
130B Quantum Physics
Part 5. Phase and Gauge

Gauge Principles

◼ Gauge Structure and Berry Phase

◼ Phase Ambiguities

At its core, quantum mechanics is a probability theory. It postulate to model the proba-
bility density p(x) by a squared norm

p(x) = ψ(x)2, (1)

just to ensure the positive semi-definite property p(x) ≥ 0. 

The wavefunction ψ(x)  itself serves as a mathematical parameter of the probability 
model, not a physical observable, and is therefore subject to some degree of ambiguity or 
redundancy.

 Global phase ambiguity. A global phase rotation of the wavefunction (where “global” 
means α does not depend on x)

ψ(x) →  α ψ(x) (2)

has no consequence on the expectation value 〈O〉 of any physical observable O in any case

〈O〉 =  ψ*(x)O(x, x′) ψ(x′) Dx Dx′. (3)

Conclusion: quantum states ∈ projective Hilbert space, where global phase is always 
unphysical.

 Local phase ambiguity (Gauge redundancy). We can push this idea further: if we 
restrict ourself to diagonal observables in the position basis, i.e., functions f (x) that depends 
only on x (but not p), then any local phase rotation 

ψ(x)   χ(x) ψ(x) (4)

will leave all expectation values 〈f (x)〉 invariant,

〈f (x)〉 :=  f (x) ψ(x)2 Dx =  f (x) p(x) Dx (5)



since the probability density p(x) is unchanged.

 If p(x) = ψ(x)2 was the only physical probability distribution to be modeled, any ψ(x) 
related by local phase rotation Eq. (4) should be treated as equivalent.

 This represents a gauge redundancy: multiple mathematical descriptions (e.g. wavefunc-
tions) describing the same physical reality (e.g. position distribution).

🤔 Quantum decoherence provides a deeper reason of why only diagonal observables are 
measurable. 

 Environmental monitoring: The environment has a natural tendency to monitor the 
local density p(x) of particles in the space.

 Effectively performing weak continuous measurement of x.

 Inducing decoherence in the position basis: rapid decay of off-diagonal coherence 
ρ(x, x′) of the density matrix for x ≠ x′.

 Consequence 1: Dephasing noise.

 The measurement randomizes the phase of ψ(x) at every position independently.

 Relative phase between ψ(x) and ψ(x′) no longer comparable, allowing local phase rota-
tion as Eq. (4) to become a redundancy.

 Consequence 2: Gauge projection.

 The measurement collapse the system towards the particle number eigenstates, sup-
pressing the number fluctuations.

 Effectively imposing a gauge constraint (like Gauss law), that couples the particle to an 
emergent gauge field, allowing particles to interact with each other through emergent 
gauge forces.

◼ Gauge Transformation

If the gauge freedom is an (emergent) redundancy, it should have no physical consequence. 
For example, it should not affect the quantum dynamics governed by the Schrödinger 
equation.

However, the standard Schrödinger equation is not invariant under the gauge 
transformation

ψ(x, t) →  χ(x,t) ψ(x, t), (6)

unless we modify it appropriately.

 Start from the free Schrödinger equation

 ℏ ∂tψ(x, t) = -
ℏ2

2m
∇2ψ(x, t), (7)

under gauge transformation ψ →  χ ψ in Eq. (6), the derivative operators picks up extra terms 
involving ∂t χ and ∇ χ,
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 ℏ (∂t+ ∂t χ(x, t)) ψ(x, t) = -
ℏ2

2m
(∇+ ∇ χ(x, t))2 ψ(x, t), (8)

and the equation does not remain invariant.

Show that Eq. (7) becomes to Eq. (8) under gauge transformation.Exc
1

 To restore the gauge invariance, we introduce gauge fields:

 Scalar potential: Φ(x, t) - a scalar field in the spacetime

 Vector potential: A(x, t) - a vector field in the spacetime
and replace derivatives by covariant derivatives:

∂t → Dt := ∂t+


ℏ
Φ(x, t),

∇ → D := ∇-


ℏ
A(x, t),

(10)

Then Eq. (7) can be recast into the gauge-invariant Schrödinger equation

 ℏDt ψ(x, t) =
1

2m
(- ℏD)2 ψ(x, t), (11)

or more explicitly,

 ℏ ∂tψ(x, t) =
1

2m
(- ℏ ∇-A(x, t))2 + Φ(x, t) ψ(x, t). (12)

Under gauge transformation, the wavefunction ψ and the gauge fields (Φ, A) must transform 

together as

ψ(x, t) →  χ(x,t) ψ(x, t),
Φ(x, t)  Φ(x, t) - ℏ ∂t χ(x, t),
A(x, t) → A(x, t) + ℏ ∇ χ(x, t),

(13)

to ensure the covariance of the quantum dynamics.

◼ Semiclassical Interpretation

In the WKB approximation, we write the wavefunction as

ψ = A  S/ℏ. (14)

Plugging the WKB ansatz into the gauge-invariant Schrödinger equation Eq. (11) yields:

(-∂t S - Φ) =
1

2m
(∇S -A)2. (15)

Given that the spacetime derivatives of the action S is associated to energy E = -∂t S and
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momentum p = ∇S, Eq. (15) can be written as

(E - Φ) =
1

2m
(p -A)2. (16)

This reveals the physical meaning of gauge fields:

 Scalar potential Φ: potential energy,

 Vector potential A: potential momentum.
Note: Energy and Momentum each have three distinct forms

Total = Kinetic + Potential
Energy E =

1
2
m x 2 + Φ

Momentum p = m x + A
(17)

Show that both equations in Eq. (17) are consistent with Eq. (16).Exc
2

 Total (or Canonical): appear directly in conservation laws and determine the action accumu-
lated in spacetime.

 Kinetic: directly linked to the particle’s motion (velocity x ). 

 Potential: exist independently of particle motion, contributing even when the particle is at 
rest (x = 0), representing the interaction with the background field in the spacetime.

Question: What are their dynamical consequences?

Newton’s 2nd law — the force F causes the kinetic momentum (m x ) to change in time:

F =


 t
(m x ) =

p

 t
-
A

 t
, (18)

in two distinct ways:

 p /  t = ∂tp + x ·∇p, in which

 ∇p = 0, as x and p are independent variables,

 Maxwell relation: ∂t∇S = ∇∂t S implies

∂tp = -∇E = (∇A) · x -∇Φ. (19)

 A /  t = ∂tA+ x ·∇A.

Put together, F takes the form as the Lorentz force (on a charge q = 1 particle)

F = -∇Φ- ∂tA+ (∇A) · x - x ·∇A
= E + x ×B,

(20)

as long as we define
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E = -∇Φ- ∂tA,
B = ∇ ×A.

(21)

Justify Eq. (19) and Eq. (20).Exc
3

Obviously, E and B should be interpreted as electric and magnetic fields, allowing F to be 
consistently identified as the force exerted by the electromagnetic field on a charged particle.
Conclusion: Gauge fields (Φ, A) are not merely mathematical constructs to maintain gauge 
invariance; they give rise to the physical electromagnetic interactions among quantum particles. 
Remarkably, the electromagnetic forces familiar from our everyday classical experience 
emerge profoundly from the local phase ambiguity of matter at the quantum level.

◼ Math Interlude: Lorentz Vectors

It is more convenient to unify time and space, as well as energy and momentum. 

 Spacetime: Introduce x = x0, x1, x2, x3 to denote the coordinate of a spacetime point,

 t = x0: time,

 x = x1, x2, x3: space,

and denote these components as xμ(μ = 0, 1, 2, 3) jointly. x is said to be a Lorentz vector.

 Spacetime derivatives: Partial derivatives in the spacetime are defined as

∂μ f (x) = lim
δx0

f (x + δx) - f (x)

δxμ
, (22)

 ∂t = ∂0: temporal derivative,

 ∇ = (∂1 , ∂2 , ∂3): spatial derivatives.

 Energy-momentum: Introduce p = p0, p1, p2, p3 to denote the energy and momentum,

 E = p0 = -p0: energy,

 p = p1, p2, p3 = (p1, p2, p3): momentum.

 Gauge field: Introduce A = A0, A1, A2, A3 to denote the gauge field,

 Φ = A0 = -A0: scalar potential,

 A = A1, A2, A3 = (A1, A2, A3): vector potential.

 Covariant derivatives: Operators in Eq. (10) can now be unified as a single Lorentz vector 
operator

Dμ = ∂μ-


ℏ
Aμ, (23)

 Dt = D0: covariant temporal derivative,

PhaseAndGauge.nb     5



 D = (D1, D2, D3): covariant spatial derivative.

Raising and lowering the index of a Lorentz vector is done by the Lorentz metric gμν or gμν,

aμ = gμν aν, aμ = gμν aν, (24)

where repeated indices are automatically summed over (contracted) following the Einstein 
sum rule. The Lorentz metric is given by

gμν = gμν = diag(-1, +1, +1, +1). (25)

Rule of thumb: In index contraction, the upper index can only contract with the lower index 
and vice versa.

aμ bμ ✓ ok
aμ bμ × no!
aμ bμ × no!

More explicitly, the following expressions are all valid and equal

aμ bμ = a0 b0 + a1 b1 + a2 b2 + a3 b3
= aμ gμν bν = -a0 b0 + a1 b1 + a2 b2 + a3 b3

= aμ gμν bν = -a0 b0 + a1 b1 + a2 b2 + a3 b3.
(26)

◼ Berry Phase

Berry phase is the phase accumulated by the wavefunction as a particle travels through 
the spacetime adiabatically.

 A processes is said to be adiabatic, if it happens slowly over a long time, i.e. the rates of 
change in physical observables tend to zero. In terms of the motion of a particle, it means the 
velocity of the particle is almost zero throughout the process:

x  0. (27)

Eq. (27) is also called the adiabatic limit.

 In the adiabatic limit, the action of the particle is accumulated by the potential energy and 
momentum 

-∂t S = E = Φ,

∇S = p = A.
(28)

as the kinetic energy and momentum vanishes when x  0.

 Given that phase is related to action, the Berry phase that a particle accumulates along a 
spacetime trajectory  is given by the path integral that computes the accumulated action

Θ =
S
ℏ

=
1

ℏ



-Φ  t +A · x =
1

ℏ



Aμ xμ. (29)
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Justify Eq. (29).Exc
4

Such that adiabatically propagating the wave amplitude ψ along trajectory  will acquire the 
Berry phase shift:

ψ →

 Θ ψ = exp



ℏ



Aμ xμ ψ. (30)

x

t

ψ

 Θ ψ



 For infinitesimal transportation  : x → x + δx,

ψ  


ℏ
Aμ δxμ ψ. (31)

 Under gauge transformation 

Aμ(x) → Aμ(x) + ℏ ∂μ χ(x), (32)

 the Berry phase along an open trajectory  is not gauge invariant (hence not a physical 
observable):

Θ  Θ + χ(xend) - χ(xstart), (33)

where xstart, xend = ∂ are the starting and ending point of .

 the Berry phase around a closed loop (Wilson loop) is gauge invariant, and is a physical 
observable. 

◼ Gauge Field and Electromagnetism

◼ Gauge Connection

Previously, we have introduced the covariant derivative Dμ to make the Schrödinger equa-
tion gauge invariant, but is there a deeper motivation behind this? In calculus, the derivative 
of a function tells us how much the function changes between nearby points

∂x f (x) = lim
δx0

f (x + δx) - f (x)

δx
. (34)

But this assumes we can compare the values of the function at different points directly.

PhaseAndGauge.nb     7



 Problem: If the wavefunction ψ(x) has local phase ambiguity,

ψ(x) →  χ(x) ψ(x), (35)

meaning that ψ(x) at each point x is defined up to a phase rotation, there will be no basis to 
compare wavefunctions between distinct points.
☞ There is a similar issue in finance: you cannot directly compare currencies from different 
countries by their face values! 

 Are the following amounts of money the same?

¥100 $100 €100

 You should first move (parallel transport) the money to the same place before comparing.

$13.3
$100
$108

¥100

€100

03/27/2025

During the conversion, the money will be multiplied by the exchange rate (exponential 
gauge connection), e.g.

0.076961 €100 = $108, -2.01741 ¥100 = $13.3. (36)

 Solution: Similarly, to define a meaningful derivative for the wavefunction, we have to intro-
duce a gauge connection Aμ(x) to keep track of the phase rotation needed to transport 
ψ(x + δx) back to the point x for comparison, for every point x along any direction μ.

This allows us to (re)define the covariant derivative:

Dμ ψ(x) = lim
δx0


-


ℏ
Aν(x) δxν ψ(x + δx) - ψ(x)

δxμ
. (37)

 Interpretation: ψ(x + δx) has accumulated a Berry phase of exp 
ℏ
Aν(x) δxν compare to ψ(x) as 

the particle travels adiabatically. So when pulling ψ(x + δx) back to the point x, this phase 
should be compensated by the opposite phase factor exp- 

ℏ
Aν(x) δxν before comparing.

 Expressed in terms of the usual partial derivative modified by the gauge connection,

Dμ = ∂μ-


ℏ
Aμ(x), (38)

which exactly reproduces Eq. (23).

Show Eq. (38) follows from Eq. (37) by taking the limit.Exc
5

 The covariant derivative commute with the gauge transformation
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ψ(x) →  χ(x) ψ(x),

Aμ(x) → Aμ(x) + ℏ ∂μ χ(x),
(39)

as adapted from Eq. (13).

 The apparent deformation of the wavefunction ψ from x to x + δx can be expressed as

ψ(x + δx) = 


ℏ
Aμ(x) δxμ δx

μ Dμ ψ(x), (40)

which contains two contributions

 the intrinsic deformation under parallel transport ψ → δxμ Dμ ψ, which is generated by 
the covariant derivative Dμ,

 the background deformation in terms of the Berry phase ψ → (/ℏ)Aμ(x) δxμ ψ accumulated 
along the gauge connection Aμ.

◼ Gauge Curvature

Exchanging currencies in cycles typically results in a loss. Why?

$100

¥716€88.3

$95.3

!?!

03/27/2025

Because the global foreign exchange market is not flat — the mismatch around a closed loop is a 
measure of curvature.

In gauge theory, the gauge curvature Fμν measures the adiabatic action accumulated per 
area when transporting the wavefunction around the area boundary in spacetime.

S = 
∂Ω

Aμ xμ = 
Ω

Fμν xμ xν. (41)

 Operational definition: Mathematically, the gauge curvature Fμν is defined by the commutator 
of covariant derivatives

[Dμ, Dν] ψ = -


ℏ
Fμν ψ, (42)

which measures the amount of non-commutativity to transport the wavefunction along two 
distinct spacetime directions μ and ν.
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xμ

xν

Ω

δxμ

δxν

δxμ

δxν

ψ (x)

ψ (x + δxμ + δxν)

Using Eq. (40), prove Eq. (42) by comparing the above two paths to transport ψ(x) to 
ψ(x + δxμ + δxν).

Exc
6

 Physical meaning: In electromagnetism, Fμν corresponds to the electromagnetic field 
strength tensor,

Fμν = ∂μAν - ∂νAμ. (43)

Derive Eq. (43) from Eq. (42).Exc
7

 Electric field: E = E1, E2, E3, with Ei := -F0 i.

E = -∇Φ- ∂tA. (44)

 Magnetic field: B = B1, B2, B3, with Bi := 1
2
ϵi jk Fjk.

B = ∇ ×A. (45)

Check that E and B are gauge invariant. Therefore, they are physical observables.
Exc
8

◼ Charged Particle in Gauge Field

In quantum mechanics, the time-evolution is generated by the Hamiltonian operator H

.

 Schrödinger picture: state evolves in time, operator remains fixed.

 ℏ ∂tψ = H

ψ. (46)

 Heisenberg picture: operator evolves in time, state remains fixed.

 ℏ ∂t O

= O


, H

. (47)

Note: Eq. (47) assumes O

 has no explicit time dependence, if not, its explicit time derivative 

will also contribute to the rate of change of O

. 

Compare Eq. (46) with Eq. (12), we conclude that the Hamiltonian of the gauge-invariant 
Schrödinger equation is
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H

= -

ℏ2

2m
D2 + Φ, (48)

or more explicitly as

H

= H (x , p , t) =

1

2m
(p -A(x , t))2 + Φ(x , t), (49)

where

 x  is the coordinate operator.

 p = - ℏ ∇ is the momentum operator. 

 They satisfy the canonical commutation relation 

x i, p

j =  ℏ δi j . (50)

Verify Eq. (50).Exc
9

 Φ

= Φ(x , t) and A


= A(x , t) are operator functions of x , with explicit time t dependence.

Using the Heisenberg equation Eq. (47), we can compute time derivatives of the particle position 
operator x

 1st order (velocity operator)

∂tx

=
1

 ℏ
x , H


 =

p -A


m
. (51)

 2nd order (acceleration operator)

∂t
2x = -

1

m
∂tA

+
1

 ℏ
∂tx
 , H



=
1

m
E

+
1

2
∂tx

×B

-B

× ∂tx


 ,

(52)

where E

 and B


 operators are defined by

E

= -∇Φ


- ∂tA


,

B

= ∇ ×A


.

(53)

Derive Eq. (51) and Eq. (52).Exc
10

Eq. (52) describes the quantum dynamics of a charged particle in an electromagnetic field in 
the Heisenberg picture:
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m ∂t2x

= E

+
1

2
∂tx

×B

-B

× ∂tx


. (54)

In contrast, the classical dynamics is described by

m x¨ = F = E + x ×B, (55)

where all quantities commute. In the quantum case, however, ∂tx

 and B


 generally do not com-

mute, so their cross product must be symmetrized as in Eq. (54).

◼ Aharonov-Bohm Effect

In quantum mechanics, the motion of a charged particle can be influenced by the gauge 
fields Φ and A through quantum interference, even in the absence of electromagnetic fields 
(i.e. E = B = 0) when there is no Lorentz force acting on the particle at all!

 Setup: Aharonov-Bohm Experiment

 Physical Arrangement: Consider a long, thin solenoid carrying a magnetic flux ϕB. 
Outside the solenoid, the magnetic field B is zero, but the vector potential A is nonzero. 
For any surface  that fully covers the solenoid, we have

ϕB = 


B · σ = 
∂

A ·  l. (56)

BBBBBBBBBBBBBBBBBBBBBBBBB A

1

2

source screen

 Interferometry: A beam of electrons is split into two paths that encircle the solenoid in 
opposite directions and then recombine to produce an interference pattern.

 Key idea: Even when B = 0 outside the solenoid, the vector potential A influences the 
phase of the wavefunction. 

 When an electron travels along a path , the wavefunction acquires a Berry phase:

ψ →

ψ  Θ = ψ exp

 q

ℏ



A · x , (57)

where q = -e is recovered to represent the electron charge.

 The phase difference between the two paths is

ΔΘ = Θ1 -Θ2 =
q

ℏ

1

A · x - 
2

A · x . (58)

 By applying Stokes’ theorem over the surface  enclosed by the loop  = 1 -2 = ∂,
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ΔΘ =
q

ℏ



(∇ ×A) · σ =
q ϕB
ℏ
, (59)

where ϕB is the magnetic flux through  (which equals to the flux inside the solenoid as 
long as  covers the solenoid fully).

This phase shift manifests as a shift in the interference fringes when the two parts of the 
beam are recombined.

 Application: Superconducting Quantum Interference Device (SQUID)

 A SQUID consists of a superconducting loop containing a Josephson junction (serving as 
the screen) and exploit quantum interference to detect extremely subtle changes in mag-
netic flux inside the loop.

 By harnessing the quantum-level sensitivity of the Aharonov-Bohm (AB) effect, SQUIDs 
can measure magnetic fields as faint as 5 × 10-18T at microscopic scales.

 SQUIDs also play a pivotal role in quantum computing, as an approach towards supercon-
ducting qubits.

 Question: What Is Physical about Gauge Fields?

 Gauge Potentials vs. Field Strengths: Traditionally, one might think only the fields E 

and B are physical since they are gauge invariant and can be measured directly by forces. 
However, the AB effect shows that the potentials Φ and A also have direct physical conse-
quences—they affect the phase of a quantum wavefunction.

 Holonomy and Berry Phase: The Berry phase around any closed loop is gauge 
invariant, and should be physical. All such closed-loop Berry phases (aka. the 
holonomies) form the complete set of physical observables of a gauge theory. The AB 

phase is an example of a holonomy: the phase accumulated around a closed loop depends 
on the curvature (here, the magnetic flux ϕB) enclosed by the loop.

Uniform Magnetic Field

◼ Classical Dynamics

◼ Cyclotron Motion

The motion of a charged particle in the electromagnetic field is governed by the Lorentz 
force:

m x¨ = F = e (E + x ×B). (60)

 m - particle mass,
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 e - particle charge.

Consider the case: uniform magnetic field only,

E = 0, B = B ez. (61)

B

rc

vc

ξ

Circular motion in x-y plane:

x = vc(cos(ωc t) ex - sin(ωc t) ey),
x = rc(sin(ωc t) ex + cos(ωc t) ey) + ξ,

(62)

Demonstrate Eq. (62) by solving the equation of motion Eq. (60).Exc
11

 ωc - cyclotron frequency:

ωc =
e B

m
. (68)

 vc - cyclotron velocity, set by the initial velocity of the particle,

 rc - cyclotron radius,

rc =
vc
ωc

=
m vc
e B

. (69)

 ξ = ξx ex + ξy ey - guiding center (the center of the cyclotron motion). It can be recon-
structed from

ξ = x -
rc
vc
ez × x = x -

1

e B
ez × π, (70)

where π = m x  denotes the kinetic momentum.

Verify Eq. (70).Exc
12

◼ Hall Effect

Consider the case: uniform electric field perpendicular to uniform magnetic field,

E = E ey, B = B ez. (71)
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B
E

vd

The Lorentz force is balanced if

x =
E ×B

B2
= vd ex. (72)

 Drift velocity of charge:

vd =
E

B
. (73)

 Corresponding current density:

j = n e vd ex, (74)

where

 n - carrier density, number of charge carriers per unit area.

 e - carrier charge.

Justify Eq. (74).Exc
13

 Hall conductivity:

σH :=
jx
Ey

=
n e

B
. (75)

 Hall resistivity:

ρH :=
Ey
jx

=
B

n e
. (76)

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0 1

1/2
1/3
1/6

B [a.u.]

ρ
H

[h

e2
]
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 Classical expectation: given fixed carrier (electron) density n, ρH ∝ B should scale linearly 
with B.

 Quantum Hall effect: when B is large enough, σH = ρH
-1 exhibits steps at quantized values:

σH =
ν e2

h
(ν = 1, 2, 3,…). (77)

 h - Planck constant,

 e - electron charge.

◼ Landau Level Quantization

◼ Gauge Field

Two-dimensional electron system in the x-y plane, with a uniform magnetic field perpen-
dicular to the plane

B = B ez = ∇ ×A. (78)

 The vector potential (gauge field) A circulates in the x-y plane,

B

A

A = (Ax, Ay) =
B

2
(-y, x), (79)

known as the symmetric gauge. 

Verify Eq. (79) reproduces Eq. (78).Exc
14

 However, the gauge choice is not unique. For example, the following gauge choice is also valid:

A = (Ax, Ay) = (0, B x),

known as the Landau gauge.
We will mostly work with the circular gauge Eq. (79), following Ref. [1].
David Tong. The Quantum Hall Effect (TIFR Infosys Lectures), (2016). [1]
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◼ Hamiltonian

Following Eq. (48), the Hamiltonian of the gauge-invariant Schrödinger equation reads

H

= -

ℏ2

2m
D2 = -

ℏ2

2m
∇-

 e

ℏ
A
 2
. (80)

 Unit choice: 

 charge e = 1, 

 mass m = 1,

 Planck constant ℏ = 1.

Eq. (80) can be simplified to

H

=
1

2
p -A



2
=
1

2
π
 2. (81)

 p = - ∇ = (- ∂x, - ∂y) - canonical momentum operator.

 Canonical commutation relation with coordinate operator x = (x , y ):

x i, p

j =  (for i, j = x, y). (82)

 A

= A(x ) = A


x, A

y - potential momentum operator (electromagnetic vector potential). 

Under symmetric gauge Eq. (79),

A

x = -

B

2
y , A


y =

B

2
x . (83)

 π

= (π

x, πy) - kinetic momentum operator,

π

= p -A


= - ∇-A(x ) = -D, (84)

or, in terms of components

π

x = p


x -A


x = - ∂x-A


x,

π

y = p


y -A


y = - ∂y-A


y.

(85)

 They satisfy the following commutation relation

[π

x, πy] = B, (86)

which follows from the definition of gauge curvature in Eq. (42).

Verify Eq. (86).Exc
15

 They also inherit the commutation relation with the coordinate operator,
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[x i, π j] =  (for i, j = x, y). (87)

◼ Guiding Center

Following Eq. (70), the guiding center operator ξ

= (ξx, ξy) is defined as

ξ

= x -

1

B
ez × π

 . (88)

 Under symmetric gauge Eq. (79),

ξ

=
1

B
p +A


× ez, (89)

Verify Eq. (89).Exc
16

or, in terms of components

ξ

x = x


+
1

B
π

y =

1

B
p y +A


y,

ξ

y = y


-
1

B
π

x = -

1

B
p x +A


x.

(90)

 They satisfy the following commutation relation

ξ

x, ξ

y =

1

B
. (91)

Prove Eq. (91).Exc
17

 Guiding center and kinetic momentum operators commute.

ξ

i, π

j = 0 (for i, j = x, y). (92)

Prove Eq. (92).Exc
18

◼ Annihilation and Creation Operators

Define two sets of annihilation and creation operators.

 Cyclotron annihilation and creation operators:

a =
1

2B
(π

x +  π


y), a

 †
=

1

2B
(π

x -  π


y), (93)

such that
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a † a +
1

2
=
1

2B
π
 2 =

1

2B
p -A



2
. (94)

Verify Eq. (94).Exc
19

 Guiding center annihilation and creation operators:

b

=

B

2
ξ

x -  ξ


y, b

†
=

B

2
ξ

x +  ξ


y, (95)

such that

b
†
b

+
1

2
=
B

2
ξ
2

=
1

2B
p +A



2
. (96)

Verify Eq. (96).Exc
20

They satisfy the following commutation relations

a , a † = 1, b

, b
†
 = 1,

a , b

 = a , b

†
 = a †, b


 = a †, b

†
 = 0.

(97)

Prove Eq. (97).Exc
21

 Implication: a  and b

 are annihilation operators for two independent harmonic oscillator 

degrees of freedom.

 a † a  and b
†
b

 are commuting number operators, and can be diagonalized simultaneously. 

Their eigenvalues correspond to two separate sets of quantum numbers, denoted as n and 
m respectively:

a † a n,m〉 = n n,m〉,

b
†
b

n,m〉 = m n,m〉,

(98)

n, m = 0, 1, 2,… ∈ .

◼ Landau Levels

The system has two important physical observables:

 Hamiltonian: using Eq. (94), Eq. (81) can be written as
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H

=
1

2
π
 2 = B a † a +

1

2
. (99)

 Angular momentum:

L

z = (x × p ) · ez = b

†
b

- a † a . (100)

Verify Eq. (100) under symmetric gauge.Exc
22

Obviously, H

, L

z = 0, i.e. H


 and L


z can be simultaneously diagonalized.

 Their common eigenstates are n,m〉:

H

n,m〉 = B n +

1

2
n,m〉,

L

z n,m〉 = (m - n) n,m〉,

(101)

which are labeled by two quantum numbers:

 n: Landau level index (energy level index),

 m: angular momentum index (degeneracy within a Landau level).

 The energy levels are quantized 

En = B n +
1

2
, (102)

with n = 0, 1, 2,… ∈ . 

 After restoring the energy unit,

En =
ℏ q B

m
n +

1

2
= ℏ ωc n +

1

2
. (103)

where ωc = q B /m is the cyclotron frequency.

 Each level is called a Landau level. The n = 0 level is called the lowest Landau level 
(LLL).

 The angular momentum is also quantized. After restoring the unit,

Lz,nm = ℏ (m - n). (104)

Eigenstates n,m〉 arranged by energy v.s. angular momentum.
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 Landau level degeneracy:

 In an infinite system, each Landau level is infinitely degenerated.

 Argument: The quantum number m = 0, 1, 2,… ∈  is unbounded.  Infinitely many 
orthogonal states n,m〉 within the same energy level n.

 In a realistic system of finite size, the Landau level degeneracy becomes finite, and is deter-
mined by the total magnetic flux measured in units of the flux quantum.

 Consider electrons confined within a disk of radius R.  The guiding center radius ξ 
must satisfy ξ ≲ R.

 This puts a constraint on the operator

b
†
b

+
1

2
=
B

2
ξ
2
≲
B R2

2
, (105)

in terms of its eigenvalues.  m ≲ B R2  2, restoring the physical units:

m ≲
e B R2

2 ℏ
. (106)

 A flux quantum is the amount of magnetic flux ϕ0 that induces a 2 π Berry phase for 
an electron braiding around it.

phase =
action

ℏ
=
e ϕ0
ℏ

= 2 π, (107)

meaning that

ϕ0 =
h

e
. (108)

 Then Eq. (106) can be written as

m ≲
ϕB

ϕ0
, (109)

where ϕB = πR2 B is the total magnetic flux through the disk.
Thus the Landau level degeneracy is set by ϕB / ϕ0 — the conclusion generalizes to any 
shape of the system.
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◼ Complex Coordinate

Instead of using x = (x, y) to coordinate the position of the particle, it is more convenient to 
introduce:

 the complex coordinate

z =
B

2
(x +  y), z =

B

2
(x -  y), (110)

 and the complex derivative

∂z =
1

2B
(∂x- ∂y), ∂z =

1

2B
(∂x+ ∂y). (111)

Derive Eq. (111) from Eq. (110).Exc
23

Using the complex notation, the creation and annihilation operators can be represented as

a = -
1

2
z + ∂z , a

 †
= 

1

2
z - ∂z ;

b

=
1

2
z + ∂z, b

†
=
1

2
z - ∂z .

(112)

Verify Eq. (112).Exc
24

◼ Wave Functions

0,0〉 is the vacuum state for both a  and b

 bosons, defined by the condition

a 0,0〉 = b

0,0〉 = 0. (113)

so the vacuum state wave function ψ0,0(z, z) should satisfy

1

2
z + ∂z ψ0,0(z, z) =

1

2
z + ∂z ψ0,0(z, z) = 0. (114)

 Consider the ansatz

ψ0,0(z, z) = f (z, z) -z z/2, (115)

Eq. (114) implies

∂z f (z, z) = ∂z f (z, z) = 0, (116)
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Derive Eq. (116).Exc
25

meaning that f (z, z) must be independent of both z and z , i.e. it is a constant function, i.e.

f (z, z) = const. (117)

 Therefore, the vacuum state wave function reads

ψ0,0(z, z) =
1

π

-z z/2, (118)

which is normalized to ensure ∫ z z ψ0,0(z, z)2 = 1.

Any other state n,m〉 can be raised from the vacuum state 0,0〉 by applying creation 
operators

n,m〉 =
1

n !m !

(a †)n (b
†
)
m
0,0〉, (119)

for n, m = 0, 1, 2,….

 Lowest Landau level (LLL): The wave functions with n = 0 are

ψ0,m(z, z) =
1

πm !

zm -z z/2. (120)

Derive Eq. (120).Exc
26

The wave functions has circular symmetry, taking the ring shape.

 Probability density
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ψ0,m(z, z)2 =
1

πm !
(z z)m -z z, (121)

which distributes around the radius z = m .

Estimate the radius z that maximizes the probability.Exc
27

 Semi-classical argument: The factor zm = B / 2 rm m θ implies that the particle accu-
mulates 2 πm Berry phase when travelling around a circle of radius r. 

 To ensure that the wave function is single-valued, m must be an integer, i.e.

2 πm ∈ 2 π   m ∈ . (122)

 This corresponds to a canonical momentum of

p =
2 πm

2 π r
=
m

r
. (123)

 States in the LLL should minimize the energy E = (p -A)2  2, which can be achieved if

p = A =
π r2 B

2 π r
=
r B

2
. (124)

 Eq. (123) and Eq. (124) together sets the optimal radius

m

r
= p =

r B

2
 r =

2m

B
, (125)

or, in terms of z variable, z = B / 2 r = m  (with m ∈ ).

 Any linear combination of 0,m〉 is still a state in the LLL, which takes the general form of



m

cm ψ0,m(z, z) =
1

πm !


m

cm zm -z z/2 = f (z) -z z/2. (126)

Conclusion: LLL wavefunctions are holomorphic functions of  z , multiplied by a Gaus-
sian envelope.

 More generally, for higher Landau levels, the wave functions

ψn,m(z, z) =
1

π n !m !

((z - ∂z)n zm) -z z/2, (127)

can be written in terms of associated Laguerre polynomials.

◼ Quantum Hall Effect

◼ Filling Landau Levels

For a single electron confined to a two-dimensional plane under a uniform perpendicular 
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magnetic field, the energy eigenvalues are quantized into Landau levels:

En = ℏ ωc n +
1

2
(n = 0, 1, 2,…). (128)

 Level spacing (energy gap): ℏ ωc, where ωc = e B /m is the cyclotron frequency.

 Level degeneracy: Given the total magnetic flux ϕB through the plane, degeneracy is

Nϕ :=
ϕB

ϕ0
=
B A

ϕ0
, (129)

where 

 A - total area of the system,

 ϕ0 = h / e - the magnetic flux quantum.

Many-body system: In real materials, there is not just one single electron, but many 
electrons interacting with each other — the problem become many-body in nature.

 The key feature of electrons is their fermionic statistics. 
 Pauli exclusion principle: no two electrons can occupy the same quantum state.

 Filling up energy levels: Due to Pauli exclusion, electrons will fill up available quantum 

states starting from the lowest energy states.

 Filling fraction ν is the (fractional) number of Landau levels that will be filled up,

ν =
N

Nϕ
=
n h

e B
. (130)

 N  - total number of electron in the system,

 n = N /A - electron density, i.e. the number of electrons per area. 

Conversely, Eq. (130) allows us to express n in terms of ν,  

n =
ν e

h
B. (131)

The phenomenology of integer quantum Hall effect is that the Hall conductivity σH  

takes quantized values (recall Eq. (77))

σH =
n e

B
=
ν e2

h
, (132)

at ν = 1, 2, 3,…, i.e. when the filling fraction ν ∈  is an integer, corresponding to the situation 
where

 the lowest ν Landau levels are completely filled,

 and all higher levels are completely empty.

This leads to an incompressible quantum state: electrons cannot change states without a 
large energy cost (the Landau level spacing ℏ ωc).
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Message: The quantized Hall conductance originates from fully filling discrete Landau levels. — 

Why does each filled Landau level contribute to exactly one unit of σH?

◼ Charge Pumping

Consider a annular geometry that allows us to probe the Hall effect via radial charge 
pumping.

ϕ
e-e

 In addition to a uniform perpendicular magnetic field B, we thread an extra magnetic flux ϕ(t) 
through the central hole, which slowly increases from 0 to ϕ0 over a long time T ,

ϕ(t) = ϕ0
t

T
, (133)

 ϕ0 = h / e - flux quantum,

 T ≫ 1 /ωc - adiabatic evolution time. (t : 0 → T).

 Due to the Aharonov-Bohm effect, each quantum state n,m〉 will be affected — its wave 
function radius rm will be deformed adiabatically,

rm =
ϕ0

πB
m - t /T . (134)

Derive Eq. (134).Exc
28

Under the flux insertion, 

t : 0  T
ϕ(t) : 0 → ϕ0

rm ∝ m → m - 1
, (136)

the radius of every orbit shrinks from m  to m - 1   pumping one charge e from the outer 
edge to the inner edge.

 During this process,

 the radial current density:
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jr =
1

2 π r

e

T
, (137)

 the circular electric field induced by the changing flux:

Eθ =
1

2 π r

ϕ(t)

 t
=

1

2 π r

ϕ0

T
, (138)

Hall conductivity for each fully filled Landau level:

σH =
jr
Eθ

=
e

ϕ0
=
e2

h
. (139)

Conclusion: quantized transport of charge in response to quantized flux insertion  quantized 
Hall conductance.

◼ Linear Response Theory

The Hall conductivity σH  characterizes how the current density j (observable) responds 
to the electric field E (perturbation).

 Current density operator for each electron (assuming m = e = h = 1) reads

j

=
B

Nϕ
π
 . (140)

Justify Eq. (140) based on Eq. (74).Exc
29

 The expectation value of current density in the system is given by

〈j〉 = 

n,m ∈ occ

〈n,m j

n,m〉

=
B

Nϕ


n,m ∈ occ

〈n,m π n,m〉,
(141)

where ∑n,m ∈ occ is to sum over all lowest n,m〉 states that are occupied by the electron.

 Based on Eq. (93), the kinetic momentum operator π  can be expressed as

π

x =

B

2
a † + a , πy =

B

2
 a † - a . (142)

As expected, the current density 〈j〉 = 0 vanishes on the many-body ground state, in the 
absence of perturbation.

 Applying a (weak) electric field E to the system amounts to perturbing the vector poten-
tial A by a time-dependent perturbation δA(t),

A → A+ δA (t), (143)
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with E (t) = -∂t δA (t), according to Eq. (44).

 Assume that E (t) = E - (ω+0+) t takes an oscillatory form with frequency ω, and is adiabati-
cally turned on from the infinite past, then

δA (t) = 
-∞

t
 t′ E (t′) = -

E

 ω
- (ω+0+) t. (144)

-50 -40 -30 -20 -10 0
-1.0
-0.5
0.0
0.5
1.0

t /T


-

(ω

+

ε
)
t

εT = 0.05

 This means the Hamiltonian operator will be perturbed by

H

→ H

+ δH


(t), (145)

with the perturbation given by

δH

(t) =

∂H


∂A
· δA (t) (146)

to the leading order of δA (t).

 Given that π = p -A and

H

=
1

2
π
 2 =

1

2
(p -A)2, (147)

we have

∂H


∂A
= -(p -A) = -π

 . (148)

Substitute Eq. (148) into Eq. (146), the time-dependent perturbation Hamiltonian reads

δH

(t) = -π


· δA (t) =

1

 ω
E · π


- (ω+0+) t. (149)

The time-dependent perturbation problem can solved by the Green’s function approach.

 Dressed Green’s function (unitary time-evolution operator) can be computed from the 
Dyson series to the leading order

G

(t, -∞) = G


0(t, -∞) + (-) 

-∞

t
 t′ G


0(t, t′) δH


(t′)G


0(t′, -∞) +…, (150)

where the bare Green’s function is defined by
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G

0(t, t′) = 

n,m

n,m〉 -En(t-t′) 〈n,m,
(151)

with En = B (n + 1 / 2) being the Landau level energy (see Eq. (102)).

 Every state will evolve in time by

n,m〉 → G

(t, -∞) n,m〉. (152)

As a result, by Eq. (141), the current density expectation value 〈j〉 evolves as

〈j(t)〉 =
B

Nϕ


n,m ∈ occ

〈n,mG

(-∞, t) π G


(t, -∞) n,m〉

=
B

Nϕ


n,m ∈ occ

〈n,m π

(t) +

1

ω

-∞

t
 t′ - (ω+0+) t′[E · π


(t′), π (t)] +… n,m〉.

(153)

Derive Eq. (153).Exc
30

where we have introduced

π

(t) := G


0(-∞, t) π G0


(t, -∞). (154)

 The first term in Eq. (153) is the current density in the absence of an electric field, which 
vanishes.



n,m ∈ occ

〈n,m π (t) n,m〉 = 0.
(155)

Show Eq. (155).Exc
31

 The second term in Eq. (153) describes the linear response of the current density under 
the electric field, which takes the form of

〈j(t)〉 = E ·σ(ω) - (ω+0+) t, (156)

with the conductivity matrix σj i(ω) given by

σj i(ω) =
B

ωNϕ

-∞

0
 t - (ω+0+) t 

n,m ∈ occ

〈n,m[π j (t), πi(0)] n,m〉. (157)

Derive Eq. (156) and Eq. (157).Exc
32

Eq. (156) implies that when the applied electric field E (t) = E - (ω+0+) t oscillates at frequency 
ω, the induced current 〈j(t)〉 also oscillates at the same frequency. — A feature of linear 
response.

PhaseAndGauge.nb     29



 The Hall conductivity corresponds to the off-diagonal component σxy(ω) of the conductivity 
matrix. In the DC limit ω  0, it is given by the Kobo formula:

σH := lim
ω0

σxy(ω) =
B

Nϕ


n,m ∈ occ


n′≠n

〈n,m πx n′,m〉 〈n′,m πy n,m〉- h.c.

(En′ -En)2
. (158)

Derive Eq. (158).Exc
33

 Using Eq. (142) to represent the kinetic momentum operator π  as annihilation and creation 
operators, and given that 

a n,m〉 = n n-1,m〉,

a † n,m〉 = n + 1 n+1,m〉,
(159)

the Hall conductivity σH  in Eq. (158) reduces to

σH =
1

Nϕ


n,m ∈ occ

1. (160)

Derive Eq. (160).Exc
34

 Each occupied state contributes 1 /Nϕ to σH  (in unit of the conductance quantum e2  h).

 Each Landau level is Nϕ-fold degenerated.  Fully filling each Landau level produces 
exactly one unit of σH .

Spin and Monopole

◼ Classical Spin

◼ Angular Momentum Decomposition

The classical motion of a spinning top is governed by

τ =
L

 t
, (161)

where

 τ - torque exerted on the top,

 L - total angular momentum of the top, decomposed into components parallel Ia ω and 
perpendicular It Ω to the spinning axis
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L = Ia ω+ It Ω, (162)

 Ia - axial moment of inertia (about the spinning axis),

 It - transverse moment of inertia (about either of the two equivalent transverse axes)

 ω - axial angular velocity (along the spinning axis)

 Ω - transverse angular velocity, describing the instantaneous rotation rate of the spinning 
axis itself.

◼ Dynamics of Spinning Axis

Substitute Eq. (162) into Eq. (161),

τ = Ia
ω

 t
+ It

Ω

 t
. (163)

 Transverse Torque Assumption: Assume τ has no component along the spinning axis, so 
the magnitude of ω remains constant. Only its direction changes due to the rotation of the 
spinning axis: 
ω

 t
= Ω ×ω, (164)

Eq. (163) becomes

τ = Ia Ω×ω+ It
Ω

 t
. (165)

We are mainly interested in the motion of the spinning axis, represented by the unit vector

n =
ω

ω
. (166)

Similar to Eq. (164), n also gets rotated by Ω as

n

 t
= Ω ×n, (167)

from which Ω can be “solved” and expressed as
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Ω = n ×
n

 t
. (168)

Derive Eq. (168) from Eq. (167).Exc
35

Substitute Eq. (168) into Eq. (165), and cross product with n from right on both sides, we 
obtain

It
2n

 t2 ⟂

= τ ×n -
n

 t
×S, (169)

where

 S := Ia ω = S n - spin angular momentum (parallel to the spinning axis),

 (n¨ )⟂ = n¨ - (n¨ ·n) n  - component of acceleration n¨  in the tangent plane.

Derive Eq. (169).Exc
36

◼Magnetic Monopole

◼ Electromagnetic Analogy

The motion of the spinning axis n (spin dynamics) can be interpreted as the motion of a 
charged particle on a unit sphere with an magnetic monopole inside (charge dynamics). 

 Analogy: Compare the spin dynamics in Eq. (169) and the charge dynamics in Eq. (55)

spin : It (n¨ )⟂ = τ×n - n ×S
charge : m x¨ = E + x ×B (170)

Spin dynamics Charge dynamics
Spin orientation :n Charge position : x
Moment of inertia : It Mass (interia) :m

Torque-induced force : τ×n Electric field :E
Spin angular momentum : -S Magnetic field :B

 Similarity: Just as in electromagnetism, where the Lorentz force deflects a charge moving in 
a magnetic field, the spin-induced term -n ×S generates precession of the spinning axis.
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 Difference: The constraint to the sphere makes the coordinate system non-Euclidean 
(curved), in which ∇ operator is defined differently. [2]

 Spherical coordinate: parametrize the spin axis

n = (cos φ sin θ, sin φ sin θ, cos θ), (171)

by the polar angle θ ∈ [0, π] and the azimuthal angle φ ∈ [0, 2 π).

 Unit vectors:

eθ = (cos φ cos θ, sin φ cos θ, -sin θ),

eφ = (-sin φ, cos φ, 0).
(172)

 Surface gradient: ∇⟂Φ for a scalar field Φ,

∇⟂Φ = eθ ∂θΦ+ eφ
1

sin θ
∂φΦ. (173)

 Surface curl: ∇⟂ ×A for a vector field A = Aθ eθ +Aφ eφ,

∇⟂ ×A =
1

sin θ
(∂θ (Aφ sin θ) - ∂φAθ) n. (174)

Wikipedia. Del in cylindrical and spherical coordinates. [2]

◻ Differential Geometry for Vector Calculus

In vector calculus, we often compute gradients, divergences, curls, and integrals over 
curves, surfaces, or volumes. While powerful, these operations depend heavily on the coordinate 
system and dimension. Differential geometry provide a more geometric and coordinate-free 
language for calculus. They unify many familiar operations and extend naturally to curved 
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spaces (manifolds).

 Differential Forms: differential form is the basic object in differential geometry, it is an 
object that you can integrate:

 A 0-form is just a scalar field f (x), which can be integrated (evaluated) on a point x.

 A 1-form is a vector field (line element), like ω(x) = ωi(x) xi, something you can integrate 
along a curve.

 A 2-form is an tensor field (oriented surface element), e.g. σi j(x) xi ⋀ xj, integrable over 
a surface.

In general:

 A k-form is something you integrate over a k-dimensional submanifold.

 The wedge product ⋀ defines an oriented, antisymmetric product between forms:

xi ⋀ xj = -xj ⋀ xi. (175)

 Metric: The metric defines how distance is measured on the manifold.

s2 = gij(x) xi xj, (176)

where 

 s2 is the squared infinitesimal distance element,

 gij(x) are the components of the metric tensor, forming a symmetric positive-definite matrix.

 xi are the differential 1-form basis (cotangent basis)

 Exterior Derivative: the exterior derivative  acts on differential forms to produce forms of 
higher degree. Given f = fI xI ,

 f = ∂i fI xi ⋀ xI . (177)

 2 = 0: the exterior derivative of an exterior derivative is always zero.

 Stoke’s Theorem:


∂M
ω = 

M
ω. (178)

 Hodge Dual: On an n-dimensional oriented manifold, the Hodge star operator ★ maps k-
forms to (n - k)-forms.

★xi1 ⋀…⋀ xik  =
det[gij]1/2

(n - k)!
gi1 j1 … gik jk ϵj1 … jn x

jk+1 ⋀…⋀ xjn , (179)

where 

 ϵj1 … jn is the Levi-Civita symbol,
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 gij = xi, xj is the inverse metric, which tells how differential forms xi and xjare 
“angled” with respect to each other.

Exterior derivative and Hodge dual enable us to represent vector calculus operators in terms 
of differential forms in a unified manner.

Vector Calculus Differetial Forms
grad (∇ f )  f
curl (∇ ×ω) ★ ω

div (∇ ·ω) ★ ★ω

Laplacian ∇2 f  ★ ★  f

(180)

See Refs. [3] for more details of the above concepts.

Application in spherical coordinates on S2.

 Metric: the distance element is given by

s2 = θ2 + sin2 θ φ2, (181)

which implies

gij =
1 0
0 sin2 θ

, gij =
1 0
0 sin-2 θ

, (182)

and det[gij]1/2 = sin θ.

 Unit (co)vectors: orthonormal basis of 1-forms

eθ ↔ gθθ θ = θ,

eφ ↔ gφφ φ = sin θ φ.
(183)

This enables us to represent any vector field as 1-form field, such as

A = Aθ eθ +Aφ eφ ↔ A = Aθ θ +Aφ sin θ φ. (184)

 Gradient: given a scalar field Φ,

grad Φ = eθ ∂θΦ+ eφ
1

sin θ
∂φΦ. (185)

Derive Eq. (185) using differential geometry approach.Exc
37

 Curl: given a vector field A = Aθ eθ +Aφ eφ,

curlA =
1

sin θ
(∂θ (Aφ sin θ) - ∂φAθ) n. (186)
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Derive Eq. (186) using differential geometry approach.Exc
38

 Divergence: given a vector field A = Aθ eθ +Aφ eφ,

divA =
1

sin θ
(∂θ (Aθ sin θ) + ∂φAφ). (187)

Derive Eq. (187) using differential geometry approach. Exc
39

 Laplacian: given a scalar field ψ,

∇2ψ =
1

sin θ
∂θ (sin θ ∂θψ) +

1

sin2 θ
∂φ
2ψ. (188)

Derive Eq. (188) using differential geometry approach.Exc
40

Vincent Bouchard. MATH 315: Calculus IV (University of Alberta).[3]

◼ Effective Gauge Field

Introduce the effective gauge field (Φ, A) on the sphere, such that

 Effective electric field:

E(n) = -∇⟂Φ(n). (189)

In this way, E is guaranteed to lie in the tangent plane, the same as the torque-induced force 
τ×n.

Φ

Example: a spinning top in a uniform gravity field Φ(n) ∝ nz = cos θ,

E = -∇⟂Φ = eθ sin θ. (190)

 Effective magnetic field:

B (n) = -S n = ∇⟂ ×A(n). (191)

where S = Ia ω is the spin angular momentum (magnitude). The magnetic field points towards 
the origin, where there is effective an magnetic monopole.

36     PhaseAndGauge.nb

https://sites.ualberta.ca/~vbouchar/MATH315/notes.html


One common choice of vector potential A (n) to produce such magnetic field is the Wu-
Yang monopole potential [4]

A (n) = S
cos θ - 1

sin θ
eφ (192)

Verify that A (n) given in Eq. (192) satisfies Eq. (191).Exc
41

 As a simple justification, along a latitude loop at the polar angle θ, the loop integral of the 
vector potential is

 A ·  l =  S
cos θ - 1

sin θ
sin θ φ = 2 π S (cos θ - 1), (193)

which indeed equals to the magnetic flux through the spherical cap from the north pole 
down to angle θ

 B · σ = -S Ω(θ) = -2 π S (1- cos θ), (194)

where Ω(θ) = 2 π (1- cos θ) denotes the solid angle of the cap.

 However, as θ  π near the south pole, Aφ → ∞ diverges. What is going wrong?

T. T. Wu, C. N. Yang. Dirac monopole without strings: monopole harmonics. Nuclear Physics 
B107 365-380 (1976). 

[4]

◼ Quantization of Spin (or Monopole)

The divergence of Aφ is due to the requirement that an infinitesimal latitude loop near the 
south pole (θ  π) must accumulate a finite amount of Berry phase set by the total magnetic 
flux through the sphere

Θ =
1

ℏ
 A ·  l =

2 π

ℏ
sin θAφ =

4 πB

ℏ
= -

4 π S

ℏ
. (195)

The divergence can not be avoid, unless … Θ is actually equivalent to 0, i.e.

Θ = 2 π n, (196)

with n ∈ .
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 Therefore, it is only possible to avoid singular assignment of A(n) if the spin angular 
momentum S is quantized to

S =
ℏ

2
n, (197)

with n = 0, 1, 2,….

 This is also a statement about the magnetic monopole, that the total magnetic flux 
emitted by a magnetic monopole must be quantized to

ϕB = 4 πB = -2 π ℏ n. (198)

Mathematically, the singularity is avoided by using two overlapping coordinate patches 
(north and south hemispheres) with smooth gauge fields on each.

 On the northern hemisphere (θ ∈ [0, π / 2], excluding the south pole):

AN (n) = S
cos θ - 1

sin θ
eφ. (199)

 On the southern hemisphere (θ ∈ [π / 2, π], excluding the north pole):

AS (n) = S
cos θ + 1

sin θ
eφ. (200)

 On the equator (θ = π / 2) where both patches overlap, the two gauge potentials are related 
by a gauge transformation:

AN (φ) -AS(φ) = ℏ eφ ∂φ χ(φ), (201)

with χ(φ) = -2 (S / ℏ) φ.
Since φ and φ+ 2 π correspond to the same point on the equator, the gauge transformation 
ψ(φ) →  χ(φ) ψ(φ) is only consistent if

 χ(φ) =  χ(φ+2 π)

 exp(- 2 (S / ℏ) φ) = exp(- 2 (S / ℏ) (φ+ 2 π))
(202)

which requires

2 S

ℏ
∈ , (203)

reproducing the spin quantization condition in Eq. (197).

◼ Quantum Spin

◼ Hamiltonian

Consider the spherical symmetric case, where there is no external scalar potential 
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Φ(n) = 0. Similar to Eq. (48), the quantum dynamics of a spin is described by the Hamiltonian 

H

= -

ℏ2

2 It
D⟂
2 +

S2

2 Ia
. (204)

 It = m - the transverse moment of inertia of the spin,

 D⟂ - surface covariant derivative, along tangent directions on the sphere,

D⟂ = ∇⟂-


ℏ
A, (205)

 ∇⟂ = eθ ∂θ+eφ 1
sin θ

∂φ - surface gradient,

 A = Aθ eθ +Aφ eφ - gauge connection (vector potential) on the sphere. Take the Wu-Yang 
monopole potential:

Aθ = 0, Aφ = S
cos θ - 1

sin θ
, (206)

with the quantization condition (n ∈ ),

S = ℏ s = ℏ
n

2
, (207)

where s = n / 2 is introduced as the spin quantum number (quantized to half integers), 
also characterizing the monopole strength.

In spherical coordinate, the Hamiltonian acts on the wave function ψ(θ, φ) as

D⟂
2 ψ =

1

sin θ
∂θ (sin θ ∂θ) +

1

sin θ
(∂φ+ s (1- cos θ))2 ψ. (208)

Derive Eq. (208) using differential geometry approach. Exc
42

◼ Schrödinger Equation

Solve the stationary Schrödinger equation: 

H

ψ(θ, φ) = E ψ(θ, φ). (209)

 Separation of variables: let

ψ(θ, φ) =  (m-s) φ ψ(θ), (210)

Eq. (209) takes the form of the generalized associated Legendre differential equation

1

sin θ
∂θ (sin θ ∂θ) -

1

sin2 θ
(m - s cos θ)2 + λ ψ(θ) = 0 (211)

where the eigenvalue λ is related to the energy E by
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E =
ℏ2

2 It
λ+

ℏ2

2 Ia
s2. (212)

Justify Eq. (211) and Eq. (212).Exc
43

 The equation Eq. (211) can be solved by

ψ(θ) = (1- cos θ)
s-m
2 (1+ cos θ)

s+m
2 Pl-s

(s-m,s+m)
(cos θ), (214)

where

 Pn(a,b)(x) denotes the Jacobi polynomial,

Pn(a,b)(x) = 2-n
k=0

n (n + a)!

k ! (n + a - k)!

(n + b)!

(n - k)! (b + k)!
(x - 1)n-k (x + 1)k. (215)

which is well-defined for x ∈ [-1, 1] if n, n + a, n + b ∈ , implying the following quantization 
conditions:

 l = s, s + 1, s + 2,…,

 m = - l, - l + 1,…, l - 1, l.

 The corresponding eigenvalue λ is

λ = l (l + 1) - s2. (216)

Verify Eq. (214) and Eq. (216).Exc
44

◼ Monopole Harmonics

Put together, define the monopole harmonics Yslm(θ, φ) function

Yslm(θ, φ) =   (m-s) φ(1- cos θ)
s-m
2 (1+ cos θ)

s+m
2 Pl-s

(s-m,s+m)
(cos θ). (220)

where Pn(a,b) is the Jacobi polynomial, and  is the normalization constant to ensure 
∫0
2 π
φ ∫0

π
θ Yslm(θ, φ)2 sin θ = 1.

 The eigen wavefunction of H

 is given by

ψslm(θ, φ) = Yslm(θ, φ). (221)

 The corresponding eigen energy is

Eslm =
ℏ2

2 It
l (l + 1) - s2+

ℏ2

2 Ia
s2. (222)

In the isotropic limit (Ia = It = I), the eigen energy only depends on the quantum number l,
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Eslm =
ℏ2

2 I
l (l + 1). (223)

 The quantum numbers s, l, m take values in

 s = 0, 1 / 2, 1, 3 / 2,… ∈  / 2, with S = ℏ s  sets the monopole strength (i.e. total magnetic 
flux through the unit sphere).

 l = s, s + 1, s + 2,… ∈ s +   labels the Landau levels on the sphere.

 m = - l, - l + 1,…, l - 1, l  labels the degenerated states within each Landau level  

Landau level-l has the degeneracy (2 l + 1).

◼ Angular Momentum

The total angular momentum operator is defined as

L

= n × (- ℏD⟂) +S. (224)

where

 S = S n = ℏ s n is the spin angular momentum (axial component).

 n × (- ℏD⟂) is the orbital angular momentum (transverse component) associated with 
the spinning axis precession, which is given by the cross product between:

 n - axis coordinate (on the sphere),

 - ℏD⟂ - axis kinetic momentum (in the tangent plane).

Explicitly,

L

= ℏ eφ(- ∂θ) - eθ

1

sin θ
((- ∂φ) + s(1- cos θ)) + s n . (225)

Derive Eq. (225).Exc
45

According to Eq. (171) and Eq. (172), 

n = cos φ sin θ ex + sin φ sin θ ey + cos θ ez,
eθ = cos φ cos θ ex + sin φ cos θ ey - sin θ ez,
eφ = -sin φ ex + cos φ ey.

(226)

L

 in Eq. (225) can be decomposed in Cartesian coordinate system as

L

= L

x ex +L


y ey +L


z ez, (227)

with

L

x = ℏ sin φ ( ∂θ) + cos φ cot θ ( ∂φ) + s

1- cos θ

sin θ
,
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L

y = ℏ -cos φ ( ∂θ) + sin φ cot θ ( ∂φ) + s

1- cos θ

sin θ
,

L

z = ℏ((- ∂φ) + s).

Derive Eq. (228).Exc
46

They satisfy the following commutation relations:

L

x, L

y =  ℏ L


z,

L

y, L

z =  ℏ L


x,

L

z, L

x =  ℏ L


y,

(229)

which could be summarized as L

×L

=  ℏL


 in vector form. This is the defining property of any 

angular momentum operator.

Verify Eq. (229).Exc
47

◼ Squared Angular Momentum

The squared angular momentum operator is generally defined as

L
 2
:= L

·L

= L

x
2
+L

y
2
+L

z
2
. (230)

 For our case of L

 in Eq. (224), L

 2
 can be explicitly written out

L
 2

= -ℏ2D⟂
2 + S2

=
-ℏ2

sin θ
∂θ (sin θ ∂θ) +

1

sin θ
(∂φ+ s (1- cos θ))2 + ℏ2 s2.

(231)

 A key property of L
 2

 is that it commutes with any component of the angular momentum 

operator,

L
 2
, L

a = 0 (for a = x, y, z), (232)

or simply written as L
 2
, L

 = 0 in vector form. It is commonly referred to as the Casimir 

operator of the (3) algebra — an element in the Lie algebra that commutes with all its 
generators.

Proof Eq. (232) based on Eq. (229).Exc
48

Given L
 2
, L

z = 0 (i.e. L

 2
 and L


z are commuting operators), they can be simultaneously 

diagonalized by a set of common eigenstates, which turns out to be the monopole harmonics 
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Yslm(θ, φ),

L
 2
Yslm(θ, φ) = ℏ2 l (l + 1)Yslm(θ, φ),

L

z Yslm(θ, φ) = ℏmYslm(θ, φ).

(233)

Verify Eq. (233).Exc
49

 The quantum numbers are reinterpreted as

 l = s, s + 1, s + 2,… ∈ s +  - angular quantum number (labeling quantized total angular 
momentum), 

 m = - l, - l + 1,…, l - 1, l - magnetic quantum number (labeling quantized z-component 
of angular momentum).

◼ Spin-1 /2

The smallest non-trivial monopole strength is

s = 1 / 2, (234)

corresponding to a quantum spinning top with axial angular momentum

S = ℏ s =
ℏ

2
. (235)

The total angular momentum can not be smaller than S.

The lowest Landau level is achieved at l = s = 1 / 2, where the total angular momentum satu-
rates its minimal value S = ℏ / 2, realizing a spin-1 / 2 system. In this case:

 There are only two options for the quantum number m

m = ±
1

2
, (236)

corresponding to the up and down spin states.

 The corresponding monopole harmonics wave functions are

Y1/2,1/2,m(θ, φ) =
1

4 π
 (m-1/2) φ(1- cos θ)

1/2-m
2 (1+ cos θ)

1/2+m
2 , (237)

or respectively as

Y1/2,1/2,+1/2(θ, φ) =
1

4 π
1+ cos θ ,

Y1/2,1/2,-1/2(θ, φ) =
1

4 π
- φ 1- cos θ .

(238)
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Y1/2,1/2,+1/2 Y1/2,1/2,-1/2

 Angular momentum eigenvalues:

L
 2
Y1/2,1/2,±1/2 =

3

4
ℏ2 Y1/2,1/2,±1/2,

L

z Y1/2,1/2,±1/2 = ±

1

2
ℏY1/2,1/2,±1/2.

(239)

 Energy eigenvalue (2-fold degenerated)

H

Y1/2,1/2,±1/2 =

ℏ2

4 It
+
ℏ2

8 Ia
Y1/2,1/2,±1/2. (240)

Puzzle: It seems that Y1/2,1/2,-1/2(θ, φ) is not single-valued at the south pole (θ = π), is there any-
thing wrong?

 Topological obstruction: Monopole harmonics can not be globally single-valued in a naive 
coordinate sense because of the nontrivial gauge curvature induced by the monopole.

 However, the apparent multivaluedness is a gauge artifact, and can be removed by the 
gauge transformation. 

Solution: define the monopole harmonics on different hemispheres with different gauge choices, 
and switch gauge choices at the equator by gauge transformation. 

 For the northern hemisphere (θ ∈ [0, π / 2], excluding the south pole):

AN (θ, φ) =
ℏ

2

cos θ - 1

sin θ
eφ,

Y1/2,1/2,+1/2N (θ, φ) =
1

4 π
1+ cos θ ,

Y1/2,1/2,-1/2N (θ, φ) =
1

4 π
- φ 1- cos θ .

(241)

 For the southern hemisphere (θ ∈ [π / 2, π], excluding the north pole):

AS(θ, φ) =
ℏ

2

cos θ + 1

sin θ
eφ,
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Y1/2,1/2,+1/2S (θ, φ) =
1

4 π
 φ 1+ cos θ ,

Y1/2,1/2,-1/2S (θ, φ) =
1

4 π
1- cos θ .

 On the equator (θ = π / 2), the two gauge choices are related by a gauge transformation:

AN (π / 2, φ) = AS(π / 2, φ) + ℏ eφ ∂φ χ(φ),
Y1/2,1/2,mN (π / 2, φ) =  χ(φ) Y1/2,1/2,mS (π / 2, φ),

(243)

with χ(φ) = -φ.

Verify Eq. (243).Exc
50

Therefore, monopole harmonics can (only) be defined by piecing different gauge patches together 
with gauge transformations,

Y1/2,1/2,m(θ, φ) =
Y1/2,1/2,mN (θ, φ) θ ∈ [0, π / 2],

Y1/2,1/2,mS (θ, φ) θ ∈ [π / 2, π],
(244)

such that there is no singularity on any patch, and physical quantities are all well-behaved.
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