130B Quantum Physics Part III. Quantum Statistics

Introduction

- Tensors are Vectors

- From One to Two

Each qubit has two basis states $|0\rangle$ and $|1\rangle$, spanning a 2-dimensional single-qubit Hilbert space.
\Rightarrow two qubits together have four basis states, spanning a 4-dimensional two-qubit Hilbert space.

$$
\begin{array}{cc|cc}
& & \text { qubit }_{B} \tag{1}\\
& & |0\rangle & |1\rangle \\
\hline & & |0\rangle & |00\rangle|01\rangle \\
\text { qubit }_{A} & |1\rangle & |10\rangle|11\rangle
\end{array}
$$

- A generic two-qubit quantum state will be a linear superposition of these basis states

$$
\begin{equation*}
|\psi\rangle=\psi_{00}|00\rangle+\psi_{01}|01\rangle+\psi_{10}|10\rangle+\psi_{11}|11\rangle, \tag{2}
\end{equation*}
$$

where the coefficients $\psi_{\alpha \beta}$ is most naturally arranged as a 2×2 array (a matrix) like

$$
\left(\begin{array}{ll}
\psi_{00} & \psi_{01} \tag{3}\\
\psi_{10} & \psi_{11}
\end{array}\right) .
$$

- However, it makes no difference to rearrange them in a vector

$$
\left(\begin{array}{l}
\psi_{00} \tag{4}\\
\psi_{01} \\
\psi_{10} \\
\psi_{11}
\end{array}\right) \rightarrow\left(\begin{array}{l}
\psi_{0} \\
\psi_{1} \\
\psi_{2} \\
\psi_{3}
\end{array}\right) .
$$

We can relabel the index $\psi_{\alpha \beta} \rightarrow \psi_{i}$ by converting each binary string $\alpha \beta$ to an integer i (e.g. through the binary number encoding).

- A matrix can be viewed as a vector by flattening. Here, $\mathbb{C}^{2 \times 2} \rightarrow \mathbb{C}^{4}$.
- In vector representation, the ket vector $|00\rangle$ is a tensor product of $|0\rangle_{A}$ and $|0\rangle_{B}$,

$$
|00\rangle=|0\rangle_{A} \otimes|0\rangle_{B} \bumpeq\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \tag{5}\\
0 \\
0 \\
0
\end{array}\right) .
$$

Similarly,

$$
\begin{align*}
& |01\rangle=|0\rangle_{A} \otimes|1\rangle_{B} \bumpeq\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \\
& |10\rangle=|1\rangle_{A} \otimes|0\rangle_{B} \bumpeq\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \tag{6}\\
& |11\rangle=|1\rangle_{A} \otimes|1\rangle_{B}=\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
\end{align*}
$$

- From Two to Many

N qubits together have 2^{N} basis states, spanning a 2^{N}-dimensional Hilbert space.

- Each basis state $|\alpha\rangle$ is labeled by a bit string $\alpha \in\{0,1\}^{\times N}$,

$$
\begin{equation*}
\alpha=\alpha_{1} \alpha_{2} \ldots \alpha_{N} \text { for } \alpha_{i} \in\{0,1\}, \tag{7}
\end{equation*}
$$

and defined by the tensor product of single-qubit states

$$
\begin{equation*}
|\boldsymbol{\alpha}\rangle:=\left|\alpha_{1}\right\rangle \otimes\left|\alpha_{2}\right\rangle \otimes \ldots \otimes\left|\alpha_{N}\right\rangle . \tag{8}
\end{equation*}
$$

- A generic N-qubit state will be a linear combination of all multi-qubit basis states

$$
\begin{equation*}
|\Psi\rangle=\sum_{\alpha} \Psi_{\alpha}|\alpha\rangle . \tag{9}
\end{equation*}
$$

The coefficients Ψ_{α} form a $\mathbb{C}^{2 \times 2 \times \ldots \times 2}$ tensor, but can also be viewed as a $\mathbb{C}^{2^{N}}$ vector by flattening. In this sense, tensors are vectors: many-body quantum states can also be described by ket vectors (with pre-defined tensor structure).

- Quantum Many-Body States

- Overview

Quantum many-body states describe the quantum system of many entities (particles). Depending on whether the particles are distinguishable, quantum many-body systems can be
divided into two classes:

- Distinct particles: spins, qubits ...
- Identical particles: bosons, fermions ...

- Distinct Particles

Distinct particles can be labeled, such that we can specify the state of each particle, e.g. "the i th particle is in the α_{i} state".

- Suppose the single-particle Hilbert space is D dimensional, spanned by a set of orthonormal single-particle basis states $|\alpha\rangle(\alpha=1,2, \ldots, D)$.
- The many-body Hilbert space of N distinct particles will be D^{N} dimensional, spanned by the many-body basis states

$$
\begin{equation*}
|\boldsymbol{\alpha}\rangle \equiv\left|\alpha_{1}\right\rangle \otimes\left|\alpha_{2}\right\rangle \otimes \ldots \otimes\left|\alpha_{N}\right\rangle, \tag{10}
\end{equation*}
$$

where $\alpha_{i}=1,2, \ldots, D$ labels the state of the i th particle.

- A generic many-body state is a linear superposition of these basis states

$$
\begin{equation*}
|\Psi\rangle=\sum_{\alpha} \Psi_{\alpha}|\alpha\rangle . \tag{11}
\end{equation*}
$$

The coefficient Ψ_{α} is also called the many-body wave function.

- The probability to find the many-body system in a specific state $|\alpha\rangle$ is given by

$$
\begin{equation*}
p(\alpha \mid \Psi)=|\langle\alpha \mid \Psi\rangle|^{2}=\left|\Psi_{\alpha}\right|^{2} . \tag{12}
\end{equation*}
$$

- Identical Particles

Identical particles does not admit a labeling. Suppose we have a system of two particles, the following states are indistinguishable if we can not tell which particle is the 1st and which is the 2 nd .

$\left\|\alpha_{1}\right\rangle \otimes\left\|\alpha_{2}\right\rangle$	$\left\|\alpha_{2}\right\rangle \otimes\left\|\alpha_{1}\right\rangle$
the 1st particle in $\left\|\alpha_{1}\right\rangle$ the 2nd particle in $\left\|\alpha_{2}\right\rangle$	the 1st particle in $\left\|\alpha_{2}\right\rangle$ the 2nd particle in $\left\|\alpha_{1}\right\rangle$

This means that it will be equally likely to observe the system in $\left|\alpha_{1} \alpha_{2}\right\rangle$ state as in $\left|\alpha_{2} \alpha_{1}\right\rangle$ state, i.e.

$$
\begin{equation*}
p\left(\alpha_{1} \alpha_{2} \mid \Psi\right)=p\left(\alpha_{2} \alpha_{1} \mid \Psi\right) \tag{13}
\end{equation*}
$$

Generalize to N particles, we introduce the permutation operator $\hat{\mathcal{P}}_{\pi}$ associated with each permutation $\pi \in S_{N}$, and denote the permuted state as

$$
\begin{equation*}
\hat{\mathcal{P}}_{\pi}|\boldsymbol{\alpha}\rangle=\left|\alpha_{\pi}\right\rangle \equiv\left|\alpha_{\pi(1)}\right\rangle \otimes\left|\alpha_{\pi(2)}\right\rangle \otimes \ldots \otimes\left|\alpha_{\pi(N)}\right\rangle . \tag{14}
\end{equation*}
$$

- Each permutation $\pi \in S_{N}$ is a bijective (invertible) map from N objects to themselves. For example,

$$
\begin{equation*}
123 \xrightarrow{\pi} 132 \tag{15}
\end{equation*}
$$

is a permutation in S_{3}, defined by $\pi(1)=1, \pi(2)=3, \pi(3)=2$.

- α_{π} denotes a new sequence obtained from the sequence $\boldsymbol{\alpha}$ by permuting its elements by π.

For example,

$$
\begin{equation*}
\boldsymbol{\alpha}=\alpha_{1} \alpha_{2} \alpha_{3} \xrightarrow{\pi} \boldsymbol{\alpha}_{\pi}=\alpha_{1} \alpha_{3} \alpha_{2} . \tag{16}
\end{equation*}
$$

- $\hat{\mathcal{P}}_{\pi}$ denotes the operator that take the state $|\boldsymbol{\alpha}\rangle$ to $\left|\alpha_{\pi}\right\rangle$ for all $\boldsymbol{\alpha}$, which implements the permutation of particles.
The requirement of identical particles imposes a permutation symmetry to the probability, as a generalization of Eq. (13),

$$
\begin{equation*}
\forall \pi \in S_{N}: p(\boldsymbol{\alpha} \mid \Psi)=p\left(\boldsymbol{\alpha}_{\pi} \mid \Psi\right) \tag{17}
\end{equation*}
$$

which, according to Eq. (12), is also a permutation symmetry of the many-body wave function,

$$
\begin{equation*}
\forall \pi \in S_{N}:\left|\Psi_{\alpha}\right|^{2}=\left|\Psi_{\alpha_{\pi}}\right|^{2} . \tag{18}
\end{equation*}
$$

The wave function can only change up to an overall phase factor under symmetry transformation,

$$
\begin{equation*}
\Psi_{\alpha}=e^{i \varphi} \Psi_{\alpha_{\pi}} \tag{19}
\end{equation*}
$$

It realizes a one-dimensional representation of the permutation group. Mathematical fact: there are only two 1-dim representations of any permutation group,

- symmetric (trivial) representation \Rightarrow bosons

$$
\begin{equation*}
\Psi_{\alpha}=\Psi_{\alpha_{\pi}}, \tag{20}
\end{equation*}
$$

- antisymmetric (sign) representation \Rightarrow fermions

$$
\begin{equation*}
\Psi_{\alpha}=(-)^{\pi} \Psi_{\alpha_{\pi}}, \tag{21}
\end{equation*}
$$

where $(-)^{\pi}$ denotes the permutation sign of π

$$
(-)^{\pi}= \begin{cases}+1 & \text { if } \pi \text { contains even number of exchanges, } \tag{22}\\ -1 & \text { if } \pi \text { contains odd number of exchanges. }\end{cases}
$$

Take the S_{3} group for example:

$$
\begin{align*}
& 123 \xrightarrow[\rightarrow]{\pi} 123231312 \tag{23}\\
& 321 \\
& 213 \\
& (-)^{\pi}=+1 \\
& =+1
\end{align*}+1 \begin{array}{llll}
132 \\
\hline
\end{array}
$$

- Bosonic and Fermionic States

The bosonic and fermionic many-body states only span a subspace of the many-body Hilbert space (of distinct particles). Starting from a generic basis state $|\boldsymbol{\alpha}\rangle$, we can pick out the basis states for the bosonic and fermionic subspaces:

- Construct bosonic states by symmetrization

$$
\begin{equation*}
\hat{\mathcal{S}}|\boldsymbol{\alpha}\rangle=\sum_{\pi \in S_{N}} \hat{\mathcal{P}}_{\pi}|\boldsymbol{\alpha}\rangle=\sum_{\pi \in S_{N}}\left|\boldsymbol{\alpha}_{\pi}\right\rangle . \tag{24}
\end{equation*}
$$

- Construct fermionic states by antisymmetrization

$$
\begin{equation*}
\hat{\mathcal{A}}|\boldsymbol{\alpha}\rangle=\sum_{\pi \in S_{N}}(-)^{\pi} \hat{\mathcal{P}}_{\pi}|\boldsymbol{\alpha}\rangle=\sum_{\pi \in S_{N}}(-)^{\pi}\left|\boldsymbol{\alpha}_{\pi}\right\rangle . \tag{25}
\end{equation*}
$$

Examples: consider a two-particle ($N=2$) system.

- Bosonic states (unnormalized):
$\hat{\mathcal{S}}|\alpha\rangle \otimes|\beta\rangle=|\alpha\rangle \otimes|\beta\rangle+|\beta\rangle \otimes|\alpha\rangle, \quad$ (assuming $\alpha \neq \beta$)
$\hat{\mathcal{S}}|\alpha\rangle \otimes|\alpha\rangle=|\alpha\rangle \otimes|\alpha\rangle$.
- Fermionic states (unnormalized):
$\hat{\mathcal{A}}|\alpha\rangle \otimes|\beta\rangle=|\alpha\rangle \otimes|\beta\rangle-|\beta\rangle \otimes|\alpha\rangle, \quad$ (assuming $\alpha \neq \beta$)
$\hat{\mathcal{A}}|\alpha\rangle \otimes|\alpha\rangle=0 \Rightarrow$ no such fermionic state.
Pauli exclusion principle: two (or more) identical fermions can not occupy the same state simultaneously.

For N particles, the Hilbert space dimension of

- the full space (of distinct particles):

$$
\begin{equation*}
\mathcal{D}=D^{N} \tag{28}
\end{equation*}
$$

- the bosonic subspace:

$$
\begin{equation*}
\mathcal{D}_{B}=\frac{(N+D-1)!}{N!(D-1)!}, \tag{29}
\end{equation*}
$$

- the fermionic subspace:

$$
\begin{equation*}
\mathcal{D}_{F}=\frac{D!}{N!(D-N)!} . \tag{30}
\end{equation*}
$$

It turns out that $\mathcal{D}_{B}+\mathcal{D}_{F} \leq \mathcal{D}$ (for $\left.N>1\right) \Rightarrow$ the remaining basis states in the many-body Hilbert space are unphysical (for identical particles).
Question: Is there a better way to organize the many-body Hilbert space, such that all states in
the space are physical?

Second Quantization

- Fock Space

- Fock States and Fock Space

Sometimes, conceptual problems in physics arise from the inappropriate language we used.
There are two different ways to describe many-body states:

- In first-quantization, we ask: Which particle is in which state?
- In second-quantization, we ask: How many particles are there in every state?

The first question is inappropriate for identical particles: it is impossible to tell which particle is which in the first place. We need a new language:

$$
|\alpha\rangle \otimes|\beta\rangle
$$

the 1st particle in $|\alpha\rangle$ the 2nd particle in $|\beta\rangle$
\searrow

$$
|\beta\rangle \otimes|\alpha\rangle
$$

$$
\text { the 1st particle in }|\beta\rangle
$$

the 2nd particle in $|\alpha\rangle$
\swarrow
there is one particle in $|\alpha\rangle$, and another particle in $|\beta\rangle$
The new description does not require the labeling of particles \Rightarrow no redundant or unphysical basis state \Rightarrow hence a concise and precise description.

- Each basis state in the many-body Hilbert space is labeled by a set of occupation numbers $n_{\alpha}($ for $\alpha=1,2, \ldots, D)$

$$
\begin{equation*}
|\boldsymbol{n}\rangle \equiv\left|n_{1}, n_{2}, \ldots, n_{\alpha}, \ldots, n_{D}\right\rangle \tag{31}
\end{equation*}
$$

meaning that there are n_{α} particles in the state $|\alpha\rangle$.

$$
n_{\alpha}= \begin{cases}0,1,2,3, \ldots & \text { bosons } \tag{32}\\ 0,1 & \text { fermions }\end{cases}
$$

- For bosons, n_{α} can be any non-negative integer.
- For fermions, n_{α} can only take 0 or 1 , due to the Pauli exclusion principle.
- The occupation numbers n_{α} sum up to the total number of particles, i.e. $\sum_{\alpha} n_{\alpha}=N$.
- The states $|\boldsymbol{n}\rangle$ are also known as Fock states.
- All Fock states form a complete set of basis for the many-body Hilbert space, or the Fock space.
- Any generic second-quantized many-body state is a linear combination of Fock states,

$$
\begin{equation*}
|\Psi\rangle=\sum_{n} \Psi_{n}|n\rangle \tag{33}
\end{equation*}
$$

- Representation of Fock States

The first- and the second-quantization formalisms can both provide legitimate description of identical particles. (The first-quantization is just awkward to use, but it is still valid.)

Every Fock state has a first-quantized representation.

- The Fock state with all occupation numbers to be zero is called the vacuum state, denoted as

$$
\begin{equation*}
|\mathbf{0}\rangle \equiv|\ldots, 0, \ldots\rangle \tag{34}
\end{equation*}
$$

It corresponds to the tensor product unit in the first-quantization, which can be written as

$$
\begin{equation*}
|\mathbf{0}\rangle_{B}=|\mathbf{0}\rangle_{F}=1 . \tag{35}
\end{equation*}
$$

We use a subscript B / F to indicate whether the Fock state is bosonic (B) or fermionic (F). For vacuum state, there is no difference between them.

- The Fock state with only one non-zero occupation number is a single-mode Fock state, denoted as

$$
\begin{equation*}
\left|n_{\alpha}\right\rangle=\left|\ldots, 0, n_{\alpha}, 0, \ldots\right\rangle \tag{36}
\end{equation*}
$$

In terms of the first-quantized states

$$
\begin{align*}
\left|1_{\alpha}\right\rangle_{B} & =\left|1_{\alpha}\right\rangle_{F}=|\alpha\rangle, \\
\left|2_{\alpha}\right\rangle_{B} & =|\alpha\rangle \otimes|\alpha\rangle, \\
\left|3_{\alpha}\right\rangle_{B} & =|\alpha\rangle \otimes|\alpha\rangle \otimes|\alpha\rangle, \tag{37}\\
\left|n_{\alpha}\right\rangle_{B} & =\underbrace{|\alpha\rangle \otimes|\alpha\rangle \otimes \ldots \otimes|\alpha\rangle}_{n_{\alpha} \text { factors }} \equiv|\alpha\rangle \otimes \otimes^{n_{\alpha}} .
\end{align*}
$$

- For multi-mode Fock states (meaning more than one single-particle state $|\alpha\rangle$ is involved), the first-quantized state will involve appropriate symmetrization depending on the particle statistics. For example,

$$
\begin{align*}
& \left|1_{\alpha}, 1_{\beta}\right\rangle_{B}=\frac{1}{\sqrt{2}}(|\alpha\rangle \otimes|\beta\rangle+|\beta\rangle \otimes|\alpha\rangle), \tag{38}\\
& \left|1_{\alpha}, 1_{\beta}\right\rangle_{F}=\frac{1}{\sqrt{2}}(|\alpha\rangle \otimes|\beta\rangle-|\beta\rangle \otimes|\alpha\rangle) .
\end{align*}
$$

Note the difference between bosonic and fermionic Fock states (even if their occupation numbers are the same). Here are more examples

$$
\left|2_{\alpha}, 1_{\beta}\right\rangle_{B}=\frac{1}{\sqrt{3}}(|\alpha\rangle \otimes|\alpha\rangle \otimes|\beta\rangle+|\alpha\rangle \otimes|\beta\rangle \otimes|\alpha\rangle+|\beta\rangle \otimes|\alpha\rangle \otimes|\alpha\rangle),
$$

$$
\begin{aligned}
&\left|1_{\alpha}, 1_{\beta}, 1_{\gamma}\right\rangle_{F}=\frac{1}{\sqrt{6}}(|\alpha\rangle \otimes|\beta\rangle \otimes|\gamma\rangle+|\beta\rangle \otimes|\gamma\rangle \otimes|\alpha\rangle+ \\
&\quad|\gamma\rangle \otimes|\alpha\rangle \otimes|\beta\rangle-|\gamma\rangle \otimes|\beta\rangle \otimes|\alpha\rangle-|\beta\rangle \otimes|\alpha\rangle \otimes|\gamma\rangle-|\alpha\rangle \otimes|\gamma\rangle \otimes|\beta\rangle)
\end{aligned}
$$

Ok, you get the idea. In general, the Fock state can be represented as (labeled by a set of occupation numbers $\boldsymbol{n}=\left\{n_{\alpha}\right\}_{\alpha=1}^{D}$)

- for bosons,

$$
\begin{equation*}
|\boldsymbol{n}\rangle_{B}=\left(\frac{\prod_{\alpha} n_{\alpha}!}{N!}\right)^{1 / 2} \hat{\mathcal{S}} \underset{\alpha}{\otimes}|\alpha\rangle \otimes^{n_{\alpha}} . \tag{40}
\end{equation*}
$$

- for fermions,

$$
\begin{equation*}
|\boldsymbol{n}\rangle_{F}=\frac{1}{\sqrt{N!}} \hat{\mathcal{A}} \underset{\alpha}{\otimes|\alpha\rangle \otimes^{n_{\alpha}}} . \tag{41}
\end{equation*}
$$

$\hat{\mathcal{S}}$ and $\hat{\mathcal{A}}$ are symmetrization and antisymmetrization operators

$$
\begin{equation*}
\hat{\mathcal{S}}=\sum_{\pi \in S_{N}} \hat{\mathcal{P}}_{\pi}, \hat{\mathcal{A}}=\sum_{\pi \in S_{N}}(-)^{\pi} \hat{\mathcal{P}}_{\pi}, \tag{42}
\end{equation*}
$$

as introduced in Eq. (24) and Eq. (25).

- Creation and Annihilation Operators

- State Insertion and Deletion

The creation and annihilation operators are introduced to create and annihilate particles in the quantum many-body system, as indicated by their names. The first step towards defining them is to understand how to insert and delete a single-particle state from the first-quantized state in a symmetric (or antisymmetric) manner.

Let us first declare some notations:

- Let $|\alpha\rangle,|\beta\rangle$ be single-particle states.
- Let 1 be the tensor identity (meaning that $|\alpha\rangle \otimes 1=1 \otimes|\alpha\rangle=|\alpha\rangle$).
- Let $|\Psi\rangle,|\Phi\rangle$ be generic first-quantized states as in Eq. (11).

Now we define the insertion operator $\triangleright_{ \pm}$and deletion operator $\triangleleft_{ \pm}$by the following rules:

- Linearity (for $a, b \in \mathbb{C}$)

$$
\begin{align*}
& |\alpha\rangle \triangleright_{ \pm}(a|\Psi\rangle+b|\Phi\rangle)=a|\alpha\rangle \triangleright_{ \pm}|\Psi\rangle+b|\alpha\rangle \triangleright_{ \pm}|\Phi\rangle, \\
& |\alpha\rangle \triangleleft_{ \pm}(a|\Psi\rangle+b|\Phi\rangle)=a|\alpha\rangle \triangleleft_{ \pm}|\Psi\rangle+b|\alpha\rangle \triangleleft_{ \pm}|\Phi\rangle . \tag{43}
\end{align*}
$$

- Vacuum property

$$
\begin{align*}
& |\alpha\rangle \triangleright_{ \pm} 1=|\alpha\rangle, \\
& |\alpha\rangle \triangleleft_{ \pm} 1=0 . \tag{44}
\end{align*}
$$

- Recursive relation
$|\alpha\rangle \triangleright_{ \pm}|\beta\rangle \otimes|\Psi\rangle=|\alpha\rangle \otimes|\beta\rangle \otimes|\Psi\rangle \pm|\beta\rangle \otimes\left(|\alpha\rangle \triangleright_{ \pm}|\Psi\rangle\right)$,
$|\alpha\rangle \triangleleft_{ \pm}|\beta\rangle \otimes|\Psi\rangle=\langle\alpha \mid \beta\rangle|\Psi\rangle \pm|\beta\rangle \otimes\left(|\alpha\rangle \triangleleft_{ \pm}|\Psi\rangle\right)$.
- $\langle\alpha \mid \beta\rangle=\delta_{\alpha \beta}$ if $|\alpha\rangle$ and $|\beta\rangle$ are orthonormal basis states.
- The subscript \pm of the insertion or deletion operators indicates whether symmetrization $(+)$ or antisymmetrization (-) is implemented.

- Boson Creation and Annihilation

The boson creation operator $\hat{b}_{\alpha}^{\dagger} a d d s$ a boson to the single-particle state $|\alpha\rangle$, increasing the occupation number by one $n_{\alpha} \rightarrow n_{\alpha}+1$. It acts on a N-particle first-quantized state $|\Psi\rangle$ as

$$
\begin{equation*}
\hat{b}_{\alpha}^{\dagger}|\Psi\rangle=\frac{1}{\sqrt{N+1}}|\alpha\rangle \triangleright_{+}|\Psi\rangle, \tag{46}
\end{equation*}
$$

where $|\alpha\rangle \triangleright_{+}$inserts the single-particle state $|\alpha\rangle$ to $N+1$ possible insertion positions symmetrically.

The boson annihilation operator \hat{b}_{α} removes a boson from the single-particle state $|\alpha\rangle$, reducing the occupation number by one $n_{\alpha} \rightarrow n_{\alpha}-1$ (while $n_{\alpha}>0$). It acts on a N-particle firstquantized state $|\Psi\rangle$ as

$$
\begin{equation*}
\hat{b}_{\alpha}|\Psi\rangle=\frac{1}{\sqrt{N}}|\alpha\rangle \triangleleft_{+}|\Psi\rangle, \tag{47}
\end{equation*}
$$

where $|\alpha\rangle \triangleleft_{+}$removes the single-particle state $|\alpha\rangle$ from N possible deletion positions symmetrically.

- Single-Mode Fock States

Based on these definitions, we can show that the creation and annihilation operators acting on single-mode Fock states as

$$
\begin{aligned}
& \hat{b}_{\alpha}^{\dagger}\left|n_{\alpha}\right\rangle=\sqrt{n_{\alpha}+1}\left|n_{\alpha}+1\right\rangle, \\
& \hat{b}_{\alpha}\left|n_{\alpha}\right\rangle=\sqrt{n_{\alpha}}\left|n_{\alpha}-1\right\rangle .
\end{aligned}
$$

Prove Eq. (48) by definitions in Eq. (46) and Eq. (47).

- Especially, when acting on the vacuum state

$$
\begin{align*}
& \hat{b}_{\alpha}^{\dagger}\left|0_{\alpha}\right\rangle=\left|1_{\alpha}\right\rangle, \\
& \hat{b}_{\alpha}\left|0_{\alpha}\right\rangle=0 . \tag{49}
\end{align*}
$$

- Using Eq. (48), we can show that

$$
\begin{equation*}
\hat{b}_{\alpha}^{\dagger} \hat{b}_{\alpha}\left|n_{\alpha}\right\rangle=n_{\alpha}\left|n_{\alpha}\right\rangle, \tag{50}
\end{equation*}
$$

meaning that $\hat{b}_{\alpha}^{\dagger} \hat{b}_{\alpha}$ is the boson number operator of the $|\alpha\rangle$ state.
All the single-mode Fock state can be constructed by the boson creation operator from the vacuum state

$$
\begin{equation*}
\left|n_{\alpha}\right\rangle=\frac{1}{\sqrt{n_{\alpha}!}}\left(\hat{b}_{\alpha}^{\dagger}\right)^{n_{\alpha}}\left|0_{\alpha}\right\rangle \tag{51}
\end{equation*}
$$

- Generic Fock States

The above result can be generalized to any Fock state of bosons

$$
\begin{align*}
& \hat{b}_{\alpha}^{\dagger}\left|\ldots, n_{\beta}, n_{\alpha}, n_{\gamma}, \ldots\right\rangle_{B}=\sqrt{n_{\alpha}+1}\left|\ldots, n_{\beta}, n_{\alpha}+1, n_{\gamma}, \ldots\right\rangle_{B} \\
& \hat{b}_{\alpha}\left|\ldots, n_{\beta}, n_{\alpha}, n_{\gamma}, \ldots\right\rangle_{B}=\sqrt{n_{\alpha}}\left|\ldots, n_{\beta}, n_{\alpha}-1, n_{\gamma}, \ldots\right\rangle_{B} . \tag{52}
\end{align*}
$$

These two equations can be considered as the defining properties of boson creation and annihilation operators.

- Operator Identities

Eq. (52) implies the following operator identities

$$
\begin{equation*}
\left[\hat{b}_{\alpha}^{\dagger}, \hat{b}_{\beta}^{\dagger}\right]=\left[\hat{b}_{\alpha}, \hat{b}_{\beta}\right]=0,\left[\hat{b}_{\alpha}, \hat{b}_{\beta}^{\dagger}\right]=\delta_{\alpha \beta} . \tag{53}
\end{equation*}
$$

These relations can be considered as the algebraic definition of boson creation and annihilation operators.

- $[\hat{A}, \hat{B}]=\hat{A} \hat{B}-\hat{B} \hat{A}$ denotes the commutator.
- The algebraic relation in Eq. (53) is identical to that of the creating and annihilation operators in harmonic oscillator, therefore, the elementary excitations of harmonic oscillator are indeed bosons.

- Fermion Creation and Annihilation

The fermion creation operator $\hat{c}_{\alpha}^{\dagger} a d d s$ a fermion to the single-particle state $|\alpha\rangle$, increasing the occupation number by one $n_{\alpha} \rightarrow n_{\alpha}+1$ (while $n_{\alpha}=0$). It acts on a N-particle first-quantized state $|\Psi\rangle$ as

$$
\begin{equation*}
\hat{c}_{\alpha}^{\dagger}|\Psi\rangle=\frac{1}{\sqrt{N+1}}|\alpha\rangle \triangleright_{-}|\Psi\rangle, \tag{54}
\end{equation*}
$$

where $|\alpha\rangle \triangleright_{-}$inserts the single-particle state $|\alpha\rangle$ to $N+1$ possible insertion positions antisymmetrically.

The fermion annihilation operator \hat{c}_{α} removes a fermion from the single-particle state $|\alpha\rangle$, reducing the occupation number by one $n_{\alpha} \rightarrow n_{\alpha}-1$ (while $n_{\alpha}=1$). It acts on a N-particle firstquantized state $|\Psi\rangle$ as

$$
\begin{equation*}
\hat{c}_{\alpha}|\Psi\rangle=\frac{1}{\sqrt{N}}|\alpha\rangle \triangleleft_{-}|\Psi\rangle, \tag{55}
\end{equation*}
$$

where $|\alpha\rangle \triangleleft_{-}$removes the single-particle state $|\alpha\rangle$ from N possible deletion positions antisymmetrically.

- Single-Mode Fock States

Based on these definitions, we can show that the creation and annihilation operators acting on single-mode Fock states as
Thus we conclude (note that $n_{\alpha}=0,1$ only take two values)

$$
\begin{align*}
& \hat{c}_{\alpha}^{\dagger}\left|n_{\alpha}\right\rangle=\sqrt{1-n_{\alpha}}\left|1-n_{\alpha}\right\rangle, \\
& \hat{c}_{\alpha}\left|n_{\alpha}\right\rangle=\sqrt{n_{\alpha}}\left|1-n_{\alpha}\right\rangle . \tag{56}
\end{align*}
$$

Exc

2
Prove Eq. (56) by definitions in Eq. (54) and Eq. (55).

- Using Eq. (56), we can show that

$$
\begin{equation*}
\hat{c}_{\alpha}^{\dagger} \hat{c}_{\alpha}\left|n_{\alpha}\right\rangle=n_{\alpha}\left|n_{\alpha}\right\rangle \tag{57}
\end{equation*}
$$

meaning that $c_{\alpha}^{\dagger} c_{\alpha}$ is the fermion number operator of the $|\alpha\rangle$ state.
All the single-mode Fock state can be constructed by the boson creation operator from the vacuum state

$$
\begin{equation*}
\left|n_{\alpha}\right\rangle=\left(\hat{c}_{\alpha}^{\dagger}\right)^{n_{\alpha}}\left|0_{\alpha}\right\rangle . \tag{58}
\end{equation*}
$$

- Generic Fock States

The above result can be generalized to any Fock state of bosons

$$
\begin{align*}
& \hat{c}_{\alpha}^{\dagger}\left|\ldots, n_{\beta}, n_{\alpha}, n_{\gamma}, \ldots\right\rangle_{F}=(-)^{\sum_{\beta<\alpha} n_{\beta}} \sqrt{1-n_{\alpha}}\left|\ldots, n_{\beta}, 1-n_{\alpha}, n_{\gamma}, \ldots\right\rangle_{F}, \\
& \hat{c}_{\alpha}\left|\ldots, n_{\beta}, n_{\alpha}, n_{\gamma}, \ldots\right\rangle_{F}=(-)^{\sum_{\beta \alpha \alpha} n_{\beta}} \sqrt{n_{\alpha}}\left|\ldots, n_{\beta}, 1-n_{\alpha}, n_{\gamma}, \ldots\right\rangle_{F} . \tag{59}
\end{align*}
$$

These two equations can be considered as the defining properties of fermion creation and annihilation operators.

- Operator Identities

Eq. (59) implies the following operator identities

$$
\begin{equation*}
\left\{\hat{c}_{\alpha}^{\dagger}, \hat{c}_{\beta}^{\dagger}\right\}=\left\{\hat{c}_{\alpha}, \hat{c}_{\beta}\right\}=0,\left\{\hat{c}_{\alpha}, \hat{c}_{\beta}^{\dagger}\right\}=\delta_{\alpha \beta} . \tag{60}
\end{equation*}
$$

These relations can be considered as the algebraic definition of fermion creation and annihilation operators.

- $\{\hat{A}, \hat{B}\}=\hat{A} \hat{B}+\hat{B} \hat{A}$ denotes the anti-commutator.

Quantum Statistical Physics

- General Principles

- Connecting Micro and Macro

Statistical physics is an important branch of physics that studies the statistical relationship between the microscopic states of a many-body system and its macroscopic properties.

- At the microscopic level: physical systems are described by quantum mechanics in terms of a Hamiltonian operator \hat{H}

$$
\begin{equation*}
\hat{H}\left|E_{k}\right\rangle=E_{k}\left|E_{k}\right\rangle, \tag{61}
\end{equation*}
$$

- E_{k} - the possible energy that the system can take,
- $\left|E_{k}\right\rangle$ - the corresponding quantum state of the system,
- k - an index that labels the eigenstates.
- At the macroscopic level: we are interested in the expectation value of physical observables \hat{O},

$$
\begin{equation*}
\langle O\rangle=\sum_{k}\left\langle E_{k}\right| \hat{O}\left|E_{k}\right\rangle p_{k} \tag{62}
\end{equation*}
$$

- $\left\langle E_{k}\right| \hat{O}\left|E_{k}\right\rangle$ - the expectation value of \hat{O} when the system is in the particular state $\left|E_{k}\right\rangle$ with energy E_{k}.
- p_{k} - the probability for the system to be in the k th eigenstate $\left|E_{k}\right\rangle$ (of energy E_{k}) in the thermal ensemble.
- The ensemble is a classical probabilistic mixture of quantum pure states $\left|E_{k}\right\rangle$ (not a quantum superposition of them), called a mixed state ensemble.
- A mixed state ensemble can be specified by a set of pure state basis $\left|E_{k}\right\rangle$ together with a probability distribution p_{k}.
To connect micro and macro, what is missing is the knowledge about p_{k}.
Therefore, the central goal of statistical physics is to infer the mixed state distribution p_{k} in an unbiased manner.

- Principle of Maximum Entropy

Without any assumption, it seems that p_{k} can be assigned arbitrarily. However, the principle of maximum entropy tells us the only unbiased assignment of p_{k} is such that maximized the entropy of the probability distribution

$$
\begin{equation*}
S[p]=-\sum_{k} p_{k} \ln p_{k} . \tag{63}
\end{equation*}
$$

Consider a canonical ensemble --- a statistical ensemble whose average energy is known

$$
\begin{equation*}
\langle H\rangle=\sum_{k}\left\langle E_{k}\right| \hat{H}\left|E_{k}\right\rangle p_{k}=\sum_{k} E_{k} p_{k}=E . \tag{64}
\end{equation*}
$$

The problem to solve is

$$
\max _{p} S[p]=-\sum_{k} p_{k} \ln p_{k},
$$

subject to :

$$
\begin{align*}
& \sum_{k} p_{k}=1, \tag{65}\\
& \sum_{k} E_{k} p_{k}=E .
\end{align*}
$$

The solution is simple

$$
\begin{align*}
& p_{k}=\frac{1}{Z} e^{-\beta E_{k}}, \tag{66}\\
& Z=\sum_{k} e^{-\beta E_{k}}
\end{align*}
$$

Exc
3
Solve the constrained optimization problem Eq. (65) to show Eq. (66).
This result is known as the Boltzmann distribution.

- The probability for the system to stay in a lower energy level is exponentially higher.
- $\beta=1 / k_{B} T$ is the inverse of the temperature T (and k_{B} is the Boltzmann constant). It will be adjusted to meet the average energy condition.
- Z is the normalization coefficient for the probability distribution, also called the partition function.

- Bose-Einstein Statistics

- Single-Mode Problem

Consider a single-particle mode labeled by α. Assuming every boson in that mode has an single-particle energy ϵ_{α}, the Hamiltonian of this many-body system reads

$$
\begin{equation*}
\hat{H}=\epsilon_{\alpha} \hat{b}_{\alpha}^{\dagger} \hat{b}_{\alpha} \tag{68}
\end{equation*}
$$

- Eigensystem: eigenstates are labeled by $n_{\alpha}=0,1,2, \ldots$,

$$
\begin{equation*}
\hat{H}\left|n_{\alpha}\right\rangle=\epsilon_{\alpha} n_{\alpha}\left|n_{\alpha}\right\rangle, \tag{69}
\end{equation*}
$$

with eigen energies

$$
\begin{equation*}
E_{n_{\alpha}}=\epsilon_{\alpha} n_{\alpha} . \tag{70}
\end{equation*}
$$

According to Eq. (66), the random variable n_{α} follows the Boltzmann distribution

$$
\begin{equation*}
p_{n_{\alpha}}=\frac{1}{Z} e^{-\beta E_{n_{u}}}=\frac{1}{Z} e^{-\beta \epsilon_{\alpha} n_{\alpha}}, \tag{71}
\end{equation*}
$$

with a partition function given by

$$
\begin{equation*}
Z=\sum_{n_{a}=0}^{\infty} e^{-\beta \epsilon_{\alpha} n_{x}}=\frac{1}{1-e^{-\beta \epsilon_{\alpha}}} . \tag{72}
\end{equation*}
$$

Exc
4
Evaluate the summation in Eq. (72).
Put together

$$
\begin{equation*}
p_{n_{a}}=\left(1-e^{-\beta \epsilon_{\alpha}}\right) e^{-\beta \epsilon_{\alpha} n_{\alpha}} . \tag{73}
\end{equation*}
$$

Based on the probability distribution Eq. (73), one can compute the average boson number

$$
\begin{equation*}
\left\langle n_{\alpha}\right\rangle=\sum_{n_{\alpha}=0}^{\infty} n_{\alpha} p_{n_{\alpha}}=\frac{1}{e^{\beta \epsilon_{\alpha}}-1} . \tag{74}
\end{equation*}
$$

Exc
5
Evaluate the summation in Eq. (74).
This is also known as the Bose-Einstein distribution.

- Multi-Mode Generalization

A many-body system typically has multiple modes for particles to occupy. A generic free-
boson Hamiltonian must sum over the contribution like Eq. (68) from different modes.

$$
\begin{equation*}
\hat{H}=\sum_{\alpha} \epsilon_{\alpha} \hat{b}_{\alpha}^{\dagger} \hat{b}_{\alpha} . \tag{75}
\end{equation*}
$$

- $\alpha=1,2, \ldots, D$ is the mode index, labeling single-particle states in the system.
- Many-body states are labeled by a sequence of occupation numbers

$$
\begin{equation*}
\boldsymbol{n}=n_{1}, n_{2}, \ldots, n_{D}, \tag{76}
\end{equation*}
$$

where $n_{\alpha}=0,1,2, \ldots$ for bosons.

- Eigensystem:

$$
\begin{equation*}
\hat{H}|\boldsymbol{n}\rangle=E_{\boldsymbol{n}}|\boldsymbol{n}\rangle, \tag{77}
\end{equation*}
$$

with eigen energies

$$
\begin{equation*}
E_{n}=\sum_{\alpha} \epsilon_{\alpha} n_{\alpha} . \tag{78}
\end{equation*}
$$

Boltzmann distribution can be factorized, as random fluctuation of occupation number n_{α} on each mode is independent from each other.

$$
\begin{equation*}
p_{n} \propto e^{-\beta E_{n}}=\exp \left(-\beta \sum_{\alpha} \epsilon_{\alpha} n_{\alpha}\right)=\prod_{\alpha} e^{-\beta \epsilon_{\alpha} n_{\alpha}}, \tag{79}
\end{equation*}
$$

meaning that

$$
\begin{equation*}
p_{n}=\prod_{\alpha} p_{n_{a}} \tag{80}
\end{equation*}
$$

with $p_{n_{a}}$ given by Eq. (73). Therefore, the conclusion of the single-mode problem follows:

- The Bose-Einstein distribution, see Eq. (74),

$$
\begin{equation*}
\left\langle n_{\alpha}\right\rangle=\frac{1}{\boldsymbol{e}^{\beta \epsilon_{\alpha}}-1} . \tag{81}
\end{equation*}
$$

- The average total boson number

$$
\begin{equation*}
\langle N\rangle=\sum_{\alpha}\left\langle n_{\alpha}\right\rangle=\sum_{\alpha} \frac{1}{\boldsymbol{e}^{\beta \epsilon_{\alpha}}-1} . \tag{82}
\end{equation*}
$$

- The average total energy

$$
\begin{equation*}
\langle H\rangle=\sum_{\alpha} \epsilon_{\alpha}\left\langle n_{\alpha}\right\rangle=\sum_{\alpha} \frac{\epsilon_{\alpha}}{\boldsymbol{e}^{\beta \epsilon_{\alpha}}-1} . \tag{83}
\end{equation*}
$$

- Fermi-Dirac Statistics

- Single-Mode Problem

Consider a single-particle mode labeled by α. Assuming every fermion in that mode has an single-particle energy ϵ_{α}, the Hamiltonian of this many-body system reads

$$
\begin{equation*}
\hat{H}=\epsilon_{\alpha} \hat{c}_{\alpha}^{\dagger} \hat{c}_{\alpha} \tag{84}
\end{equation*}
$$

- Eigensystem: eigenstates are labeled by $n_{\alpha}=0,1$ (Pauli exclusion principle forbid n_{α} to go greater than 1 for fermions),

$$
\begin{equation*}
\hat{H}\left|n_{\alpha}\right\rangle=\epsilon_{\alpha} n_{\alpha}\left|n_{\alpha}\right\rangle, \tag{85}
\end{equation*}
$$

with eigen energies

$$
\begin{equation*}
E_{n_{\alpha}}=\epsilon_{\alpha} n_{\alpha} . \tag{86}
\end{equation*}
$$

According to Eq. (66), the random variable n_{α} follows the Boltzmann distribution

$$
\begin{equation*}
p_{n_{u}}=\frac{1}{Z} e^{-\beta E_{n_{u}}}=\frac{1}{Z} e^{-\beta \epsilon_{\alpha} n_{a}}, \tag{87}
\end{equation*}
$$

with a partition function given by

$$
\begin{equation*}
Z=\sum_{n_{a}=0,1} e^{-\beta \epsilon_{\alpha} n_{a}}=1+e^{-\beta \epsilon_{\alpha}} . \tag{88}
\end{equation*}
$$

Put together

$$
p_{n_{\alpha}}=\frac{e^{-\beta \epsilon_{\alpha} n_{\alpha}}}{1+e^{-\beta \epsilon_{\alpha}}}= \begin{cases}\frac{1}{e^{-\beta \epsilon_{\alpha}}} & n_{\alpha}=0 \tag{89}\\ \frac{1}{e^{\beta \epsilon_{\alpha}}+1} & n_{\alpha}=1\end{cases}
$$

Based on the probability distribution Eq. (89), one can compute the average fermion number

$$
\begin{equation*}
\left\langle n_{\alpha}\right\rangle=\sum_{n_{\alpha}=0,1} n_{\alpha} p_{n_{\alpha}}=\frac{1}{\boldsymbol{e}^{\beta \epsilon_{\alpha}}+1} . \tag{90}
\end{equation*}
$$

This is also known as the Fermi-Dirac distribution.

- Multi-Mode Generalization

A many-body system typically has multiple modes for particles to occupy. A generic freefermion Hamiltonian must sum over the contribution like Eq. (84) from different modes.

$$
\begin{equation*}
\hat{H}=\sum_{\alpha} \epsilon_{\alpha} \hat{c}_{\alpha}^{\dagger} \hat{c}_{\alpha} . \tag{91}
\end{equation*}
$$

- $\alpha=1,2, \ldots, D$ is the mode index, labeling single-particle states in the system.
- Many-body states are labeled by a sequence of occupation numbers

$$
\begin{equation*}
\boldsymbol{n}=n_{1}, n_{2}, \ldots, n_{D}, \tag{92}
\end{equation*}
$$

where $n_{\alpha}=0,1$ for fermions.

- Eigensystem:

$$
\begin{equation*}
\hat{H}|\boldsymbol{n}\rangle=E_{\boldsymbol{n}}|\boldsymbol{n}\rangle, \tag{93}
\end{equation*}
$$

with eigen energies

$$
\begin{equation*}
E_{n}=\sum_{\alpha} \epsilon_{\alpha} n_{\alpha} \tag{94}
\end{equation*}
$$

Boltzmann distribution can be factorized, as random fluctuation of occupation number n_{α} on each mode is independent from each other.

$$
\begin{equation*}
p_{n} \propto e^{-\beta E_{n}}=\exp \left(-\beta \sum_{\alpha} \epsilon_{\alpha} n_{\alpha}\right)=\prod_{\alpha} e^{-\beta \epsilon_{\alpha} n_{\alpha}}, \tag{95}
\end{equation*}
$$

meaning that

$$
\begin{equation*}
p_{n}=\prod_{\alpha} p_{n_{u}} \tag{96}
\end{equation*}
$$

with $p_{n_{u}}$ given by Eq. (89). Therefore, the conclusion of the single-mode problem follows:

- The Fermi-Dirac distribution, see Eq. (90),

$$
\begin{equation*}
\left\langle n_{\alpha}\right\rangle=\frac{1}{e^{\beta \epsilon_{\alpha}}+1} \tag{97}
\end{equation*}
$$

- The average total fermion number

$$
\begin{equation*}
\langle N\rangle=\sum_{\alpha}\left\langle n_{\alpha}\right\rangle=\sum_{\alpha} \frac{1}{e^{\beta \epsilon_{\alpha}}+1} . \tag{98}
\end{equation*}
$$

- The average total energy

$$
\begin{equation*}
\langle H\rangle=\sum_{\alpha} \epsilon_{\alpha}\left\langle n_{\alpha}\right\rangle=\sum_{\alpha} \frac{\epsilon_{\alpha}}{e^{\beta \epsilon_{\alpha}}+1} . \tag{99}
\end{equation*}
$$

