
130A Quantum Physics
Part 3. Quantum Statistics

Introduction

◼ Tensors are Vectors

◼ From One to Two

Each qubit has two basis states 0〉 and 1〉, spanning a 2-dimensional single-qubit Hilbert 
space.
 two qubits together have four basis states, spanning a 4-dimensional two-qubit Hilbert space.

qubitB
0〉 1〉

qubitA
0〉 00〉 01〉
1〉 10〉 11〉

(1)

 A generic two-qubit quantum state will be a linear superposition of these basis states

ψ〉 = ψ00 00〉+ ψ01 01〉+ ψ10 10〉+ ψ11 11〉, (2)

where the coefficients ψαβ is most naturally arranged as a 2 × 2 array (a matrix) like

ψ00 ψ01

ψ10 ψ11
. (3)

 However, it makes no difference to rearrange them in a vector

ψ00

ψ01

ψ10

ψ11

→

ψ0

ψ1

ψ2

ψ3

. (4)

We can relabel the index ψαβ → ψi by converting each binary string αβ to an integer i (e.g. 
through the binary number encoding).

 A matrix can be viewed as a vector by flattening. Here, 2×2 → 4.

 In vector representation, the ket vector 00〉 is a tensor product of 0〉A and 0〉B,

00〉 = 0〉A⊗ 0〉B ≏
1
0
⊗
1
0

=

1
0
0
0

. (5)

https://en.wikipedia.org/wiki/Binary_number


Similarly,

01〉 = 0〉A⊗ 1〉B ≏
1
0
⊗
0
1

=

0
1
0
0

,

10〉 = 1〉A⊗ 0〉B ≏
0
1
⊗
1
0

=

0
0
1
0

,

11〉 = 1〉A⊗ 1〉B ≏
0
1
⊗
0
1

=

0
0
0
1

.

(6)

◼ From Two to Many

N  qubits together have 2N  basis states, spanning a 2N -dimensional Hilbert space.

 Each basis state α〉 is labeled by a bit string α ∈ {0, 1}×N ,

α = α1 α2…αN for αi ∈ {0, 1}, (7)

and defined by the tensor product of single-qubit states

α〉 := α1〉 ⊗ α2〉 ⊗…⊗ αN 〉. (8)

 A generic N -qubit state will be a linear combination of all multi-qubit basis states

Ψ〉 =

α

Ψα α〉. (9)

The coefficients Ψα form a 2×2×…×2 tensor, but can also be viewed as a 2N vector by flattening.
In this sense, tensors are vectors: many-body quantum states can also be described by ket vec-
tors (with pre-defined tensor structure).

◼ Quantum Many-Body States

◼ Overview

Quantum many-body states describe the quantum system of many entities (particles). 
Depending on whether the particles are distinguishable, quantum many-body systems can be 
divided into two classes:

 Distinct particles: spins, qubits ...

 Identical particles: bosons, fermions ...
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◼ Distinct Particles

Distinct particles can be labeled, such that we can specify the state of each particle, e.g. 
“the ith particle is in the αi state”.

 Suppose the single-particle Hilbert space is D dimensional, spanned by a set of 
orthonormal single-particle basis states α〉 (α = 1, 2,…, D).

 The many-body Hilbert space of N  distinct particles will be DN  dimensional, spanned by 
the many-body basis states

α〉 ≡ α1〉 ⊗ α2〉 ⊗…⊗ αN 〉, (10)

where αi = 1, 2,…, D labels the state of the ith particle.

 A generic many-body state is a linear superposition of these basis states

Ψ〉 =

α

Ψα α〉. (11)

The coefficient Ψα is also called the many-body wave function.

 The probability to find the many-body system in a specific state α〉 is given by 

p(α Ψ) = 〈α Ψ〉2 = Ψα
2. (12)

◼ Identical Particles

Identical particles does not admit a labeling. Suppose we have a system of two particles, 
the following states are indistinguishable if we can not tell which particle is the 1st and which is 
the 2nd.

α1〉 ⊗ α2〉 α2〉 ⊗ α1〉

the 1st particle in α1〉
the 2nd particle in α2〉

the 1st particle in α2〉
the 2nd particle in α1〉

This means that it will be equally likely to observe the system in α1 α2〉 state as in α2 α1〉 state, 
i.e.

p(α1 α2 Ψ) = p(α2 α1 Ψ) (13)

Generalize to N  particles, we introduce the permutation operator 

π associated with each 

permutation π ∈ SN , and denote the permuted state as



π α〉 = απ〉 ≡ απ(1)〉 ⊗ απ(2)〉 ⊗…⊗ απ(N )〉. (14)

 Each permutation π ∈ SN  is a bijective (invertible) map from N  objects to themselves. For 
example,
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123 →π 132 (15)

is a permutation in S3, defined by π(1) = 1, π(2) = 3, π(3) = 2.

 απ denotes a new sequence obtained from the sequence α by permuting its elements by π. 
For example,

α = α1 α2 α3 →
π
απ = α1 α3 α2. (16)

 

π denotes the operator that take the state α〉 to απ〉 for all α, which implements the permu-
tation of particles.

The requirement of identical particles imposes a permutation symmetry to the probability, as 
a generalization of Eq. (13),

∀ π ∈ SN : p(α Ψ) = p(απ Ψ) (17)

which, according to Eq. (12), is also a permutation symmetry of the many-body wave function,

∀ π ∈ SN : Ψα2 = Ψαπ 
2. (18)

The wave function can only change up to an overall phase factor under symmetry 
transformation,

Ψα =  φ Ψαπ. (19)

It realizes a one-dimensional representation of the permutation group. Mathematical 
fact: there are only two 1-dim representations of any permutation group,

 symmetric (trivial) representation  bosons

Ψα = Ψαπ, (20)

 antisymmetric (sign) representation  fermions

Ψα = (-)π Ψαπ, (21)

where (-)π denotes the permutation sign of π

(-)π = 
+1 if π contains even number of exchanges,
-1 if π contains odd number of exchanges. (22)

Take the S3 group for example:

123 →π 123 231 312 321 213 132
(-)π = +1 +1 +1 -1 -1 -1

(23)

◼ Bosonic and Fermionic States

The bosonic and fermionic many-body states only span a subspace of the many-body Hilbert 
space (of distinct particles). Starting from a generic basis state α〉, we can pick out the basis 
states for the bosonic and fermionic subspaces:

 Construct bosonic states by symmetrization
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α〉 = 

π∈SN



π α〉 = 

π∈SN

απ〉. (24)

 Construct fermionic states by antisymmetrization



α〉 = 

π∈SN

(-)π 

π α〉 = 

π∈SN

(-)π απ〉. (25)

Examples: consider a two-particle (N = 2) system.

 Bosonic states (unnormalized):



α〉 ⊗ β〉 = α〉 ⊗ β〉+ β〉 ⊗ α〉, (assuming α ≠ β)



α〉 ⊗ α〉 = α〉 ⊗ α〉.

(26)

 Fermionic states (unnormalized):



α〉 ⊗ β〉 = α〉 ⊗ β〉- β〉 ⊗ α〉, (assuming α ≠ β)



α〉 ⊗ α〉 = 0  no such fermionic state.

(27)

Pauli exclusion principle: two (or more) identical fermions can not occupy the same state 
simultaneously. 

For N  particles, the Hilbert space dimension of

 the full space (of distinct particles):

 = DN , (28)

 the bosonic subspace:

B =
(N +D - 1)!

N ! (D - 1)!
, (29)

 the fermionic subspace:

F =
D !

N ! (D -N )!
. (30)

It turns out that B +F ≤  (for N > 1)  the remaining basis states in the many-body 
Hilbert space are unphysical (for identical particles).
Question: Is there a better way to organize the many-body Hilbert space, such that all states in 
the space are physical?
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Second Quantization

◼ Fock Space

◼ Fock States and Fock Space

Sometimes, conceptual problems in physics arise from the inappropriate language we used. 
There are two different ways to describe many-body states:

 In first-quantization, we ask: Which particle is in which state?

 In second-quantization, we ask: How many particles are there in every state?

The first question is inappropriate for identical particles: it is impossible to tell which particle is 
which in the first place. We need a new language:

α〉 ⊗ β〉 β〉 ⊗ α〉

the 1st particle in α〉
the 2nd particle in β〉

the 1st particle in β〉
the 2nd particle in α〉

↘ ↙

there is one particle in α〉, and another particle in β〉

The new description does not require the labeling of particles  no redundant or unphysical 
basis state  hence a concise and precise description.

 Each basis state in the many-body Hilbert space is labeled by a set of occupation num-
bers nα (for α = 1, 2,…, D)

n〉 ≡ n1, n2,…, nα,…, nD〉, (31)

meaning that there are nα particles in the state α〉.

nα = 
0, 1, 2, 3,… bosons,
0, 1 fermions. (32)

 For bosons, nα can be any non-negative integer.

 For fermions, nα can only take 0 or 1, due to the Pauli exclusion principle.

 The occupation numbers nα sum up to the total number of particles, i.e. ∑α nα = N .

 The states n〉 are also known as Fock states.

 All Fock states form a complete set of basis for the many-body Hilbert space, or the Fock 
space.

 Any generic second-quantized many-body state is a linear combination of Fock states,

Ψ〉 =

n
Ψn n〉. (33)
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◼ Representation of Fock States

The first- and the second-quantization formalisms can both provide legitimate description 
of identical particles. (The first-quantization is just awkward to use, but it is still valid.)

Every Fock state has a first-quantized representation.

 The Fock state with all occupation numbers to be zero is called the vacuum state, denoted 
as

0〉 ≡ …, 0,…〉 (34)

It corresponds to the tensor product unit in the first-quantization, which can be written as

0〉B = 0〉F = . (35)

We use a subscript B/F to indicate whether the Fock state is bosonic (B) or fermionic (F). 
For vacuum state, there is no difference between them.

 The Fock state with only one non-zero occupation number is a single-mode Fock state, 
denoted as

nα〉 = …, 0, nα, 0,…〉 (36)

In terms of the first-quantized states

1α〉B = 1α〉F = α〉,

2α〉B = α〉 ⊗ α〉,

3α〉B = α〉 ⊗ α〉 ⊗ α〉,

nα〉B = α〉 ⊗ α〉 ⊗…⊗ α〉

nα factors

≡ α〉⊗nα.

(37)

 For multi-mode Fock states (meaning more than one single-particle state α〉 is involved), 
the first-quantized state will involve appropriate symmetrization depending on the particle 
statistics. For example,

1α, 1β〉B =
1

2
(α〉 ⊗ β〉+ β〉 ⊗ α〉),

1α, 1β〉F =
1

2
(α〉 ⊗ β〉- β〉 ⊗ α〉).

(38)

Note the difference between bosonic and fermionic Fock states (even if their occupation num-
bers are the same). Here are more examples

2α, 1β〉B =
1

3
(α〉 ⊗ α〉 ⊗ β〉+ α〉 ⊗ β〉 ⊗ α〉+ β〉 ⊗ α〉 ⊗ α〉),

1α, 1β, 1γ〉F =
1

6
(α〉 ⊗ β〉 ⊗ γ〉+ β〉 ⊗ γ〉 ⊗ α〉+

γ〉 ⊗ α〉 ⊗ β〉- γ〉 ⊗ β〉 ⊗ α〉- β〉 ⊗ α〉 ⊗ γ〉- α〉 ⊗ γ〉 ⊗ β〉).

(39)
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Ok, you get the idea. In general, the Fock state can be represented as (labeled by a set of occupa-
tion numbers n = {nα}α=1D )

 for bosons,

n〉B =
∏α nα !

N !

1/2


⊗
α

α〉⊗nα. (40)

 for fermions,

n〉F =
1

N !



⊗
α

α〉⊗nα. (41)



 and 


 are symmetrization and antisymmetrization operators



= 

π∈SN



π, 

= 

π∈SN

(-)π 

π, (42)

as introduced in Eq. (24) and Eq. (25).

◼ Creation and Annihilation Operators

◼ State Insertion and Deletion

The creation and annihilation operators are introduced to create and annihilate particles 
in the quantum many-body system, as indicated by their names. The first step towards defining 
them is to understand how to insert and delete a single-particle state from the first-quantized 
state in a symmetric (or antisymmetric) manner.

Let us first declare some notations:

 Let α〉, β〉 be single-particle states.

 Let  be the tensor identity (meaning that α〉 ⊗  =  ⊗ α〉 = α〉).

 Let Ψ〉, Φ〉 be generic first-quantized states as in Eq. (11). 

Now we define the insertion operator ⊳± and deletion operator ⊲± by the following rules:

 Linearity (for a, b ∈ )

α〉 ⊳± (a Ψ〉+ b Φ〉) = a α〉 ⊳± Ψ〉+ b α〉 ⊳± Φ〉,

α〉 ⊲± (a Ψ〉+ b Φ〉) = a α〉 ⊲± Ψ〉+ b α〉 ⊲± Φ〉.
(43)

 Vacuum property

α〉 ⊳±  = α〉,

α〉 ⊲±  = 0.
(44)

 Recursive relation
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α〉 ⊳± β〉 ⊗ Ψ〉 = α〉 ⊗ β〉 ⊗ Ψ〉± β〉 ⊗ (α〉 ⊳± Ψ〉),

α〉 ⊲± β〉 ⊗ Ψ〉 = 〈α β〉 Ψ〉± β〉 ⊗ (α〉 ⊲± Ψ〉).
(45)

 〈α β〉 = δαβ if α〉 and β〉 are orthonormal basis states. 

 The subscript ± of the insertion or deletion operators indicates whether symmetrization (+) 
or antisymmetrization (-) is implemented.

◼ Boson Creation and Annihilation

The boson creation operator b

α

†
 adds a boson to the single-particle state α〉, increasing the 

occupation number by one nα → nα + 1. It acts on a N -particle first-quantized state Ψ〉 as

b

α

†
Ψ〉 =

1

N + 1
α〉 ⊳+ Ψ〉, (46)

where α〉 ⊳+ inserts the single-particle state α〉 to N + 1 possible insertion positions 
symmetrically.

The boson annihilation operator b

α removes a boson from the single-particle state α〉, 

reducing the occupation number by one nα → nα - 1 (while nα > 0). It acts on a N -particle first-
quantized state Ψ〉 as

b

α Ψ〉 =

1

N
α〉 ⊲+ Ψ〉, (47)

where α〉 ⊲+ removes the single-particle state α〉 from N  possible deletion positions 
symmetrically.

◻ Single-Mode Fock States

Based on these definitions, we can show that the creation and annihilation operators acting 
on single-mode Fock states as

b

α

†
nα〉 = nα + 1 nα + 1〉,

b

α nα〉 = nα nα - 1〉.

(48)

Prove Eq. (48) by definitions in Eq. (46) and Eq. (47).Exc
1

 Especially, when acting on the vacuum state

b

α

†
0α〉 = 1α〉,

b

α 0α〉 = 0.

(49)

 Using Eq. (48), we can show that
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b

α

†
b

α nα〉 = nα nα〉, (50)

meaning that b

α

†
b

α is the boson number operator of the α〉 state.

All the single-mode Fock state can be constructed by the boson creation operator from the 
vacuum state

nα〉 =
1

nα !
(b

α

†
)
nα 0α〉. (51)

◻ Generic Fock States

The above result can be generalized to any Fock state of bosons

b

α

†
…, nβ, nα, nγ,…〉B = nα + 1 …, nβ, nα + 1, nγ,…〉B,

b

α …, nβ, nα, nγ,…〉B = nα …, nβ, nα - 1, nγ,…〉B.

(52)

These two equations can be considered as the defining properties of boson creation and annihi-
lation operators. 

◻ Operator Identities

Eq. (52) implies the following operator identities

b

α

†
, b

β

†
 = b


α, b

β = 0, b


α, b

β

†
 = δαβ. (53)

These relations can be considered as the algebraic definition of boson creation and annihila-
tion operators.

 A

, B

 = A


B

-B

A

 denotes the commutator.

 The algebraic relation in Eq. (53) is identical to that of the creating and annihilation opera-
tors in harmonic oscillator, therefore, the elementary excitations of harmonic oscillator are 
indeed bosons.

◼ Fermion Creation and Annihilation

The fermion creation operator cα
†
 adds a fermion to the single-particle state α〉, increasing 

the occupation number by one nα → nα + 1 (while nα = 0). It acts on a N -particle first-quantized 
state Ψ〉 as

cα
†
Ψ〉 =

1

N + 1
α〉 ⊳- Ψ〉, (54)

where α〉 ⊳- inserts the single-particle state α〉 to N + 1 possible insertion positions anti-
symmetrically.
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The fermion annihilation operator cα removes a fermion from the single-particle state α〉, 
reducing the occupation number by one nα → nα - 1 (while nα = 1). It acts on a N -particle first-
quantized state Ψ〉 as

cα Ψ〉 =
1

N
α〉 ⊲- Ψ〉, (55)

where α〉 ⊲- removes the single-particle state α〉 from N  possible deletion positions anti-
symmetrically.

◻ Single-Mode Fock States

Based on these definitions, we can show that the creation and annihilation operators acting 
on single-mode Fock states as
Thus we conclude (note that nα = 0, 1 only take two values)

cα
†
nα〉 = 1- nα 1- nα〉,

cα nα〉 = nα 1- nα〉.
(56)

Prove Eq. (56) by definitions in Eq. (54) and Eq. (55).Exc
2

 Using Eq. (56), we can show that

cα
† cα nα〉 = nα nα〉, (57)

meaning that cα† cα is the fermion number operator of the α〉 state.
All the single-mode Fock state can be constructed by the boson creation operator from the 
vacuum state

nα〉 = (cα
†
)
nα 0α〉. (58)

◻ Generic Fock States

The above result can be generalized to any Fock state of bosons

cα
†
…, nβ, nα, nγ,…〉F = (-)∑β<αnβ 1- nα …, nβ, 1- nα, nγ,…〉F ,

cα …, nβ, nα, nγ,…〉F = (-)∑β<αnβ nα …, nβ, 1- nα, nγ,…〉F .
(59)

These two equations can be considered as the defining properties of fermion creation and 
annihilation operators. 

◻ Operator Identities

Eq. (59) implies the following operator identities

QuantumStatistics.nb     11



cα
†, c β

†
 = {cα, c


β} = 0, c


α, c

β
†
 = δαβ. (60)

These relations can be considered as the algebraic definition of fermion creation and annihila-
tion operators.

 A

, B

 = A


B

+B

A

 denotes the anti-commutator.

Quantum Statistical Physics

◼ General Principles

◼ Connecting Micro and Macro

Statistical physics is an important branch of physics that studies the statistical relation-
ship between the microscopic states of a many-body system and its macroscopic properties.

 At the microscopic level: physical systems are described by quantum mechanics in terms 
of a Hamiltonian operator H



H

Ek〉 = Ek Ek〉, (61)

 Ek - the possible energy that the system can take,

 Ek〉 - the corresponding quantum state of the system,

 k - an index that labels the eigenstates.

 At the macroscopic level: we are interested in the expectation value of physical observables 
O

,

〈O〉 =
k

〈Ek O

Ek〉 pk. (62)

 〈Ek O

Ek〉 - the expectation value of O


 when the system is in the particular state Ek〉 with 

energy Ek.

 pk - the probability for the system to be in the kth eigenstate Ek〉 (of energy Ek) in the 
thermal ensemble.

 The ensemble is a classical probabilistic mixture of quantum pure states Ek〉 (not a 
quantum superposition of them), called a mixed state ensemble.

 A mixed state ensemble can be specified by a set of pure state basis Ek〉 together with a 
probability distribution pk.

To connect micro and macro, what is missing is the knowledge about pk.
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Therefore, the central goal of statistical physics is to infer the mixed state distribution pk 
in an unbiased manner.

◼ Principle of Maximum Entropy

Without any assumption, it seems that pk can be assigned arbitrarily. However, the prin-
ciple of maximum entropy tells us the only unbiased assignment of pk is such that maxi-
mized the entropy of the probability distribution

S[p] = -

k

pk ln pk. (63)

Consider a canonical ensemble --- a statistical ensemble whose average energy is known

〈H 〉 =
k

〈Ek H

Ek〉 pk =

k

Ek pk = E. (64)

The problem to solve is

max
p
S[p] = -

k

pk ln pk,

subject to :



k

pk = 1,



k

Ek pk = E.

(65)

The solution is simple

pk =
1

Z
-β Ek ,

Z =

k

-β Ek .
(66)

Solve the constrained optimization problem Eq. (65) to show Eq. (66).Exc
3

This result is known as the Boltzmann distribution.

 The probability for the system to stay in a lower energy level is exponentially higher.

 β = 1 / kB T is the inverse of the temperature T (and kB is the Boltzmann constant). It will 
be adjusted to meet the average energy condition.

 Z is the normalization coefficient for the probability distribution, also called the partition 
function.
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◼ Bose-Einstein Statistics

◼ Single-Mode Problem

Consider a single-particle mode labeled by α. Assuming every boson in that mode has an 
single-particle energy ϵα, the Hamiltonian of this many-body system reads

H

= ϵα b


α

†
b

α. (68)

 Eigensystem: eigenstates are labeled by nα = 0, 1, 2,…,

H

nα〉 = ϵα nα nα〉, (69)

with eigen energies

Enα = ϵα nα. (70)

According to Eq. (66), the random variable nα follows the Boltzmann distribution

pnα =
1

Z
-β Enα =

1

Z
-β ϵα nα, (71)

with a partition function given by

Z = 

nα=0

∞

-β ϵα nα =
1

1- -β ϵα
. (72)

Evaluate the summation in Eq. (72).Exc
4

Put together

pnα = 1- 
-β ϵα -β ϵα nα. (73)

〈nα〉 = 0.58

0 2 4 6 8 10
0.0
0.2
0.4
0.6
0.8
1.0

nα

p n
α

β ϵα = 1

Based on the probability distribution Eq. (73), one can compute the average boson number 

〈nα〉 = 
nα=0

∞

nα pnα =
1

 β ϵα - 1
. (74)
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Evaluate the summation in Eq. (74).Exc
5

This is also known as the Bose-Einstein distribution.

0 1 2 3 4 5
0
1
2
3
4
5

ϵα

〈n
α
〉

kB T = 1

◼ Multi-Mode Generalization

A many-body system typically has multiple modes for particles to occupy. A generic free-
boson Hamiltonian must sum over the contribution like Eq. (68) from different modes.

H

=

α

ϵα b

α

†
b

α. (75)

 α = 1, 2,…, D is the mode index, labeling single-particle states in the system.

 Many-body states are labeled by a sequence of occupation numbers

n = n1, n2,…, nD, (76)

where nα = 0, 1, 2,… for bosons.

 Eigensystem:

H

n〉 = En n〉, (77)

with eigen energies

En =

α

ϵα nα. (78)

Boltzmann distribution can be factorized, as random fluctuation of occupation number nα 
on each mode is independent from each other.

pn ∝ -β En = exp - β

α

ϵα nα =

α

-β ϵα nα, (79)

meaning that

pn =

α

pnα, (80)
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with pnα given by Eq. (73). Therefore, the conclusion of the single-mode problem follows:

 The Bose-Einstein distribution, see Eq. (74),

〈nα〉 =
1

 β ϵα - 1
. (81)

 The average total boson number

〈N 〉 =
α

〈nα〉 =
α

1

 β ϵα - 1
. (82)

 The average total energy

〈H 〉 =
α

ϵα 〈nα〉 =
α

ϵα

 β ϵα - 1
. (83)

◼ Fermi-Dirac Statistics

◼ Single-Mode Problem

Consider a single-particle mode labeled by α. Assuming every fermion in that mode has 
an single-particle energy ϵα, the Hamiltonian of this many-body system reads

H

= ϵα c


α
† cα. (84)

 Eigensystem: eigenstates are labeled by nα = 0, 1 (Pauli exclusion principle forbid nα to go 
greater than 1 for fermions),

H

nα〉 = ϵα nα nα〉, (85)

with eigen energies

Enα = ϵα nα. (86)

According to Eq. (66), the random variable nα follows the Boltzmann distribution

pnα =
1

Z
-β Enα =

1

Z
-β ϵα nα, (87)

with a partition function given by

Z = 

nα=0,1

-β ϵα nα = 1+ -β ϵα.
(88)

Put together

pnα =
-β ϵα nα

1+ -β ϵα
=

1
-β ϵα+1

nα = 0,
1

 β ϵα+1
nα = 1.

(89)
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〈nα〉 = 0.50

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

nα

p n
α

β ϵα = 0

Based on the probability distribution Eq. (89), one can compute the average fermion 
number 

〈nα〉 = 

nα=0,1

nα pnα =
1

 β ϵα + 1
. (90)

This is also known as the Fermi-Dirac distribution.
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kB T = 1

◼ Multi-Mode Generalization

A many-body system typically has multiple modes for particles to occupy. A generic free-
fermion Hamiltonian must sum over the contribution like Eq. (84) from different modes.

H

=

α

ϵα c

α
† cα. (91)

 α = 1, 2,…, D is the mode index, labeling single-particle states in the system.

 Many-body states are labeled by a sequence of occupation numbers

n = n1, n2,…, nD, (92)

where nα = 0, 1 for fermions.

 Eigensystem:
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H

n〉 = En n〉, (93)

with eigen energies

En =

α

ϵα nα. (94)

Boltzmann distribution can be factorized, as random fluctuation of occupation number nα 
on each mode is independent from each other.

pn ∝ -β En = exp - β

α

ϵα nα =

α

-β ϵα nα, (95)

meaning that

pn =

α

pnα, (96)

with pnα given by Eq. (89). Therefore, the conclusion of the single-mode problem follows:

 The Fermi-Dirac distribution, see Eq. (90),

〈nα〉 =
1

 β ϵα + 1
. (97)

 The average total fermion number

〈N 〉 =
α

〈nα〉 =
α

1

 β ϵα + 1
. (98)

 The average total energy

〈H 〉 =
α

ϵα 〈nα〉 =
α

ϵα

 β ϵα + 1
. (99)
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