∅〉 = 1-〉,
(146)

which

 leaves the qubit state unchanged,

 and flips the apparatus to +〉 (or -〉) state controlled by the state of the qubit being 0〉 (or 
1〉),

thereby realizing the Z observable measurement.

More generally, assuming the initial state of the qubit is a superposition state

ψ〉 = ψ0 0〉+ ψ1 1〉, (147)

the composite system starts from a product state

ψ〉 ⊗ ∅〉 = ψ0 0 ∅〉+ ψ1 1 ∅〉, (148)

evolves into an entangled state

U (ψ〉 ⊗ ∅〉) = ψ0 0+〉+ ψ1 1-〉. (149)

Interpretations:

 If the apparatus reads + (or -), the qubit is in the 0〉 (or 1〉) state. Moreover, the probability 
for the measurement outcome Z = +1 to appear is ψ02, exactly the same as the probability of 
the qubit being observed in the 0〉 state. — No explicit collapse is needed. The qubit and the 
apparatus evolves into an entangled reality under unitary time evolution. 

 When an external observer reads the apparatus, they will be involved into the entangled 
state. When the observer publishes their observation to the world, the entire world will be 
entangled … — This is the multi-worlds interpretation of quantum mechanics.

 Observing the apparatus still collapses the joint quantum state: the measurement of the 
qubit can be equivalently implemented by measuring the apparatus that has interacted with 
it, i.e. an indirect measurement. Collapsing the apparatus (by projecting the apparatus to 
±〉 states) induces a corresponding projection operator P± acting on the qubit:
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U

ψ ∅

±

=

ψ

P±

P± = 〈±U ∅〉  
P+ = 0〉 〈0
P- = 1〉 〈1

. (150)

Given U  in Eq. (144), calculate P± in Eq. (150).
Exc
10

which are exactly the projection operators describing the projective measurement of the 
qubit in the Z basis. — State collapse can back propagate from apparatus to system.

 The collapse of the system is caused by the collapse of the apparatus, that the causality 
appears to flow backward in time in quantum measurement.

 If the apparatus is subsequently observed by an external observer, the underlying cause of 
the collapse is further traced back to the observer. This implies a recursive observer 
hierarchy, such that the origin of collapse can be recursively traced back forever.

Does the last entity to look at the entire system collapse the quantum state, or does it just get
entangled? Or is there even a last observer? — These are still open (philosophical) questions 
about quantum measurements.

◼ Generalized Measurement

 Projective measurement is disruptive: providing maximal information about the measure-
ment outcome at the cost of fully collapse the state.

 Generalized measurement is a less disruptive form of quantum measurement that only 
partially disturb the state, but providing only limited information about the observable.

Consider indirect measurement, suppose the system-apparatus interaction is described by the 
following Hamiltonian

H =  g (0+〉 〈0 ∅- 0 ∅〉 〈0++ 1-〉 〈1 ∅- 1 ∅〉 〈1-), (151)

which is such designed that it will generate the desired unitary operation U  in Eq. (144), via the 
following time evolution

U = -H (152)

with the coupling g = π / 2.

Show that H  in Eq. (151) generates U  in Eq. (144) with g = π / 2.
Exc
11

 With generic coupling strength g, the initial states will be transformed by U  as
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0 ∅〉 → U 0 ∅〉 = cos g 0 ∅〉+ sin g 0+〉,

1 ∅〉 → U 1 ∅〉 = cos g 1 ∅〉+ sin g 1-〉.
(153)

 Now if we observe the apparatus, there are three possible outcomes: ∅〉 null, +〉 positive, -〉 

negative. 

 Each outcome on the apparatus is associated with an effective Kraus operator acting on 
the system:

U

ψ ∅

λ

=

ψ

Kλ

K∅ = 〈∅U ∅〉 = cos g 1 0
0 1

,

K+ = 〈+U ∅〉 = sin g 1 0
0 0

,

K- = 〈-U ∅〉 = sin g 0 0
0 1

.

(154)

Calculate the operator Kλ.
Exc
12

 The Kraus operator specifies how the system should response to the observation outcome of 
the apparatus.

ψ〉
in state λ〉

observe apparatus Kλ ψ〉

〈ψKλ
† Kλ ψ〉

. (155)

 The probability to observe apparatus in the state μ〉 should be given by

p(μ) = 〈ψKμ
† Kμ ψ〉. (156)

The normalization condition ∑λ p(λ) = 1 requires that



λ

Kλ
† Kλ = ,

(157)

which is indeed satisfied by the Kraus operators Kλ in Eq. (154).

 Weak measurement corresponds to the limit when the coupling strength g → 0. In this 
limit, the probability to read out ± from the apparatus is small:

p(±) ∼ g2, (158)

meaning that

 the measurement provides little information about the system,
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 but the system is also rarely collapsed by measurement.

◼ Quantum Channels

◼ Kraus Theorem

What is the most general way a quantum state can evolve?

Quantum channel describes the most general way a quantum state can evolve, incorpo-
rating both unitary dynamics and measurement (and more). 
Mathematically, a quantum channel ℰ is a completely positive trace-preserving 

(CPTP) map that acts on a density matrix ρ:

ρ → ρ′ = ℰ(ρ). (159)

 Completely Positive: the map should preserve the positivity of ρ, even when extended to a 
larger system.

(ℰ ⊗ id) (ρ)  0. (160)

 Trace-Preserving: the total probability should remains 1.

Tr ℰ(ρ) = 1. (161)

Kraus’ theorem: every CPTP map can be written as

ℰ(ρ) = 

λ

Kλ ρKλ
†,

(162)

with a set of Kraus operators Kλ satisfying



λ

Kλ
† Kλ = .

(163)

Examples:

 Unitary evolution: only one Kraus operator, and it is unitary K = U ,

ℰ(ρ) = U ρU †. (164)

 Projective measurement (without post-selection): Kraus operators are projection operators 
Kλ = Pλ, see Eq. (135), as

ℰ(ρ) = 

λ

Pλ ρPλ. (165)

 Generalized measurement (without post-selection): generic Kraus operator, falls back to 
Eq. (162).

◼ Quantum Decoherence 

Quantum coherence is a property that allows superposition of states, enabling interfer-
ence and entanglement. However, when a quantum system interact with environment, coherence 
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can degrade — a process called decoherence.

 Decoherence explains why quantum system often appear classical.

 Decoherence models real-world noise in quantum computation and communication.

Consider a single qubit in a coherent superposition state

ψ〉 = ψ0 0〉+ ψ1 1〉,

ρ = ψ〉 〈ψ ≏
ψ0
* ψ0 ψ1

* ψ0

ψ0
* ψ1 ψ1

* ψ1
=

ρ00 ρ01

ρ10 ρ11
.

(166)

The quantum coherence refers to the non-vanishing off-diagonal matrix element ρ01 = ψ1
* ψ0 and 

ρ10 = ψ0
* ψ1 in ρ. 

Mechanisms of Decoherence:

 Time-Averaging: Under unitary time evolution driven by the Hamiltonian

H = Z ≏
1 0
0 -1

, (167)

the density matrix evolves as

ρ(t) = -H t ρ H t ≏
ρ00 ρ01 -2  t

ρ10 2  t ρ11
. (168)

Suppose we do not have a good resolution of time, averaging the density matrix over a long 
enough time window, the effective state is

ρ =
1

2T

-T

T
ρ(t) =

ρ00 ρ01
sin(2T )

2T

ρ10
sin(2T )

2T
ρ11

. (169)

The off-diagonal matrix element will decay toward 0 as T → ∞:

0 5 10 15 20
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

T

si
n
(2
T
)
/
(2
T
)

Key points:

 Loss of coherence due to the inability to resolve fast oscillations over time.

 A classical averaging effect and does not involve an external interaction with the system.

 Measurement-Induced: Measure the qubit in Z basis and forget about the measurement 
outcome (measurement without post-selection). The state will undergo the following channel

ρ → ℰ(ρ) = 

λ=±

Pλ ρPλ, (170)
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where P± = (±Z ) / 2. As a result,

ℰ(ρ) ≏
ρ00 0
0 ρ11

, (171)

the off-diagonal matrix elements are removed.
Key points:

 Loss of coherence due to interaction with environment, effectively “measuring” the system 

and collapsing it into the Z-basis.

 Explicitly involves interaction with an external system.

In general, regardless of mechanism, quantum decoherence can be effectively described 
using quantum channels.

 Depolarizing Channel
For a single qubit:

ℰ(ρ) = (1- p) ρ+
p

2
. (172)

Krause operators:

K0 = 1- p I , K1 =
p

2
X , K2 =

p

2
Y , K3 =

p

2
Z . (173)

 Phase Damping (Dephasing) Channel 
For a single qubit:

ℰ(ρ) = (1- p) ρ+ p Z ρ Z . (174)

Krause operators:

K± =
1- p

2
I ±

p

2
Z . (175)

◼ Lindbladian Dynamics

While quantum channels provide a most general discrete description of quantum dynamics 
in open quantum systems, we seek a continuous-time formulation of how the density matrix ρ 
evolves.

Consider a small time step  t, under which

ρ(t +  t) = ℰ(ρ(t)) = 

λ=0

n

Kλ ρ(t)Kλ
†, (176)

where ℰ is a close-to-identity channel described by the following Kraus operators
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K0 = - H  t -
1

2


i=1

n

Li
† Li  t,

Ki =  t Li (for i = 1,…, n),

(177)

where

 H  is the Hamiltonian, driving the unitary time evolution;

 Li are Lindblad (jump) operators, describing dissipation effects in open quantum systems.

Show that the set of Kraus operators in Eq. (177) satisfies the normalization condi-
tion ∑λ=0

n Kλ
† Kλ =  to the leading order in  t.

Exc
13

Substitute Eq. (177) into Eq. (176) and expand to the leading order of  t, we arrive at the 
Lindblad master equation:

∂t ρ = - [H , ρ] +

i=1

n

Li ρ Li
†
-
1

2
Li

† Li, ρ . (178)

Derive Eq. (178).Exc
14

 The first term - [H , ρ] is inherited from the von Neumann equation of mixed state uni-
tary dynamics.

 The second term describes the dissipation effect: Li ρ Li
†
 captures the change of density 

matrix under dissipation and - 1
2

Li
† Li, ρ takes care of the trace preservation.

The density matrix of a single qubit takes the following form

ρ ≏
ρ00 ρ01

ρ10 ρ11
. 

Consider the qubit evolves under Lindblad dynamics with H = 0, and a single Lind-
blad operator

L = λ
1 0
0 -1

,

where λ > 0 is the dissipation strength.
(i) Derive the explicit form of the differential equations for the density matrix ele-
ments ρ00, ρ11, ρ01, ρ10.
(ii) Show that the diagonal matrix elements ρ00, ρ11 do not evolve in time, while the 
off-diagonal matrix elements ρ01, ρ10 decays exponentially in time, realizing quantum 

decoherence.
(iii) Analyze how the decoherence time is affected by the dissipation strength.

HW
4
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◼ Quantum Protocols

◼ Quantum Teleportation

Quantum teleportation transfers (unknown) quantum states from one location to another 
using quantum entanglement resource and classical communication.

Alice

Bob
B

A

A′

share
EPR pair classical

communication

joint
measurement

conditional
operation

?〉

 The model involves three qubits: A′, A and B.

 Establish quantum entanglement: A and B qubits are prepared in an EPR state, and 
shared between Alice and Bob respectively

EPR〉AB =
1

2
(↑A ↑B〉+ ↓A ↓B〉) ≏

1

2

1
0
0
1

. (182)

 A′ qubit is in an unknown quantum state in Alice’s possession

ψ〉A′ = α ↑A′〉+ β ↓A′〉 ≏
α

β
, (183)

(Alice knowns that the single-qubit pure state must take this form, but does not need to 
know what α, β are.)

 The three-qubit system is in a joint state

Ψ〉 = ψ〉A′ ⊗ EPR〉AB ≏
α

β
⊗

1

2

1
0
0
1

(184)

 Goal: to teleport the quantum state ψ〉 from A′ to B without handing the qubit A′ to Bob.
Protocol:

 Alice makes a joint measurement of A′ and A, by observing σA′
x σA

x  and σA′
z σA

z  (note that 
they are commuting observables that can be measured simultaneously). There are four pos-
sible outcomes

σA′
x σA

x +1 +1 -1 -1
σA′
z σA

z +1 -1 +1 -1
Pab P++ P+- P-+ P--

, (185)
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each corresponds to a projection operator (labeled by the measurement outcomes 
a := σA′

x σA
x = ±1, b := σA′

z σA
z = ±1) 

Pab =
+ a σA′

x σA
x

2

+ b σA′
z σA

z

2

≏
1

4

1+ b 0 0 a (1+ b)
0 1- b a(1- b) 0
0 a(1- b) 1- b 0

a (1+ b) 0 0 1+ b

⊗
1 0
0 1

.
(186)

 After the measurement, the three-qubit state will collapse to

Ψ〉
σA′
x σA

x =a, σA′
z σA

z =b Pab Ψ〉

normalization ...
, (187)

more explicitly as

Pab Ψ〉 ≏
1

4 2

α (1+ b)
β a (1+ b)
β a (1- b)
α (1- b)
β (1- b)

α a (1- b)
α a (1+ b)
β (1+ b)

. (188)

Let us enumerate all four cases

σA′
x σA

x +1 +1 -1 -1
σA′
z σA

z +1 -1 +1 -1

Pab Ψ〉

α

β

0
0
0
0
α

β

0
0
β

α

β

α

0
0

α

- β

0
0
0
0
-α

β

0
0
- β

α

β

-α

0
0

, (189)

It turns out that they can all be written as the tensor product state between A′ A and B as

σA′
x σA

x σA′
z σA

z Pab Ψ〉

+1 +1

1
0
0
1

⊗
α

β
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+1 -1

0
1
1
0

⊗
β

α

-1 +1

1
0
0
-1

⊗
α

- β

-1 -1

0
1
-1
0

⊗
- β

α

or in terms of ket state notation as

P++ Ψ〉 =
1

2
(↑A′↑A〉+ ↓A′↓A〉)⊗ (α ↑B〉+ β ↓B〉),

P+- Ψ〉 =
1

2
(↑A′↓A〉+ ↓A′↑A〉)⊗ (β ↑B〉+ α ↓B〉),

P-+ Ψ〉 =
1

2
(↑A′↑A〉- ↓A′↓A〉)⊗ (α ↑B〉- β ↓B〉),

P-- Ψ〉 =
1

2
(↑A′↓A〉- ↓A′↑A〉)⊗ (- β ↑B〉+ α ↓B〉).

(191)

 Alice will tell Bob her measurement outcome

(σA′
x σA

x = a, σA′
z σA

z = b), (192)

via a classical communication channel (e.g. by making a phone call).

 If (a, b) = ++, the qubit B is in the state

α ↑B〉+ β ↓B〉 = ψ〉B. (193)

There is nothing more Bob needs to do. The state ψ〉 has been teleported to B successfully.

 If (a, b) = +-, the qubit B is in the state

β ↑B〉+ α ↓B〉, (194)

Bob will apply a σBx  operator to the qubit B

σB
x (β ↑B〉+ α ↓B〉) = α ↑B〉+ β ↓B〉 = ψ〉B, (195)

then the qubit B is converted to the state ψ〉.

 If (a, b) = -+, the qubit B is in the state

α ↑B〉- β ↓B〉, (196)

Bob will apply a σBz  operator to the qubit B
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σB
z (α ↑B〉- β ↓B〉) = α ↑B〉+ β ↓B〉 = ψ〉B, (197)

then the qubit B is converted to the state ψ〉.

 If (a, b) = +-, the qubit B is in the state

- β ↑B〉+ α ↓B〉, (198)

Bob will apply the composite operator σBz σB
x  to the qubit B

σB
z σB

x (- β ↑B〉+ α ↓B〉) = α ↑B〉+ β ↓B〉 = ψ〉B, (199)

then the qubit B is converted to the state ψ〉.
Summary:

Alice

Bob
B

A

A′

share
EPR pair classical

communication

joint
measurement

conditional
operation

?〉

 Alice and Bob establish shared a entanglement resource (e.g. a EPR pair).

 For any unknown state ψ〉A′ handed to Alice, she measures  σA′
x σA

x  and σA′
z σA

z .

 Alice tells Bob her the measurement outcomes by classical communication.

 Depending on the information, Bob performs conditional operation on his qubit

σA′
x σA

x σA′
z σA

z Bob’ s operation
+1 +1 B

+1 -1 σB
x

-1 +1 σB
z

-1 -1 σB
z σB

x

. (200)

 After the operation, the state ψ〉 will appear on Bob’s qubit.
Comments:

 The original state ψ〉 on qubit A′ is destroyed in the process → No-Cloning Theorem: it is 
impossible to create an identical copy of an arbitrary unknown state. You can only teleport 
an unknown state but not duplicate it.

 Traversable wormhole ⇔ interstellar quantum teleportation.

 Entanglement resource: wormhole ⇔ entangled pairs of black holes

 Classical communication: classical interaction between two black holes

◼ Quantum Search

What is a search problem?
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 Given a bit string x and a query function Q(x) that tells if x is the target.

x Q(x)
0000 → 0 no
0001 → 0 no

⋮ ⋮

0110 → 1 yes!
⋮ ⋮

(201)

 Assuming there is only one target bit string to look for, the goal is to find it!

Complexity of unstructured search (over N  entities)

 Classical computer ∼ (N ),

 Quantum computer (Grover’s algorithm) ∼ N 1/2. The quantum speedup can be significant 
when N  is large.

Key idea: quantum superposition allows search to be carried out in parallel.

s〉 =
1

N
(0000〉+ 0001〉+…+ 0110〉+…)

=
1

N


x

x〉.
(202)

 Initially, all bit string states x〉 have equal probability 1 /N  in a uniform superposition state 
s〉.

 Grover’s algorithm iteratively enhance the probability of the target state by quantum 

interference.

 After about N 1/2 steps, the target state emerges as the probability ∼1 state.

The Grover’s algorithm involves two steps in each iteration. Both steps are implemented 
as unitary operations.

 Quantum query (in parallel)

UQ x〉 = (-1)Q(x) x〉. (203)

It simply marks the target state with a minus sign. Let t〉 be the target state, Eq. (203) can 
also be written as

UQ x〉 = x〉- 2 t〉 〈t x〉. (204)

 Grover diffusion 

UG x〉 = 2 s〉 〈s x〉- x〉, (205)

which reflect any state about the source state s〉.

In the two-dimensional Hilbert space spanned by t〉, s〉, we can define the state t⟂〉 orthog-
onal to t〉
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t⟂〉 =
1

N - 1


x≠t

x〉. (206)

 In each iteration, the quantum query UQ = - 2 t〉 〈t reflects any state vector about t⟂〉, and 
the Grover diffusion UG = 2 s〉 〈s-  reflects any state vector about s〉.

t⟂〉

s〉

UQ s〉

UG UQ s〉

UQ UG UQ s〉

UG UQ UG UQ s〉
t〉

θ
θ

2θ
2θ

2θ

 Two reflections make a rotation of 2 θ angle, where the θ denotes the angle between the two 
reflection axes (i.e. the angle between s〉 and t⟂〉) and is given by

sin θ = 〈s t〉 =
1

N
, (207)

 After k steps of Grover iterations, the source state s〉 is rotated away from t⟂〉 by (2 k + 1) θ.

 To rotate the state from s〉 to t〉 (which is π / 2 from t⟂〉),  the total rotation angle must 
accumulates to π / 2 

π

2
= (2 k + 1) θ, (208)

such that the solution for k is given by

k =
1

2

π

2 θ
- 1 =

1

2

π

2 arcsinN-1/2
- 1 . (209)

 In the large N  limit (when there are many bit strings to search), 

k ≈
π

4
N , (210)

which is indeed of order N 1/2 as mentioned.

Hayden-Preskill problem: can we recover the object that has fallen into a black hole? 
Yes. Combining quantum search and quantum teleportation (Yoshida, Kitaev, arX-
iv:1710.03363).
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Alice's
qudits EPR pairs

black
hole

ra
di
at
io
n Bob's

decoding

A
B B′

C D
U (t)

 Resources needed:

 Entanglement resource: the black hole (on Alice’s side) must be entangled with another 
black hole (on Bob’s side) in the lab (effectively forming a wormhole).

 Quantum computation resource: a strong enough quantum computer to simulate the 
quantum dynamics of black hole and to perform quantum search.

 Basic idea: Hawking radiation is an efficient encoding of the object that falls into the black 
hole (black hole is very much like a quantum hash function).

 Collect the Hawking radiation a few moments after the object has fallen into the black hole 
on Alice’s side.

 Try to decode the Hawking radiation to recover the quantum information of the object ⇔ 

quantum teleportation of the object through the wormhole.

decoder

U (t) U * (t)

EPR

A″

A A′B B′

C C ′D D′

 The key idea to search for a collision of Hawking radiations (hash keys) between the two 
entangled black holes. This relies on the quantum search algorithm.

 Once the Hawking radiations from both black holes are made the same (same = perfectly 
entangled), the object will reemerge from Bob’s black hole, as a result of quantum 

teleportation.

◼ Quantum Error Correction

◼ Five-Qubit Code

Quantum decoherence posts a serious threat to quantum information processing.

 Qubits couple to the environment and decohere inevitably.
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 In the extreme case, a qubit can become maximally mixed  An erasure error: the 
quantum information of the qubit is fully scrambled with the environment, as if the informa-
tion has been erased.

Quantum error correction: protecting the quantum information from errors by spreading the 
information into a highly entangled quantum many-body state (which we have access to).

one logical qubit
decoded to

encoded in
many physical qubits. (211)

 Logical qubit: the information theoretic qubit (software level), whose basis states are 
denoted as 0〉, 1〉 (using boldface).

 Physical qubit: the actual qubit implemented on quantum devices (hardware level).

Even if some physical qubits are corrupted or erased, one can still retrieve the logical qubit from 

the rest of the physical qubits.

Five-qubit code: a quantum error correction code that encodes one logical qubit into five 
physical qubits, where the logical qubit is protected against the erasure of any two physical 
qubits.

 The logical qubit states 0〉, 1〉 span a 2-dimensional code subspace in the 25-dimensional 
physical qubit Hilbert space.

 The code subspace is specified by four commuting Pauli operators on the physical qubits:

M1 = X1 Z2 Z3 X4,

M2 = X2 Z3 Z4 X5,

M3 = X3 Z4 Z5 X1,

M4 = X4 Z5 Z1 X2.

(212)

What about the last X5 Z1 Z2 X3 in the cyclic arrangement? It turns out to be ∏i=14 Mi and is 
therefore not independent.

 These operators Mi are called stabilizers, as they stabilize the logical qubit as their common 
eigenstates of eigenvalue +1, i.e.

∀ i :Mi 0〉 = 0〉, Mi 1〉 = 1〉. (213)

Recall that we can simultaneously diagonalize commuting operators by constructing a many-
body Hamiltonian, e.g.

H = -M1 -M2 -M3 -M4

= -X1 Z2 Z3 X4 -X2 Z3 Z4 X5 -X3 Z4 Z5 X1 -X4 Z5 Z1 X2.
(214)

 The code subspace = the common eigenspace of stabilizers that ∀ i :Mi = +1 = the 
ground state subspace of the Hamiltonian H .

 The code subspace is two-dimensional  can encode a logical qubit. How do we know? 5 
qubits, 4 stabilizers: each stabilizer halves the Hilbert space  the remaining space 
dimension:
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25

24
= 2. (215)

 Within the code subspace, a choice of the basis is (can be obtained by diagonalize H)

0〉 =
1

4
 00000- 00011+ 00101- 00110+ 01001+ 01010- 01100- 01111-

10001+ 10010+ 10100- 10111- 11000- 11011- 11101- 11110,

1〉 =
1

4
- 00001- 00010- 00100- 00111- 01000+ 01011+ 01101- 01110-

10000- 10011+ 10101+ 10110- 11001+ 11010- 11100+ 11111.

(216)

 Logical gates: quantum gates that effectively operate on the logical qubit

Z 0〉 = 0〉, Z 1〉 = - 1〉,
X 0〉 = 1〉, X 1〉 = 0〉.

(217)

 Z and X must commute with all stabilizers (to remain in the code subspace), yet not any 
product of stabilizers (to be nontrivial). One canonical choice is

Z = Z1 Z2 Z3 Z4 Z5,

X = X1 X2 X3 X4 X5,

Y = X Z = Y1 Y2 Y3 Y4 Y5

(218)

 It is hard to decohere the logical qubit, because X, Y , Z  are  non-local.  Their couplings 
to the environment are typically weak.

A diagrammatic understanding: the unitary matrix U  that diagonalize the Hamiltonian H  

can be viewed as a quantum circuit, 

U † H U = E. (219)

HU † U

The quantum circuit U  should also simultaneously diagonalize all the stabilizers. With a proper 
basis choice, one can find U , such that

U †M1 U = Z

1,

U †M2 U = Z

2,

U †M3 U = Z

3,

U †M4 U = Z

4.

(220)
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As a result, the Hamiltonian transforms to

U † H U = -Z

1 -Z


2 -Z


3 -Z


4. (221)

 The first four qubits are pinned by the Hamiltonian to 0

0

0

0

 to lower the energy  syn-

drome qubits.

 The last qubit is free  logical qubit.
The quantum circuit encodes the logical qubit into five physical qubits, given the syndrome 
qubits pinned to 0


0

0

0

. This is how Eq. (216) was obtained.

0〉 = U

0〉
0〉
0〉
0〉
0〉

1〉 = U

1〉
0〉
0〉
0〉
0〉

In addition, the logical gates do acts on the logical qubit as expected,

U † Z U = Z

5,

U †X U = X

5.

(222)

Z U =

Z


U X U =

X


U

 Logical gates will not take the system out of the code subspace, as they will not touch the 
syndrome qubit.

 If any of the syndrome qubit is flipped.  The system is carried out of the code subspace 
(excitation created).  Signals an error.  Correct the error by applying appropriate unitary 
operations based on the syndrome.

How well is the logical qubit protected? Take the unitary circuit, pin the syndrome qubits 
and bend around the logical qubit → a six-leg tensor T describing how the logical and the phys-
ical qubits are related

U
0〉
0〉
0〉
0〉

= T

It is a perfect tensor, because of an amazing property: T is proportional to a unitary matrix 
from any half of legs to the rest half of legs.

T† T ∝

48     QuantumInformation.nb



Treat T as a many-body state (after normalization)  it describes a pure state of six qubits, 
where any set of three qubits is maximally entangled with the complementary set of three qubits. 
Such states have been called absolutely maximally entangled states.

The the nth Rényi entanglement entropy of any m qubits in the six-qubit state T〉 is

S (n)(m) = min(m, 6 -m) log 2. (223)

Use the perfect tensor property to show Eq. (223).Exc
15

The mutual information between the logical qubit and any m physical qubits is given by

I (n)(1 :m) = 
0 m ≤ 2,
2 log 2 m ≥ 3. (224)

Verify Eq. (224) given Eq. (223).Exc
16

The five-qubit code has the property that

 any two (or less) qubits have no information about the logical qubit.

 any three (or more) qubits have complete information about the logical qubit.

Therefore the logical qubit is protected against erasure error up to two qubits.
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