
130B Quantum Physics
Part 1. Path Integral Quantization

From Classical to Quantum

◼ Historical Review

◼ History: What is the Nature of Light?

There has been two theories in the history concerning the nature of light.

 The corpuscular (particle) theory: light is composed of steady stream of particles carrying 
the energy and travelling along rays in the speed of light.

 The wave theory: light is wave-like, propagating in the space and time.
The long-running dispute about this problem has lasted for centuries.

◻ The Wave-Particle Wars in History

A time-line of “the wave-particle wars” in the history of physics. (c.f. Wikipedia: Historical 
theories about light).

Ancient 
Greece

Pythagorean discipline postulated that every visible object emits a steady 
stream of particles, while Aristotle concluded that light travels in a manner 
similar to waves in the ocean.

Early 17th 
century

R. Descartes proposed light is a kind of pressure propagating in the media.

1662 P. de Fermat stated the Fermat principle, the fundamental principle of 
geometric optics, where light rays are assumed to be trajectories of small 
particles.

1665 P. Hooke expressly pointed out the wave theory of light in his book, where 
light was considered as some kind of fast pulses.

1672 I. Newton conducted the dispersion experiment of light. He decomposed white 
light into seven colors. Thus he explained that light is a mixture of little corpus-
cles of different colors. His paper was strongly opposed by Hook, and “the first 
wave-particle war” broke out.

1675 The phenomenon of Newton’s ring was discovered by Newton.

https://en.wikipedia.org/wiki/Light#Historical_theories_about_light,_in_chronological_order
https://en.wikipedia.org/wiki/Light#Historical_theories_about_light,_in_chronological_order


1690 C. Huygens considered light as longitudinal wave propagating in a media called 
ether. He introduced the concept of wave front, deduced the law of reflec-
tion and refraction, and explained the phenomenon of Newton’s ring by 
wave interference. The wave theory reached its crest.

1704 I. Newton published his book Optiks, which explained dispersion, double 
refraction, and diffraction from particle viewpoint. On the other side, 
Newton integrated the corpuscular theory with his classical mechanics, 
which combined to show enormous strength over the century.

Early 18th 
century

“The first wave-particle war” ends, and corpuscular (particle) theory occupied 
the mainstream of physics for the following hundred years.

1807 T. Young conducted the double-split experiment, and proposed light to be 
a longitudinal wave, which simply explained the interference and diffrac-
tion of light. Young’s experiment triggered “the second wave-particle war”. 
The corpuscular theory could do nothing but to suffer one defeat after another.

1809 E. Malus discover the polarization of light, which could not be explained by 
longitudinal wave theory. This gave the wave theory a heavy strike.

1819 A. Fresnel submitted a paper, perfectly explained the diffraction of light from 

wave viewpoint based on rigorous mathematical deductions. When Poisson 
applied this theory to circular disk diffraction, he predicted that a light spot 
will appear at the center of the shadow of the disk. This unreasonable effect 
was considered by Poisson as an opposing evidence of the wave theory. How-
ever, F. Arago insisted on doing the experiment and proved the existence of the 
Poisson spot. The success of Fresnel’s theory won the decisive battle for the 
wave in “the second wave-particle war”.

1821 Fresnel proposed that light is a transverse wave, and successfully explained 
the polarization of light. “The second wave-particle war” ended with the vic-
tory of wave theory.

1865 J. Maxwell formulated the classical theory of electrodynamics, which pre-
dicted that light is kind of electromagnetic wave.

1887 H. R. Hertz verified the existence of electromagnetic wave in experiments. 
The speed of the electromagnetic wave is exactly the speed of light. The wave 
theory of light was firmly established.

1900 M. Planck obtained the formula of blackbody radiation, the quantum 

hypothesis of light was proposed.

1905 A. Einstein explained the photoelectric effect. In Einstein’s theory light is 
consisted of some particles carrying the discrete amount of energy, and can 
only be absorbed or emitted one by one. The concept of light quantum (pho-
ton) resurrected the particle theory. “The third wave-particle war” broke out.
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1923 A. Compton studied the scattering of X-ray by a free electron. The Compton 
effect was discovered, that the frequency of X-ray changes in the scattering. 
The experiment exactly proved that X-ray is also composed by radiation 
quantum with certain momentum and energy.

1924 S. N. Bose considered light as a set of indistinguishable particles and obtained 
Planck’s formula of blackbody radiation. Bose-Einstein statistics was estab-
lished, which further supports the idea of particle theory.

… …

◻ Concluding Remarks

In fact, “the third wave-particle war” had gone beyond the scope of the nature of light. The 
discussion had been extended to the nature of all matter in general.

 Light: originally considered as wave, also behaves like particle.

 Electrons, α particles (4He nucleus): originally considered as particles, also behave like wave.

The dispute ends up with the discovery of wave-particle duality, which finally leads to the 
formulation of quantum mechanics. Another century has passed, we hope that wave and 
particle will live in peace under the quantum framework, and there should be no more wars.

◼ Quantization of Light

◼ Geometric Optics

Geometric optics is the particle mechanics of light (light travels along a path)

 Fermat’s Principle: Light always travels along the path of extremal optical path length.

δL = 0, (1)

 The optical path length is defined by

L(A → B) = 
A

B
n s, (2)

where n is the refractive index of the medium and s is an infinitesimal displacement 
along the ray.

 The optical path length is simply related to the light travelling time T by L = c T , where c 
is the speed of light in vacuum. So extremization of either of them will be equivalent.

 Eikonal equation (Newton’s law of light)

n


 t
n2
x

 t
= c2 ∇n. (3)
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Derive Eq. (3) from Fermat’s principle Eq. (1).Exc
1

Examples of light rays in the medium by solving Eq. (3):

 Refraction (Snell’s law)

 Total reflection

 Gradient-index (GRIN) optics

◼ Physical Optics

Physical optics is the wave mechanics of light (light propagates in the spacetime as a 
wave).

 Huygens’ Principle: Every point on the wavefront acts as a secondary source emitting 
spherical wavelet. The new wavefront is formed by the coherent superposition of these 
wavelets.

A

B

 Wave propagation: The wave amplitude ψB on the new wave front is determined by 
the amplitude ψA on the preceding wave front, modified by a phase factor  Θ(A→B) that 
encodes the accumulated phase Θ(A → B) during wave propagation.
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 Interference effect: contributions from different paths must be collected and summed up 
(integrated over)

ψB = 
A→B
ψA 

 Θ(A→B). (4)

 The accumulated phase Θ is determined by the propagation time T × the frequency ω of 
light

Θ(A → B) = ωT (A → B) =
ω

c
L(A → B), (5)

proportional to the optical path length L (given that the light propagates with a fixed 
frequency).

The resulting profile of the wave amplitude throughout the spacetime (or the space) is 
described by the wavefunction

spacetime : ψ(x, t),
space (at fixed-time) : ψ(x).

(6)

 The magnitude (or the absolute amplitude) ψ of the wave is related to the intensity of the 
light, or the probability density to observe a photon at a given position x,

p(x) = ψ(x)2. (7)

 Normalization: the wavefunction is said to be normalized, if

 ψ(x)2 Dx =  p(x) Dx = 1, (8)

a requirement for the total probability to be 1.

◼ From Fermat to Huygens

Optimizing the optical path length L can be viewed as optimizing an action S

S(A  B) =
ℏ ω

c
L(A  B), (9)

which is defined by properly rescaling L to match the dimension of energy × time.

 Particle mechanics defines the action S in the variational principle δS = 0.

 Wave mechanics defines the phase Θ in the wavelet propagator  Θ. 
They are related by

S(A  B) = ℏ Θ(A  B). (10)

The Planck constant ℏ provides a natural unit for the action.
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Therefore the particle and wave mechanics are connected by

The action accumulated by particle = the phase accumulated by wave.

This is also the guiding principle of the path integral quantization — a universal approach 
to promote any classical theory to its quantum version.

Path Integral Quantization

◼ Quantization of Matter

◼ Classical Mechanics

Action: a function(al) associated to each possible path of a particle,

S[x] =  L(x, x
 , t)  t. (11)

The principle of stationary action: the path taken by the particle x (t) is the one for which 
the action is stationary (to first order), subject to boundary conditions: x (t0) = x0 (initial) and 
x(t1) = x1 (final).

δ S[x]x=x = δ  L(x, x
 , t)  t

x=x
= 0. (12)

This leads to the Euler-Lagrange equation (the equation of motion),



 t

∂L

∂x
-
∂L

∂x
= 0, (13)

such that the classical path x (t) is the solution of Eq. (13). For a non-relativistic particle, the 
Lagrangian takes the form of L = T -V , where T is the kinetic energy and V  is the potential 
energy. For a relativistic particle, the action is simply the proper time of the path in the 
spacetime.

For a non-relativistic free particle L = (m / 2) x 2.
(i) Show that the stationary (classical) action S [x] corresponding to the classical 
motion of a free particle travelling from (x0, t0) to (x1, t1) is S[x] = m

2
(x1-x0)2

t1-t0
.

For this case of the free particle,
(ii) Show that the spatial derivative of the action ∂x1S[x] is the momentum of the 
particle.
(iii) Show that the (negative) temporal derivative of the action -∂t1S[x] is the energy 
of the particle.

HW
1

A computability problem: the principle of stationary action is formulated as a determin-
istic global optimization, which requires exact computations and indefinitely long run time (on 
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any computer).

 Nature may not have sufficient computational resources to carry out the classical mechanics 
precisely.  Classical mechanics might actually be realized only approximately as a 
stochastic global optimization, which is computationally more feasible. 

 Quantum mechanics takes a stochastic approach to optimize the action, which is more 
natural than the deterministic approach of classical mechanics, if we assume only limited 
computational resource is available to nature.

◼ Optimization by Interference

Each path is associated with an action. Quantum mechanics effectively finds the stationary 
action by the interference among all possible paths.

Example: find the stationary point(s) of

f (x) = -x2 + 2 x4. (14)

-1.0 -0.5 0.0 0.5 1.0

0.0
0.2
0.4
0.6
0.8
1.0

x

f
(x
)

 Every point x is a legitimate guess of the solution.

 Each point x is associated with an action f (x) (the objective function).

 Raise the action f (x) to the exponent (as a phase):  f (x)/ℏ  call it a “probability amplitude” 
contributed by the point x.

 A “Planck constant” ℏ = h / (2 π) is introduced as a hyperparameter of the algorithm, to 
control “how quantum” the algorithm will be.

 Contributions from all points must be collected and summed (integrated) up,

Z = 
-∞

∞

 f (x)/ℏ x. (15)

The result Z summarizes the probability amplitudes. It is known as the partition function of 
the stationary problem. But it is just a complex number, how do we make use of it?  Well, we 
need to analyze how Z is accumulated. Each infinitesimal step in the integral → a infinitesimal 
displacement on the complex plane

z =  f (x)/ℏ x. (16)

 x controls the infinitesimal step size,

  f (x)/ℏ controls the direction to make the displacement,
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 displacement z is accumulated to form the partition function,

Z ≡  z. (17)

Let us see how the partition function is constructed.

 For small h (classical limit)

Z-1/2 Z0

Z1/2

Z

h = 0.001

Z = Z-1/2 +Z0 +Z1/2, (18)

 Z can break up into three smaller contributions, which correspond to the contributions 
around the three stationary points: x = 0, ±1 / 2.

 Around the stationary point, phase changes slowly ∂x f (x) ∼ 0  constructive interfer-
ence  large contribution to the partition function.

 The solutions of stationary points (classical solutions) emerge from interference due to 
their dominant contribution to the probability amplitude.

 *More precisely, the partition function is actually evaluated with respect to the momentum 

k,

Z (k) ≡  z  k x ≃ Z-1/2 e- k/2 +Z0 +Z1/2  k/2. (19)

Then its Fourier spectrum Z

(x) = ∫ k Z (k) - k x will reveal the saddle points.

-1.5-1.0-0.5 0.0 0.5 1.0 1.5
0.00

0.05

0.10

0.15

x

Z
(x
)
2

 For intermediate h
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Z-1/2

Z0

Z1/2
Z

h = 0.1

 The decomposition of Z into three subdominant amplitudes is not very well defined.  

Quantum fluctuations start to smear out nearby stationary points.

 For large h (quantum limit)

Z
h = 10

 Stationary points are indistinguishable if quantum fluctuations are too large.  As if there 
is only one (approximate) stationary point around x = 0.

 If there is no sufficient resolution power, fine structures in the action landscape will be 
ignored by quantum mechanics. In this way, the computational complexity is controlled.

Generalize the same problem from stationary points to stationary paths (in classical mechanics) 
 path integral formulation of quantum mechanics.

The Planck constant characterizes nature’s resolution (computational precision) of the 
action.

h = 6.62607004 × 10-34 J s. (20)

Two nearby paths with an action difference smaller than the Planck constant can not be 
resolved.

 h is very small (in our everyday unit)  our nature has a pretty high resolution of action  

no need to worry about the resolution limit in the macroscopic world  classical mechanics
works well.

 However, in the microscopic world, nature’s resolution limit can be approached  “round-off 
error” may occur  one consequence is the quantization of atomic orbitals (discrete energy 
levels etc.).

◼ Path Integral and Wave Function

 Feynman’s principle: The probability pA→B for a particle to propagate from A to B is 
given by the square modulus of a complex number KA→B called the transition amplitude
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pA→B = KA→B2. (21)

 The transition amplitude is given by adding together the contributions of all paths x 
from A to B.

A B

KA→B ∝ 
AB
[x]  S[x]/ℏ. (22)

 The contribution of each particular path is proportional to  S[x]/ℏ, where S[x] is the action 

of the path x.
In the limit of ℏ → 0, the classical path x (that satisfies δS[x] = 0) will dominate the transition 
amplitude,

KA→B ∼  S[x]/ℏ. (23)

Quantum mechanics reduces to classical mechanics in the limit of ℏ  0.

To make the problem tractable, an important observation is that the transition amplitude 
satisfies a composition property

KA→B = 
C
KA→C KC→B. (24)

This allows us the chop up time into slices t0 < t1 < … < tN-1 < tN ,

K(x0,t0)(xN ,tN ) =  x1… xN-1 K(x0,t0)→(x1,t1) …K(xN-1,tN-1)→(xN ,tN ). (25)

The “front” of transition amplitude propagates in the form of wave  define the wavefunction 

ψ(x, t), which describes the probability amplitude to observe the particle at (x, t),

ψ(xk+1, tk+1) =  xk K(xk,tk)(xk+1,tk+1) ψ(xk, tk). (26)

If we start with a initial wavefunction ψ(x, t0) concentrated at x0, following the time evolution 
Eq. (26), the final wavefunction ψ(x, tN ) will give the transition amplitude 
K(x0,t0)(xN ,tN ) = ψ(xN , tN ).  It is sufficient to study the evolution of a generic wavefunction over 
one time step, then the dynamical rule can be applied iteratively.

Putting together Eq. (22) and Eq. (26),

ψ(xk+1, tk+1) ∝  [x] exp


ℏ
S[x] ψ(xk, tk), (27)

this path integral involves multiple integrals:
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 for each given initial point xk, integrate over paths x(t) subject to the boundary conditions 
x(tk) = xk and x(tk+1) = xk+1,

 finally integrate over choices of initial point xk.

The Schrödinger equation is the equation that governs the time evolution of the wavefunc-
tion, which plays a central role in quantum mechanics. It can be derived from the path integral 
formulation in Eq. (27).

◼ Deriving the Schrödinger Equation

◼ Action in a Time Slice

The action of a free particle of mass m,

S[x] = 
t0

t1
 t
1

2
m x 2, (28)

where the particle starts from x(t0) = x0, ends up at x(t1) = x1.

Suppose the time interval δt = t1 - t0 is small, approximate the path of the particle by a 
straight line in the space-time,

x(t) = x0 + v t, (29)

where the velocity v will be a constant

v =
x1 - x0
t1 - t0

=
x1 - x0
δt

. (30)

Plug into Eq. (28), we get an estimate of the action accumulated as the particle moves from x0 
to x1 in time δt,

S[x] =
1

2
m
x1 - x0
δt

2
δt =

m

2 δt
(x1 - x0)2. (31)

◼ Path Integral in a Time Slice

The wavefunction ψ(x, t + δt) in the next time slice is related to the previous one ψ(x, t) by

ψ(x1, t + δt) ∝  x0 exp


ℏ
S[x] ψ(x0, t)

=  x0 exp
m

2 ℏ δt
(x1 - x0)2 ψ(x0, t).

(32)

 The proportional sign “∝” implies that the normalization factor is not determined yet. (It will 
be determined later.)

To proceed we expand ψ(x0, t) around x0  x1, by defining x0 = x1 + a, and Taylor expand 
with respect to a,
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ψ(x0, t) = ψ(x1 + a, t)

= ψ(x1, t) + a ψ′(x1, t) +
a2

2!
ψ″(x1, t) +

a3

3!
ψ(3)(x1, t) +…

=

n=0

∞ an

n !
∂x1
n ψ(x1, t).

Substitute into Eq. (32),

ψ(x1, t + δt) ∝ 
n=0

∞

 a exp
m

2 ℏ δt
a2

an

n !
∂x1
n ψ(x1, t). (34)

We pack everything related to the integral of a into a coefficient

λn ≡  a exp
m

2 ℏ δt
a2

an

n !
, (35)

then the time evolution is simply given by (we are free to replace x1 by x)

ψ(x, t + δt) ∝ 
n=0

∞

λn ∂x
nψ(x, t). (36)

 The idea is that the time-evolved wavefunction can be expressed as the original wavefunction 
“dressed” by its (different orders of) derivatives.

-4 -2 0 2 4
-1.0

-0.5

0.0

0.5

1.0

x

∂
xn
ψ
(x
)

ψ (x)

∂xψ (x)
∂x
2ψ (x)

 For example, ψ(x) is a wave packet.

 ψ(x) + λ ψ′(x): shift the wave packet around.

 ψ(x) + λ ψ″(x): expand or shrink the wave packet.

 Locality of Physics: the time evolution should only involve local modifications of the 
wavefunction ψ(x) (mostly within the light-cone) in each step.

◼ Computing the Coefficients λn

The λn coefficient can be computed by Mathematica

λn =
1+ (-1)n

2

π

2n Γ1+ n
2


-
m

2 ℏ δt

-
1+n
2
. (37)
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Evaluate the integral in Eq. (35) for λn.
Exc
2

 The first term (1+ (-1)n) / 2 just discriminates even and odd n. 

1+ (-1)n

2
= 

1 if n ∈ even,
0 if n ∈ odd.

(38)

So as long as n ∈ odd, λn = 0. We only need to consider the case of even n.

 For even n, the first several λn are given by

λ0 = π -
m

2 ℏ δt

-1/2
,

λ2 =
π

4
-
m

2 ℏ δt

-3/2
=


4

2 ℏ δt

m
λ0,

λ4 =
π

32
-
m

2 ℏ δt

-5/2
= -

1

32

2 ℏ δt

m

2
λ0,

…

(39)

Compute the first several λn for even integer n using Eq. (37).
Exc
3

◼ Determining the Normalization

Plugging the results of λn in Eq. (39) into Eq. (36), we get

ψ(x, t + δt) ∝ λ0 1+


4

2 ℏ δt

m
∂x
2-

1

32

2 ℏ δt

m

2
∂x
4+… ψ(x, t). (40)

 If we take δt = 0, all higher order terms vanishes,

ψ(x, t) ∝ λ0 ψ(x, t). (41)

So obviously, the normalization factor should be such to cancelled out λ0.
So we should actually write (in equal sign) that

ψ(x, t + δt) = 1+


4

2 ℏ δt

m
∂x
2-

1

32

2 ℏ δt

m

2
∂x
4+… ψ(x, t). (42)

◼ Taking the Limit of δt  0

Let us consider the time derivative of the wavefunction

∂tψ(x, t) = lim
δt0

ψ(x, t + δt) - ψ(x, t)

δt

= lim
δt0

1

δt



4

2 ℏ δt

m
∂x
2-

1

32

2 ℏ δt

m

2
∂x
4+… ψ(x, t)

(43)
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 Only the first term survives under the limit δt  0,

∂tψ(x, t) =
 ℏ

2m
∂x
2ψ(x, t). (44)

 All the higher order terms will have higher powers in δt, so they should all vanish under the 
limit δt  0.

By convention, we write Eq. (44) in the following form

 ℏ ∂tψ(x, t) = -
ℏ2

2m
∂x
2ψ(x, t). (45)

This is the Schrödinger equation that governs the time evolution of the wavefunction of a 
free particle.

◼ Adding Potential Energy

Now suppose the particle is not free but moving in a potential V (x), the action changes to

S = 
t0

t1
 t

1

2
m x 2 -V (x) , (46)

The additional action that will be accumulated over time δt will be

ΔS = -V (x) δt. (47)

Eventually this cause an additional phase shift in the wavefunction

ψ(x, t + δt) =  ΔS/ℏ ψ0(x, t + δt)

= -V (x) δt/ℏ ψ0(x, t + δt)

= 1-


ℏ
V (x) δt +… ψ0(x, t + δt),

(48)

where ψ0 is the expected wavefunction at t + δt without the potential. Combining with the result 
in Eq. (42), to the first order of δt we have

ψ(x, t + δt) = 1-


ℏ
V (x) δt +… 1+



4

2 ℏ δt

m
∂x
2+… ψ(x, t)

= 1+


4

2 ℏ δt

m
∂x
2-


ℏ
V (x) δt +… ψ(x, t).

(49)

Then after taking the δt  0 limit, we arrive at

∂tψ(x, t) =
 ℏ

2m
∂x
2ψ(x, t) -



ℏ
V (x) ψ(x, t), (50)

or equivalently written as
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 ℏ ∂tψ(x, t) = -
ℏ2

2m
∂x
2ψ(x, t) +V (x) ψ(x, t). (51)

This is the Schrödinger equation that governs the time evolution of the wavefunction ψ(x, t) 
of a particle moving in a potential V (x).

◼ Time-Independent Case

If the potential function V (x) is independent of time t, the problem can be simplified by a 
separation of variables for ψ(x, t) in the form of

ψ(x, t) = ψ(x) -E t/ℏ. (52)

Substitute Eq. (52) into Eq. (51), we arrived as the stationary Schrödinger equation as an 
eigen equation,

-
ℏ2

2m
∂x
2+V (x) ψ(x) = E ψ(x). (53)

Derive Eq. (53) from Eq. (51).Exc
4

The solution to the eigen problem provides

 En: eigen energies,

 ψn(x): corresponding eigen wavefunctions,

both labeled by the eigenstate index n.

◼ Semiclassical Approach

◼ WKB Approximation (General)

WKB (Wentzel-Kramers-Brillouin) approximation:  a method for solving the Schrödinger 
equation in the semiclassical limit where ℏ → 0. 

 Goal: find approximate solution of Eq. (51), keeping only the leading quantum effects (i.e., 
the leading terms of ℏ).

Postulate a solution for ψ(x, t) of the form

ψ(x, t) = A(x, t)  S(x,t)/ℏ. (54)

Substitute into the Schrödinger equation, 

 To the leading (0th) order of ℏ, the action function S(x, t) is governed by
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∂t S(x, t) +
1

2m
(∂x S(x, t))2 +V (x) = 0, (55)

also known as the Hamilton-Jacobi equation.

 In general, given the Hamiltonian function H (x, p, t) of the system, the Hamilton-Jacobi 
equation reads

∂t S(x, t) +H (x, ∇S(x, t), t) = 0. (56)

Eq. (55) is a special case of Eq. (56) for a particle moving in 1D with 
H (x, p, t) = 1

2m
p2 +V (x).

 Physical meaning of action derivatives:

 Energy: (negative) rate of action accumulation in time

E = -∂t S. (57)

 Momentum: action accumulation rate in space (along every direction), or the spatial 
gradient of action

p = ∇S. (58)

 To the next leading (1st) order of ℏ, 

∂t A(x, t) +
1

2m
2 ∂x A(x, t) ∂x S(x, t) +A(x, t) ∂x2S(x, t) = 0, (59)

which determines A(x, t) from the solution of S(x, t).

Derive Eq. (55) and Eq. (59).Exc
5

The WKB approach amounts to solving Eq. (55) and Eq. (59), then substitute the solution 
S(x, t) and A(x, t) into Eq. (54) to construct the approximate solution for the wavefunction 
ψ(x, t).

◼ Solutions of Hamilton-Jacobi Equation

◻ Particle in the Free Space

For a particle moving in the free space, the potential will be flat

V (x) = 0. (60)

Substitute into the Hamilton-Jacobi equation Eq. (55), depending on the initial condition

S(x, 0) = p x = m v0 x, (61)

 v0 is the initial velocity of the particle at time t = 0,

 p = m v0 is the momentum of the particle, which will remain conserved,
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the solution of S(x, t) is

S(x, t) = p x -E t

= m v0 x -
1

2
m v02 t,

(62)

 E =
1
2m
p2 = 1

2
m v02 is the (kinetic) energy of the particle.

S(x, t) looks like:
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 The contours of S(x, t) are wave fronts (equal-phase surface) in the spacetime.

 The solution S(x, t) in Eq. (62) corresponds to a plane wave solution of the wavefunction

ψ(x, t) =  S(x,t)/ℏ

= exp


ℏ
(p x -E t) .

(63)

This turns out to be the exact solution of the Schrödinger equation for a free particle (the 
WKB approximation becomes exact in this case).

◻ Particle under a Constant Force

In a linear potential,

V (x) = -F x, (64)

the particle will experience a constant force F := -∂x V (x). Plugging V (x) in the Hamilton-Jacobi 
equation Eq. (55),

∂t S +
1

2m
(∂x S)2 +V (x) = 0, (65)

the solution of S(x, t) look like:
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 In the m → ∞ limit, ∂t S = -V (x), such that

S(x, t) = -V (x) t = F x t, (66)

creating a growing spatial gradient of the action

p = ∂x S = F t, (67)

corresponding to a momentum that increases in time.

 When m is finite, the kinetic energy (∂x S)2  (2m) grows with the momentum p = ∂x S, which 
also contributes to the total energy and alters the rate of action accumulation in time.  This 
leads to curvature in the constant-action contours, signaling acceleration in the particle’s 
motion.

 The classical trajectory (in black) of the particle corresponds to the family of stationary 
points of S(x, t) in the spacetime, which turns out to form a parabola

x =
1

2
a t +

v0
a

2
. (68)

 v0 = x (t = 0) is the initial velocity of the particle at time t = 0,

 a is the acceleration of the particle. It increases with F and decreases with m, and can be 
verified to follow

a =
F

m
, (69)

which recovers Newton’s 2nd law (F = m a).

◼ WKB Approximation (Time-Independent)

In the time-independent case, the energy E is a conserved quantity, the action can be sepa-
rated as

S(x, t) =W (x) -E t, (70)

meaning that ψ(x, t) = ψ(x) -E t/ℏ with
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ψ(x) = A(x) W (x)/ℏ. (71)

 The spatial part W (x) of the action satisfies the stationary Hamilton-Jacobi equation, 
reduced from Eq. (55),

1

2m
(∂xW (x))2 +V (x) = E. (72)

Derive Eq. (72) from Eq. (55).Exc
6

 Given a time-independent Hamiltonian H (x, p), a more general form of Eq. (72) is

H (x, ∇W (x)) = E. (73)

 Eq. (72) can be solved by introducing the momentum function p(x) — the rate that the 
action is accumulated in space,

p(x) := ∂xW (x), (74)

such that Eq. (72) becomes an algebraic equation

p(x)2

2m
+V (x) = E, (75)

with the solution(s) given by

p(x) = ± 2m (E -V (x)) . (76)

Then the solution of W (x) can be reconstructed by integration

W (x) = 
x
p(x′) x′ = 

x
2m (E -V (x′)) x′. (77)

 Eq. (59) also reduces to its stationary form

∂x logA(x) = -
1

2
∂x log p(x), (78)

whose solution is

A(x) =
C

p(x)
. (79)

Derive Eq. (78).Exc
7

Putting Eq. (77) and Eq. (79) together into Eq. (71), the WKB wavefunction for a quantum 

state of energy E is
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ψ(x) ≈
C

p(x)
exp


ℏ


x
p(x′) x′ , (80)

where p(x) = ± 2m (E -V (x))  as in Eq. (76), and C serves as the normalization constant for 
ψ(x) to ensure ∫ ψ(x)2 = 1.

 Classically allowed regions (V (x) < E):

 p(x) ∈ , the WKB wavefunction ψ(x) exhibits wavy behavior.

 Both ± solutions of p(x) are valid, corresponding to right-moving and left-moving waves.

 Classically forbidden regions (V (x) > E):

 p(x) ∈ , the WKB wavefunction ψ(x) exhibits exponential decay (or grow) behavior

ψ(x) ≈
C

p(x)
exp ∓

1

ℏ


x
p(x′) x′ . (81)

 Only one of the ± solutions of p(x) will be valid, which corresponding to the decaying wave, 
as the particle’s probability density must diminish as it enters the classical forbidden 
regions. The invalid solution will correspond to an growing wave.

 Transition region (V (x) → E): p(x) → 0, the amplitude diverges as p(x)-1/2, and the WKB 

wavefunction is ill-defined. Joining the WKB wave function across the transition region is a 
rather complicated task, more can be found in Ref. [1]. 

Examples of WKB approximations:

 Scattering states

 Quantum climbing: the potential top is lower than the energy level E.
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 Quantum tunneling: the potential top is higher than the energy level E.
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 Bound state: the potential grows higher than the energy level E towards both sides.

xmin xmax
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) Re ψ (x)

 xmin, xmax: two classical turning points, at which E = V (x) and the particle will be bounced 
back in the classical limit.

 Total phase acquired by the wavefunction between the classical turning points is given by

Θ(xmin → xmax) =
1

ℏ
W (xmin → xmax), (82)

where W  is the corresponding action,

W (xmin → xmax) = 
xmin

xmax
p(x) x = 

xmin

xmax
2m (E -V (x)) x. (83)

Wikipedia, WKB approximation.[1]

◼ Bohr-Sommerfeld Quantization

The WKB approximation can be used to estimate the bound state eigenenergies. 

 Intuition: Consider a sine wave, with one node pinned to xmin, how to pin another node to 
xmax by varying Θ(xmin → xmax)?

xmin xmax

ψ
(x
)

Θ (xmin → xmax) = π
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 Bohr-Sommerfeld quantization condition: To confine the wave in the region [xmin, xmax], 
we must pin the wave nodes on both turning points, which requires the phase acquired 
between the turning points to be an integer of π, i.e.

Θ(xmin → xmax) =
1

ℏ

xmin

xmax
2m (E -V (x)) x = n π, (84)

for n = 1, 2, 3,…. 
Example: Harmonic Oscillator

 Consider the potential

V (x) =
1

2
m ω2 x2. (85)

 ω - angular frequency of the oscillator.
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 Let ±x0 be the turning points, at which E = V (x), such that

E =
1

2
m ω2 x02. (86)

 The Bohr-Sommerfeld quantization condition Eq. (84) requires

m ω

ℏ

-x0

x0
x02 - x2 x =

πm ω x02

2 ℏ
= n π, (87)

which sets x02 = 2 n ℏ / (m ω). By Eq. (86), the energy that correspond to such turning points is

En = n ℏ ω, (88)

for n = 1, 2, 3,….
This predicts the energy quantization with the correct energy level spacing ℏ ω. Compare 
with the exact eigenenergies

En = n +
1

2
ℏ ω, (89)

the only missing part is the vacuum energy 1
2
ℏ ω, which requires more rigorous quantum 

treatment.
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Consider a potential where energy grows linearly with the distance of the particle 
from the origin: 
V (x) = F x, 
where F is a constant with the unit of force. Use the Bohr-Sommerfeld quantization 
condition to estimate the energy levels in this potential. To which power do they scale 
with the level index n?

HW
2
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