130A Quantum Physics

Part 1. Matrix Mechanics

Introduction

Everything Is a Vector

• What Is Quantum Mechanics?

Quantum mechanics is a *physics theory* that describes the behavior of *quantum systems* (microscopic particles, strings, qubits ...).

What does **physics theory** do in general?

- Describe the **state** of the system: a set of *variables* encoding the relevant *information* of the system.
- Predict (i) the **observables** (measurement outcomes) and (ii) their **dynamics** (time evolution).

Physics theory is about encoding the physical reality in the form of **information** and making predictions about the reality based on such information.

• How to Encode Information

State variables encode the information about the system. They are *inferred* from observations.

- State variables may not have "physical meaning".
- Choice of state variables may not be unique. (There can be more than one way to describe a system.)

Example: how to describe the following images?

- Image file: brightness of each pixel. describe a state by all possible observables.
- Human: digits 0, 1, 2, ..., 9. describe a state by a name.
- Machine learning: feature vectors in the latent space. describe a state by a *vector* in a vector space. [This is the closest to what we do in quantum mechanics.]

In quantum mechanics, every **state** of a quantum system is *described* by a **complex vector** (an array of *complex* numbers), called the **state vector**.

- The *vector components* are the **state variables**, and they may not need to have physical meanings. [They are also called **probability amplitudes** or **wave amplitudes**, but I don't explain what is "waving" here.]
- While the *state vector* (vector-based) approach is widely used, quantum mechanics can also be formulated using other frameworks.
 - Examples: density matrix (matrix-based), classical shadow (probability-based) [1], quantum bootstrap (observable-based) [2].
 - However, the state vector description remains a *precise* and *efficient* method for representing **pure states** of quantum systems. Therefore, we will begin our discussion with state vectors.
- The information encoded in the state vector, known as **quantum information**, forms the foundation for quantum computation and communication.
- [1] Hsin-Yuan Huang, Richard Kueng, John Preskill. arXiv:2002.08953.
- [2] Xizhi Han, Sean A. Hartnoll, Jorrit Kruthoff. arXiv:2004.10212.

• What Is a Vector?

- *Geometrical* interpretation: a vector (in high-school physics) is an *arrow*, used to represent a physical quantity that has both **magnitude** and **direction**.
 - \bullet Example: the displacement vector \boldsymbol{x} in a two-dimensional coordinate space

- *Computational* interpretation: a vector (in computer science) is an *array* of *numbers*, serves as a **data structure** to store and represent **information**.
 - Example 1: Color vector (the red/green/blue values form a vector)

• Example 2: Word vector (in natural language processing), vector representations of words that encode the meaning and semantics of the words.

Use semantic relationship by vector arithmetic [3]:

 $|\text{king}\rangle - |\text{man}\rangle + |\text{woman}\rangle = |\text{queen}\rangle.$

(1)

Vector in Quantum Mechanics:

- The notion of **state vector** in **quantum mechanics** is closer to the *computational* interpretation --- it is used to encode the *state* of a quantum system, or to store the *data* of quantum information. There is no direct physical meaning associated with its amplitude and direction.
- Real and complex vectors:
 - Real vector: an array of *real* numbers --- the space of *n*-component real vectors is denoted as \mathbb{R}^n

$$\boldsymbol{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n.$$

• Complex vector: an array of *complex* numbers --- the space of *n*-component complex vectors is denoted as \mathbb{C}^n

$$\boldsymbol{z} = (z_1, \, z_2, \, \dots, \, z_n) \in \mathbb{C}^n.$$
(3)

They are just arrays of different *data types*. It has been shown [4] that the formulation of quantum mechanics involving *complex* rather than real numbers is *necessary* to reproduce certain behavior of *quantum entanglement* observed in experiments.

- [3] Ekaterina Vylomova, Laura Rimell, Trevor Cohn, Timothy Baldwin. arXiv:1509.01692
- [4] Alessio Avella. Quantum Mechanics Must Be Complex. (2022)

Complex Algebra

• Complex Number

A complex number z is made of two real numbers (x, y) that combine with a real unit 1 and an imaginary unit $i = \sqrt{-1}$ respectively,

$$x \in \mathbb{R}, \ y \in \mathbb{R} \to z = x + i \ y \in \mathbb{C}.$$
⁽⁴⁾

The real and imaginary units obey the following multiplication rules

$$1 \times 1 = 1, \ 1 \times i = i \times 1 = i, \ i \times i = -1.$$
(5)

• Addition:

$$\begin{cases} z = x + i \ y \\ w = u + i \ v \end{cases} \rightarrow z + w = (x + u) + i \ (y + v) \tag{6}$$

• Multiplication:

$$\begin{cases} z = x + i y \\ w = u + i v \end{cases} \rightarrow z w = (x u - y v) + i (x v + y u)$$

$$(7)$$

(8)

• Complex conjugation:

$$z = x + i \ y \to z^* = x - i \ y.$$

Real and imaginary parts can be extracted from

Re
$$z = \frac{1}{2} (z + z^*) = x,$$

Im $z = \frac{1}{2i} (z - z^*) = y.$
(9)

• Complex Number in Mathematica

The imaginary unit i can be types et in Mathematica by ${\rm Isc}{\rm ii}{\rm Isc}$. For example, here is a complex number

3+1 1

3 + i

Multiplying two complex numbers together (*Mathematica* treats the space between two numbers as a multiplication operator just as $a b = a \times b$ in algebra)

(3 + іі) (4 + 2 іі) 10 + 10 і

Complex conjugation is given by

Conjugate[3+i] 3-i

Extract real and imaginary part by

```
Re[3 + i]
Im[3 + i]
3
```

• Polar Complex Form

Through Euler's formula, a complex number $z=x+i\,y$ may be written in a polar-coordinate form

$$z = |z| \cos \theta + i |z| \sin \theta = |z| e^{i\theta}.$$
(10)

• |z| - complex modulus (or magnitude)

$$|z|^2 = z^* \, z = x^2 + y^2. \tag{11}$$

Note that $|z|^2 \ge 0$, such that its (positive) square root |z| is defined.

• θ - complex argument (or phase)

$$\arg z = \theta = \operatorname{Im} \ln z = \arctan \frac{y}{x}.$$
(12)

Multiplying a complex number z by $e^{i\phi}$ simply *rotates* the number by an angle ϕ in the complex plane [5],

$$z = |z| e^{i\theta},$$

$$\stackrel{\times e^{i\phi}}{\Rightarrow} e^{i\phi} z = |z| e^{i(\theta+\phi)}.$$
(13)

• Two rotations can be *composed* into a new rotation with the rotation angles add up,

$$e^{i\phi_1} e^{i\phi_2} = e^{i(\phi_1 + \phi_2)}.$$
(14)

• Complex conjugation simply flips the phase angle $(\phi \rightarrow -\phi)$, representing an *inverse* rotation,

$$\left(e^{i\,\phi}\right)^* = e^{-i\,\phi}.\tag{15}$$

[5] 3Blue1Brown. $e^{i\pi}$ in 3.14 minutes, using dynamics. (watch on YouTube)

Linear Algebra

• Matrix and Vector

• A matrix is a two-dimensional array of numbers,

$$M = \begin{pmatrix} M_{11} & M_{12} & \cdots \\ M_{21} & M_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \in \mathbb{C}^{m \times n}.$$
(16)

- Matrix elements (components) M_{ij} are labeled by a row index i = 1, ..., m and a column index j = 1, ..., n. Each component itself is a number. Let us consider $M_{ij} \in \mathbb{C}$ to be general, such that the space of *m*-row *n*-column matrices will be denoted as $\mathbb{C}^{m \times n}$.
- If m = n, the matrix is said to be a square matrix. In quantum mechanics, we will be mostly dealing with square matrices.
- A vector can be viewed as a special case of a *matrix*.
 - Column vectors (multi-row single-column)

$$|v\rangle = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \end{pmatrix} \in \mathbb{C}^{n \times 1} \cong \mathbb{C}^n.$$
(17)

• *Row* vectors (single-row multi-column)

$$\langle v| = (v_1^* \ v_2^* \ \cdots) \in \mathbb{C}^{1 \times n} \cong \mathbb{C}^n.$$

$$\tag{18}$$

• Column v.s. row: In terms of encoding information in n numbers, it doesn't matter whether they are arranged in a column or a row. But when it comes to matrix-vector multiplication (to be discussed soon), there is a difference. So we use the and notation to distinguish them, instead of writing both as v.

• Linear Superposition

Matrix (or vector) space. All $m \times n$ matrices forms a matrix space $\mathbb{C}^{m \times n}$. Its defining property is that any linear combination of matrices in the space is still a matrix in the same space (same applies to vectors)

$$\forall A, B \in \mathbb{C}^{m \times n}; \alpha, \beta \in \mathbb{C}:$$

$$\alpha A + \beta B \in \mathbb{C}^{m \times n}$$
(19)

A linear combination can be broken down into two types of basic operations:

• Scalar multiplication:

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots \\ A_{21} & A_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \rightarrow \alpha A = \begin{pmatrix} \alpha & A_{11} & \alpha & A_{12} & \cdots \\ \alpha & A_{21} & \alpha & A_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix},$$
(20)

meaning that

$$(\alpha A)_{ij} = \alpha A_{ij}.$$
(21)

• Addition:

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots \\ A_{21} & A_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}, B = \begin{pmatrix} B_{11} & B_{12} & \cdots \\ B_{21} & B_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

$$\rightarrow A + B = \begin{pmatrix} A_{11} + B_{11} & A_{12} + B_{12} & \cdots \\ A_{21} + B_{21} & A_{22} + B_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix},$$
(22)

meaning that

$$(A+B)_{ij} = A_{ij} + B_{ij}.$$
(23)

All these rules applies to vectors when matrices are single-column or single-row.

Matrix Multiplication

Matrix multiplication is an *associative binary* operation:

$$\mathbb{C}^{m \times n} \times \mathbb{C}^{n \times l} \to \mathbb{C}^{m \times l},\tag{24}$$

meaning that two matrices can multiply if and only if the *column* dimension of the *left* matrix matches the *row* dimension of the *right* matrix.

• Explicitly, when we write

$$\begin{pmatrix} A_{11} & A_{12} & \cdots \\ A_{21} & A_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} & \cdots \\ B_{21} & B_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} & \cdots \\ C_{21} & C_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix},$$
(25)

we mean that

$$C_{ij} = \sum_{k} A_{ik} B_{kj}, \tag{26}$$

where k = 1, ..., n is the index to be **contracted** (to be summed over).

• We can denote Eq. (25) on the matrix level simply as

$$A B = C. (27)$$

Matrix-vector multiplication: If one of the matrix is reduced to a vector, the above rules still apply. A matrix can left-multiply a column vector or right-multiply a row vector, if their contracted dimensions matches.

• Left-multiplication

$$\begin{pmatrix} A_{11} & A_{12} & \cdots \\ A_{21} & A_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \end{pmatrix}$$

$$\Rightarrow v_i = \sum_j A_{ij} u_j,$$

$$(28)$$

• Right-multiplication

$$(u_1 \ u_2 \ \cdots) \begin{pmatrix} A_{11} \ A_{12} \ \cdots \\ A_{21} \ A_{22} \ \cdots \\ \vdots \ \vdots \ \ddots \end{pmatrix} = (v_1 \ v_2 \ \cdots)$$

$$\Rightarrow v_j = \sum_i u_i \ A_{ij},$$
(29)

Vector-vector multiplication: If both matrices are reduced to vectors of the same dimension, we can define a **inner product** and a **outer product** between them.

• Inner product

$$(u_1 \ u_2 \ \cdots) \begin{pmatrix} v_1 \\ v_2 \\ \vdots \end{pmatrix} = \sum_i u_i \ v_i = \text{"a scalar (number)"},$$
(30)

• Outer product

$$\begin{pmatrix} v_1 \\ v_2 \\ \vdots \end{pmatrix} (u_1 \ u_2 \ \cdots) = \begin{pmatrix} v_1 \ u_1 \ v_1 \ u_2 \ \cdots \\ v_2 \ u_1 \ v_2 \ u_2 \ \cdots \\ \vdots \ \vdots \ \ddots \end{pmatrix} .$$
(31)

• Multiplying two row vectors or two column vectors are illegal (because dimensions do not match).

(32)

 $\begin{pmatrix} u_1 & u_2 & \cdots \end{pmatrix} (\begin{array}{c} u_1 & u_2 & \cdots \end{pmatrix} \rightarrow \operatorname{No} ! \\ \begin{pmatrix} v_1 \\ v_2 \\ \vdots \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \end{pmatrix} \rightarrow \operatorname{No} !$

Identity Matrix and Kronecker Symbol

Identity matrix: a special $n \times n$ square matrix whose diagonal are all 1's and off-diagonal are all 0's. It looks like

$$\mathbf{1} = \begin{pmatrix} 1 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \ddots \\ 0 & 0 & 1 & \ddots \\ \vdots & \ddots & \ddots & \ddots \end{pmatrix}.$$
(33)

• The matrix element of an identity matrix can be expressed using the **Kronecker delta** symbol δ_{ij} ,

$$\mathbb{1}_{ij} = \delta_{ij} \equiv \begin{cases} 1 & i = j, \\ 0 & i \neq j. \end{cases}$$
(34)

- Identity matrix multiplying on any vector keeps the vector unchanged, i.e.
 - $\forall u \in \mathbb{C}^n : u \mathbb{1} = \mathbb{1} u = u$. This implies that the Kronecker delta has the following property

$$\sum_{i} u_{i} \delta_{ij} = u_{j},$$

$$\sum_{j} \delta_{ij} u_{j} = u_{i}.$$
(35)

• Rule of thumb: when δ_{ij} appears in a summation of i (or j), it annihilates with the summation symbol and replaces summation index i by j (or j by i) in the summand.

• Matrix Algebra in *Mathematica*

Construct two matrices

 $A = \{\{1, 2, 3\}, \{4, 5, 6\}, \{7, 8, 9\}\};$ $B = \{\{9, 8, 7\}, \{6, 5, 4\}, \{3, 2, 1\}\};$ A // MatrixForm B // MatrixForm $\begin{pmatrix}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix}$ $\begin{pmatrix}9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1\end{pmatrix}$ • Linear combine them simply as

• Multiply them using "." symbol, standing for the "dot product".

```
A.B // MatrixForm
```

 30
 24
 18

 84
 69
 54

 138
 114
 90

B.A // MatrixForm

 $\begin{pmatrix}
90 & 114 & 138 \\
54 & 69 & 84 \\
18 & 24 & 30
\end{pmatrix}$

Unlike multiplying two number (a b = b a, which is *commutative*), matrix multiplication is **non-commutative**, meaning that

$$A B \neq B A, \tag{36}$$

for two square matrices $A, B \in \mathbb{C}^{n \times n}$ in general.

• Matrix as a Machine

A *matrix* can be viewed as a machine that takes in a *vector*, acts (multiplies) on it, and returns a *new vector*.

Examples of 2×2 matrix M acting on 2-component vectors.

$$\boldsymbol{u} \stackrel{M}{\to} \boldsymbol{v} = M \, \boldsymbol{u}. \tag{37}$$

• Exchanging the two components in the vector by

$$M = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}.$$
 (38)

(39)

• Reflecting the vector with respect to an axis by

 \bullet Rotating the vector by 90° counterclockwise by

• Eigen System of a Matrix

An eigen system of a $n \times n$ square matrix M refers to the set of eigenvalues $\lambda^{(k)}$ and the corresponding eigenvectors $u^{(k)}$ for k = 1, ..., n such that

$$M \boldsymbol{u}^{(k)} = \boldsymbol{\lambda}^{(k)} \boldsymbol{u}^{(k)}, \tag{41}$$

meaning that the multiplication of the matrix M to its eigenvector $\boldsymbol{u}^{(k)}$ can be reduced to the

scalar multiplication by $\lambda^{(k)}$. See [6] for more intuitive discussions.

Examples eigen systems of 2×2 matrices M.

• Exchanging the two components in the vector by

(43)

• Reflecting the vector with respect to an axis by

$$M = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

$$u^{(1)} u$$

$$u^{(2)}$$

$$\frac{k \lambda^{(k)} u^{(k)}}{1 - 1 \begin{pmatrix} 0 \\ 1 \end{pmatrix}}$$

$$2 \begin{vmatrix} 1 & \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

 \bullet Rotating the vector by 90° counterclockwise by

$$M = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}. \tag{44}$$

[6] 3Blue1Brown. Eigenvectors and eigenvalues | Chapter 14, Essence of linear algebra. (watch on YouTube).

• Finding eigen systems in *Mathematica*

Choose a matrix

```
M = \{\{3, 1\}, \{0, 2\}\};
M // MatrixForm
\begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}
```

Find its eigenvalues and eigenvectors by Eigensystem, the result will be arranged as {{val₁, val₂, ...}, {vec₁, vec₂, ...}}.

Eigensystem[M]

 $\{\{3, 2\}, \{\{1, 0\}, \{-1, 1\}\}\}$

Verify that the matrix multiplying on its eigenvector simply scales the eigenvector by the corresponding eigenvalue

M.{1,0} M.{-1,1} {3,0} {-2,2}

Quantum States

Ket and Bra

• Ket Vector

Postulate 1 (States): States of a quantum system are described as vectors in the associated Hilbert space.

In quantum mechanics, every **state** of a quantum system is described by a *complex column* vector, denoted by a **ket** (or ket state, ket vector) $|v\rangle$ in *Dirac's notation*,

$$|v\rangle \doteq \begin{pmatrix} v_1 \\ v_2 \\ \vdots \end{pmatrix},\tag{45}$$

where $v_1, v_2, \ldots \in \mathbb{C}$. The *length* of the vector depends on the **dimension** of the vector space.

- Note: "=" implies the vector representation is *basis dependent* and the values of vector components may change if we view the same state in a different basis.
- To write down the vector representation, we must specified a set of (orthonormal) **basis vectors** in the vector space, and represent them as one-hot unit vectors:

$$|1\rangle \doteq \begin{pmatrix} 1\\0\\\vdots \end{pmatrix}, |2\rangle \doteq \begin{pmatrix} 0\\1\\\vdots \end{pmatrix}, \dots$$
(46)

(47)

• Such that $|v\rangle$ can be expressed as a linear combination of basis vectors

$$\begin{split} |v\rangle &= v_1 |1\rangle + v_2 |2\rangle + \dots \\ &= \sum_i v_i |i\rangle. \end{split}$$

• The *i*th vector component v_i is the linear combination coefficient in front of the *i*th basis vector .

Superposition Principle: any linear combination of quantum states of a given quantum system is still a valid quantum state of the same system.

Bra Vector

Every ket $|v\rangle$ has a dual vector, called bra $\langle v|$, a *complex row vector*. They are related by *conjugate transpose* with respect to each other.

$$|v\rangle \simeq \begin{pmatrix} v_1 \\ v_2 \\ \vdots \end{pmatrix} \stackrel{\text{dual}}{\longleftrightarrow} \langle v| \simeq (v_1^* \ v_2^* \ \cdots).$$
(48)

The name comes from the fact that they combine into a **bracket**, which represents a scalar product [to be introduced later].

• Every basis vector $|i\rangle$ also has a **dual basis vector** $\langle i|$, the are represented as

$$\langle 1| = (1 \ 0 \ \cdots),$$

 $\langle 2| = (0 \ 1 \ \cdots),$ (49)
...

• The dual basis vectors form a set of basis for the bra vector. In terms of basis vectors,

$\langle v| = v_1^* \langle 1| + v_2^* \langle 2| + \dots$ = $\sum_i v_i^* \langle i|.$ (50)

• The *i*th vector component v_i^* is the linear combination coefficient in front of the *i*th dual basis vector $\langle i |$.

Qubit System

A qubit (or quantum-bit) is a quantum system that has two distinct states.

- The two distinct states are $|0\rangle$ and $|1\rangle.$
- We can *choose* $|0\rangle$ and $|1\rangle$ to be the **basis** vectors (like choosing a *coordinate system*) and write:

$$|0\rangle \simeq \begin{pmatrix} 1\\0 \end{pmatrix}, \ |1\rangle \simeq \begin{pmatrix} 0\\1 \end{pmatrix}$$
(51)

- The vector representation of a quantum state is also called a state vector.
- By saying that a qubit is a **two-state system**, its *state vector* has *two components*.
- A generic quantum state of a qubit is a complex *linear superposition* of the basis states

$$|\psi\rangle = \psi_0 |0\rangle + \psi_1 |1\rangle \simeq \begin{pmatrix} \psi_0 \\ \psi_1 \end{pmatrix}.$$
(52)

- $\psi_0, \psi_1 \in \mathbb{C}$ are complex numbers. They parameterize the state $|\psi\rangle$.
- Conversely, every two-component complex vector describes a qubit state.
- Statistical interpretation: $|\psi_0|^2$ and $|\psi_1|^2$ are respectively the probabilities to observe the qubit in the 0 and the 1 states.
- There is a dual bra vector $\langle \psi |$ associated with each ket vector $|\psi \rangle$,

$$\langle \psi | = \psi_0^* \langle 0 | + \psi_1^* \langle 1 | \simeq (\psi_0^* \ \psi_1^*), \tag{53}$$

which, the bra state, encodes the *same* information about the qubit as the ket state. They are equally good description of the quantum state of a qubit (but play different roles in defining the scalar product, as to be discussed soon).

Scalar Product

Definition

Scalar product (or inner product) is a function that takes two ket vectors, $|u\rangle$ and $|v\rangle$,

$$|u\rangle \doteq \begin{pmatrix} u_1 \\ u_2 \\ \vdots \end{pmatrix}, |v\rangle \doteq \begin{pmatrix} v_1 \\ v_2 \\ \vdots \end{pmatrix},$$
(54)

and returns a complex number, denoted by the bracket $\langle u|v\rangle$,

$\langle u v\rangle \simeq (u_1^* \ u_2^* \ \cdots) \begin{pmatrix} v_1 \\ v_2 \\ \vdots \end{pmatrix}$	
$= u_1^* v_1 + u_2^* v_2 + \dots$	(55)
$=\sum_{i}u_{i}^{*}v_{i}.$	

• Exchanging the two states in a scalar product lead to a complex conjugation of result

$$\langle v|u\rangle = \langle u|v\rangle^*. \tag{56}$$

• Scalar product of any vector $|v\rangle$ with itself is *real* and *positive definite*,

$$\langle v|v\rangle \ge 0. \tag{57}$$

More specifically,

$$\langle v|v\rangle \begin{cases} = 0 & \text{if } |v\rangle = 0\\ > 0 & \text{otherwise} \end{cases}.$$
(58)

• This implies the Cauchy-Schwarz inequality

$$|\langle u|v\rangle|^2 \le \langle u|u\rangle \langle v|v\rangle.$$

(59)

Exc 1

Prove Eq. (59).

Hilbert space: the space of all ket vectors together with their scalar product structure, denoted as \mathcal{H} , which is the space of all possible quantum states of a system.

Normalization

Squared norm of a vector $|v\rangle$ is the *scalar product* of the vector with itself, denoted as

$$\|v\|^2 = \langle v|v\rangle. \tag{60}$$

Taking off the square, $||v|| = \sqrt{\langle v|v \rangle}$ is the **norm** of $|v \rangle$.

Normalized state: a state $|v\rangle$ is **normalized** \Leftrightarrow Its *norm* is *one*, i.e.

$$||v||^{2} = \langle v|v\rangle = \sum_{i} |v_{i}|^{2} = 1.$$
(61)

• Example: Consider a qubit state

$$|v\rangle \simeq \binom{v_0}{v_1},\tag{62}$$

the normalization condition means

$$\langle v|v\rangle = v_0^* v_0 + v_1^* v_1 = 1. \tag{63}$$

• In general, the normalization condition means

$$\langle v|v\rangle = \sum_{i} |v_i|^2 = 1.$$
(64)

According to the statistical interpretation of quantum state, $|v_i|^2$ is the *probability* to observe the system in the *i*th basis state. The normalization condition is simply a requirement that the probabilities must *sum up to unity*.

• Normalization of a state: if a state was *not* normalized, it can be normalized by

$$|v\rangle \to \frac{|v\rangle}{\|v\|} = \frac{1}{\sqrt{\langle v|v\rangle}} |v\rangle, \tag{65}$$

unless ||v|| is zero or infinity.

Normalize the vector

Exc 2

Orthogonality

Orthogonal states: two states and are **orthogonal** to each other \Leftrightarrow their *scalar* product is zero, i.e.

$$\langle u|v\rangle = \sum_{i} u_i^* v_i = 0.$$
(66)

• For example, the qubit states $|0\rangle$ and $|1\rangle$ (see Eq. (51)) are orthogonal, as

$$\langle 0|1\rangle = (1 \ 0) \begin{pmatrix} 0\\1 \end{pmatrix} = 0. \tag{67}$$

 $|0\rangle$ and $|1\rangle$ are *orthogonal* for a good reason: they are **distinct** states of a qubit, i.e. if the qubit is in state 0, it is definitely not in state 1, vice versa.

Basis and Hilbert Space

• Orthonormal Basis

Orthonormal basis: a (ordered) set of kets

 $\mathcal{B} = \{ |i\rangle : i = 1, 2, \dots, n \},\$

in which the vectors are **normalized** by themselves and **orthogonal** to each other:

 $\langle i|j\rangle = \delta_{ij} \equiv \begin{cases} 1 & i = j, \\ 0 & i \neq j. \end{cases}$ (69)

(68)

(71)

- Each orthogonal basis state describes a distinct reality of the quantum system.
- Orthonormal basis states are *represented* by **one-hot vectors**, as they are normalized and orthogonal to each other

$$|1\rangle \doteq \begin{pmatrix} 1\\0\\0\\\vdots \end{pmatrix}, |2\rangle \doteq \begin{pmatrix} 0\\1\\0\\\vdots \end{pmatrix}, |3\rangle \doteq \begin{pmatrix} 0\\0\\1\\\vdots \end{pmatrix}, \dots$$
(70)

Choosing a basis is always a helpful practice in quantum mechanics. But quantum mechanics can be formulated in a basis independent manner.

Hilbert Space

A set of orthonormal basis spans a Hilbert space (the vector space of kets), denoted as

```
\mathcal{H} = \operatorname{span} \mathcal{B} = \operatorname{span} \{ |i\rangle : i = 1, 2, ..., n \}.
```

- The dimension of the vector space dim \mathcal{H} = the number *n* of basis vectors = the maximal number of *linearly independent* vectors in the space.
 - The Hilbert space dimension of a quantum system can be *finite* or *infinite*. Example: a qubit dim $\mathcal{H} = 2$, ten qubits dim $\mathcal{H} = 2^{10} = 1024$, a particle in a continuous space dim $\mathcal{H} = \infty$.
 - Dimension of the Hilbert space is often a *choice*: we don't really know how many independent states are there in a quantum system. We only care about the states that are *relevant* to us.
- Example: $|0\rangle$ and $|1\rangle$ form an *orthonormal basis* of the qubit Hilbert space. They represent two distinct realities: if the qubit is in state $|0\rangle$, it is definitely not in state $|1\rangle$ (and vice versa).

• State Basis Expansion

Completeness: Any *full* set of *distinct* states in the Hilbert space \mathcal{H} forms a *complete* set of

orthonormal basis \mathcal{B} , such that every state $|v\rangle \in \mathcal{H}$ can be expanded as a linear superposition of the basis states,

$$|v\rangle = v_1 |1\rangle + v_2 |2\rangle + \dots = \sum_i v_i |i\rangle.$$
(72)

- Each basis state $|i\rangle$ describes a distinct reality that the quantum system can realize under observation.
- The superposition coefficient v_i are the components of the state vector, which can be extracted by the *scalar product* with the basis state,

 $v_i = \langle i | v \rangle.$

Eq. (72) and Eq. (73) can be written in a more elegant form in terms of bras and kets only

$$|v\rangle = \sum_{i} |i\rangle \langle i|v\rangle.$$
(74)

• Statistical interpretation: If a quantum system is known to be in a superposition state $|v\rangle = \sum_i v_i |i\rangle$ of distinct realities described by orthogonal states $|i\rangle$ (i = 1, 2, ...), an observation designed to discern which reality the system is really in will find the system in the state $|i\rangle$ with the probability

$$p(i \mid v) = |v_i|^2 = |\langle i \mid v \rangle|^2.$$

Born's Rule

Fidelity

The fidelity F(u, v) between two quantum states $|u\rangle$ and $|v\rangle$ quantifies the similarity (overlap) between two states. It is given by the squared absolute value of their scalar product (assuming the normalization of state vectors)

 $F(u, v) = |\langle u|v\rangle|^2.$

- Fidelity is symmetric: F(u, v) = F(v, u).
- Fidelity takes values in the range of

$$0 \le F(u, v) \le 1.$$

(77)

(76)

This follows from the Cauchy-Schwarz inequality of scalar product Eq. (59) that $|\langle u|v\rangle|^2 \le \langle u|u\rangle \langle v|v\rangle.$

Statistical Interpretation

Hypothesis testing: If a quantum system is prepared in a state $|v\rangle$, an observation

(73)

(75)

designed to check whether the system is in the state $|u\rangle$ will return a confirmative result with probability

 $p(u \mid v) = |\langle u \mid v \rangle|^2.$

Detailed balance: the probability to observe one state given another is the same as the other way round, both are given by their fidelity

$$p(u \mid v) = p(v \mid u) = F(u, v) = |\langle u \mid v \rangle|^2.$$
(79)

• Identical states. Two states $|u\rangle$ and $|v\rangle$ are *identical* iff the fidelity between them is *one* (fully overlap)

 $|\langle u|v\rangle|^2 = 1. \tag{80}$

• This is only achievable when

$$|u\rangle = e^{i\varphi} |v\rangle,\tag{81}$$

i.e. the two states are the same up to phase ambiguity.

- **Reality** must be *confirmable* by *repeated* observations: if a quantum system is known to be in a state $|v\rangle$, observing the system again will certainly confirm the state $|v\rangle$ (with probability 1).
- Distinct states. Two states $|u\rangle$ and $|v\rangle$ are *distinct* iff the fidelity between them is *zero* (no overlap)

$$|\langle u|v\rangle|^2 = 0.$$

- Orthogonal states \Leftrightarrow distinct realities.
- Distinct realities are distinguishable by repeated observations: if a quantum system is known to be in a state $|v\rangle$, observing the system again will certainly not find the system in another orthogonal state $|u\rangle$.
- Overlapping states. In general, two different states $|u\rangle$ and $|v\rangle$ may have partial overlap (they don't need to be orthogonal), i.e. their fidelity falls between zero and one

 $0 < |\langle u | v \rangle|^2 < 1.$

(83)

(82)

(78)

• Realities can overlap: if two quantum states are more similar to (more overlapped with) each other, the probability to confuse them is higher.

$$|"3"\rangle \simeq \mathbf{3}, |"5"\rangle \simeq \mathbf{\hat{s}}$$

 $\{|0\rangle, |1\rangle\}, \{|+\rangle, |-\rangle\}$, and $\{|i\rangle, |\bar{i}\rangle\}$ are three pairs of distinct states of a *qubit* (i.e. 2-dimensional Hilbert space). Within each pair, the two states are orthogonal. However, any two states from different pairs have 50% overlap (i.e. 1/2 fidelity). Their overlapping relations can be visualized as the following graph.

HW 1 $1 = \frac{|1\rangle}{50\%} = \frac{|i\rangle}{50\%} = \frac{|i\rangle}{50\%} = \frac{1}{50\%} =$

Can you figure out an assignment of 2-component vector representation for these states that is consistent with their overlapping relations? [Hint: read Lecture 2 of [7]] [Comment: This result shows how it is possible to embed so many different realities just in a 2-dimensional Hilbert space.]

[7] Leonard Susskind, Art Friedman. *Quantum Mechanics - the Theoretical Minimum*. Publisher: Basic Books (2014).

Quantum Operators

Matrix Representation

Definition

Operator: an operator acts on a state and returns a new state.

$$\hat{O} : \mathcal{H} \to \mathcal{H}
|v\rangle \mapsto |w\rangle = \hat{O} |v\rangle$$
(84)

• Linear operator: action of the operator commutes with linear combination of the state

$$\hat{O}(\alpha | v \rangle + \beta | u \rangle) = \alpha \ \hat{O} | v \rangle + \beta \ \hat{O} | u \rangle.$$
(85)

• Identity operator is a special operator that maps any state to itself (the do-nothing operator), denoted as 1.

$$\forall |v\rangle \colon 1|v\rangle = |v\rangle. \tag{86}$$

• Operator Acting on State

Recall: a matrix *multiplying* on a vector produces a new vector. If every **quantum state** is described by a **vector**, one may conjecture that every **quantum operator** should be described

by a (square) **matrix**. --- This is indeed a basic assumption of quantum mechanics: states are to be operated (transformed) *linearly*.

Applying an *operator* to a *state* \simeq multiplying a *matrix* to a *vector*.

$ w\rangle =$	Ô	$ v\rangle$
↓≏	↓≏	↓≏
$\begin{pmatrix} w_1 \end{pmatrix} \begin{pmatrix} O_1 \end{pmatrix}$	$O_{12} \cdots$	$\cdot) (v_1)$
$\begin{bmatrix} w_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} O_2 \\ O_2 \end{bmatrix}$	${}_{21} O_{22} \cdots$	$\cdot \qquad v_2 \\ \vdots \qquad \vdots$

or equivalently

$$w_i = \sum_j O_{ij} v_j. \tag{88}$$

 The matrix element O_{ij} tells how the operator should act on each basis states: the operator *Ô* will turn a basis state |j⟩ to a superposition state of basis states |i⟩ with superposition coeffi-cients O_{ij}.

$$\hat{O}|j\rangle = \sum_{i} O_{ij}|i\rangle.$$
(89)

Exc 3

Show Eq. (89) as a result of Eq. (87) using one-hot representation for basis vectors.

• In other words, O_{ij} is the **amplitude** to transform basis state $|j\rangle$ to basis state $|i\rangle$ under the action of the operator \hat{O} . It is sufficient to specify the operator by specifying its action on basis states, as all possible states are just linear combination of basis states, and the operator acts linearly.

• Operator Basis Expansion

Given an orthonormal basis $\mathcal{B} = \{|i\rangle : i = 1, 2, ...\}$ of the Hilbert space \mathcal{H} , every operator \hat{O} acting in \mathcal{H} can be expanded as a *linear combination* of **basis operators** $|i\rangle\langle j|$,

$$\hat{O} = \sum_{ij} |i\rangle \ O_{ij} \langle j|, \tag{90}$$

• $|i\rangle\langle j|$ denotes the operator that targets the state $|j\rangle$ and transforms it to the state $|i\rangle$, because

Thus Eq. (90) is consistent with the Eq. (89) in describing how the operator \hat{O} acts on the state.

• $O_{ij} \in \mathbb{C}$ are *complex* coefficients, which can be extracted by

$$O_{ij} = \langle i | \ \hat{O} | j \rangle. \tag{92}$$

Exc

Prove Eq. (92) from Eq. (90) using the orthonormal property of the basis vectors, without representing them as on-hot vectors explicitly.

• Alternatively, $|i\rangle\langle j|$ can be represented as an **one-hot matrix** that is zero everywhere with a single 1 at the row-*i* column-*j*. For example, in a 2-dimensional Hilbert space [recall Eq. (31) for how to outer product two vectors]

$ 1\rangle\langle 1 \doteq \begin{pmatrix} 1\\0 \end{pmatrix}(1\ 0) = \begin{pmatrix} 1\ 0\\0\ 0 \end{pmatrix},$	
$ 1\rangle \langle 2 \simeq \begin{pmatrix} 1\\ 0 \end{pmatrix} (0 \ 1) = \begin{pmatrix} 0 \ 1\\ 0 \ 0 \end{pmatrix},$	(02)
$ 2\rangle \langle 1 \doteq \begin{pmatrix} 0\\1 \end{pmatrix} (1 \ 0) = \begin{pmatrix} 0 \ 0\\1 \ 0 \end{pmatrix},$	(93)
$ 2\rangle \langle 2 \doteq \begin{pmatrix} 0\\1 \end{pmatrix} (0 \ 1) = \begin{pmatrix} 0 \ 0\\0 \ 1 \end{pmatrix}.$	

Therefore, Eq. (90) indeed reconstructs the matrix representation

$$\begin{array}{l}
O_{11} |1\rangle \langle 1| + O_{12} |1\rangle \langle 2| + O_{21} |2\rangle \langle 1| + O_{22} |2\rangle \langle 2| \\
\approx \begin{pmatrix} O_{11} & O_{12} \\ O_{21} & O_{22} \end{pmatrix}.
\end{array}$$
(94)

The above can be generalized to larger matrices (higher dimensions).

Matrix representation. Every operator \hat{O} can be represented as a matrix

$$\hat{O} \doteq \begin{pmatrix} O_{11} & O_{12} & \cdots \\ O_{21} & O_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}.$$
(95)

The *i*th row *j*th column matrix element O_{ij} describes:

- The linear combination coefficient in front of the basis operator $|i\rangle\langle j|$, as in Eq. (90).
- The amplitude to transform state |j> to state |i> under the action of the operator Ô, as in Eq. (89).

• Examples of Operators

Example I: Identity operator

Identity operator is universally represented by the **identity matrix** in any orthonormal basis (independent of the basis choice).

According to Eq. (92),

$$\mathbb{1}_{ij} = \langle i| \, \mathbb{1} \, |j\rangle = \langle i|j\rangle = \delta_{ij} = \begin{cases} 1 & i=j\\ 0 & i\neq j \end{cases}.$$
(96)

• In matrix representation Eq. (95),

$$\mathbb{I} = \begin{pmatrix} 1 \\ & 1 \\ & \ddots \end{pmatrix}. \tag{97}$$

• Using Dirac notation Eq. (90),

$$1 = \sum_{ij} |i\rangle 1_{ij} \langle j| = \sum_{i} |i\rangle \langle i|.$$
(98)

This is also call the **resolution of identity**.

Example II: Pauli operators

Pauli operators are a set of operators acting on a qubit.

$$\hat{\sigma}^{x} = |1\rangle \langle 0| + |0\rangle \langle 1|,$$

$$\hat{\sigma}^{y} = i |1\rangle \langle 0| - i |0\rangle \langle 1|,$$

$$\hat{\sigma}^{z} = |0\rangle \langle 0| - |1\rangle \langle 1|,$$
(99)

Sometimes the identity operator

$$\mathbb{1} = |0\rangle \langle 0| + |1\rangle \langle 1|, \tag{100}$$

is also included as the 0th Pauli operator.

Pauli matrices - matrix representations of Pauli operators on the qubit basis $\{|0\rangle, |1\rangle\}$:

$$\mathbb{I} \simeq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \hat{\sigma}^x \simeq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \hat{\sigma}^y \simeq \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \hat{\sigma}^z \simeq \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
(101)

Operator Algebra

• Operator Product

Product (or **composition**) of two **operators** \hat{O} and \hat{P} is a combined operator $\hat{O} \hat{P}$ that first applies \hat{P} to the sate then applies \hat{O} (from *right* to *left*):

$$\left(\hat{O}\,\hat{P}\right)|v\rangle = \left(\hat{O}(\hat{P}\,|v\rangle)\right).\tag{102}$$

• Composing two *operators* \simeq multiplying two *matrices*.

$$\hat{O} \,\hat{P} \doteq \begin{pmatrix} O_{11} & O_{12} & \cdots \\ O_{21} & O_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} P_{11} & P_{12} & \cdots \\ P_{21} & P_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}.$$
(103)

(106)

Prove Eq. (103) using Eq. (90).

• Operator product is *non-commutative* in general, i.e.

$$\hat{O}\,\hat{P}\neq\hat{P}\,\hat{O}.\tag{104}$$

Single-Qubit Pauli Operators

Example: product of Pauli operators

Multiplication table

	1	$\hat{\sigma}^x$	$\hat{\sigma}^y$	$\hat{\sigma}^{z}$
1	1	$\hat{\sigma}^x$	$\hat{\sigma}^y$	$\hat{\sigma}^z$
$\hat{\boldsymbol{\sigma}}^x$	$\hat{\sigma}^x$	1	$i \hat{\sigma}^z$	$-i\hat{\sigma}^y$
$\hat{\sigma}^y$	$\hat{\sigma}^y$	$-i \hat{\sigma}^z$	1	$i \hat{\sigma}^x$
$\hat{\sigma}^{z}$	$\hat{\sigma}^z$	$i \hat{\sigma}^y$	$-i\hat{\sigma}^x$	1

Exc 6

Verify Eq. (105) by multiplying Pauli matrices defined in Eq. (101).

• The table Eq. (105) can be summarized in a single formula: the product of Pauli matrices (as the defining property of Pauli matrices)

 $\hat{\sigma}^a \, \hat{\sigma}^b = \delta^{ab} \, \mathbb{1} + i \, \epsilon^{abc} \, \hat{\sigma}^c,$

where a, b, c = x, y, z.

• δ^{ab} denotes the Kronecker delta symbol, defined as

$$\delta^{ab} = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{if } a \neq b \end{cases}$$
(107)

• ϵ^{abc} denotes the Levi-Civita symbol, defined as

$$\boldsymbol{\epsilon}^{abc} = \begin{cases} 1 & \text{if } (a \ b \ c) \text{ is a cyclic of } (x \ y \ z) \\ -1 & \text{if } (a \ b \ c) \text{ is a cyclic of } (z \ y \ x) \\ 0 & \text{otherwise} \end{cases}$$
(108)

• Another version of Eq. (106) using vector notation

 $(\boldsymbol{m}\cdot\hat{\boldsymbol{\sigma}})(\boldsymbol{n}\cdot\hat{\boldsymbol{\sigma}}) = (\boldsymbol{m}\cdot\boldsymbol{n})\mathbbm{1} + i(\boldsymbol{m}\times\boldsymbol{n})\cdot\hat{\boldsymbol{\sigma}},$ (109)

where m, n are three-component vectors (each component is a scalar).

- The generalized vector $\hat{\sigma}$ should be understood as a vector of matrices, or as a three-dimensional tensor (shape: $3 \times 2 \times 2$).
- Here $\boldsymbol{m} \cdot \hat{\boldsymbol{\sigma}}$ means

Exc

$$\boldsymbol{m} \cdot \hat{\boldsymbol{\sigma}} = m_x \, \hat{\sigma}^x + m_y \, \hat{\sigma}^y + m_z \, \hat{\sigma}^z$$

$$\approx \begin{pmatrix} m_z & m_x - i \, m_y \\ m_x + i \, m_y & -m_z \end{pmatrix}.$$
(110)

As we contract a 3-component vector \boldsymbol{m} with a $3 \times 2 \times 2$ -component tensor $\hat{\boldsymbol{\sigma}}$ along the first index (the dimension 3 index), the result is a 2×2 matrix.

• Repeatedly applying Eq. (109) enables us to product more Pauli operators together. For example

$$(\boldsymbol{l}\cdot\hat{\boldsymbol{\sigma}})(\boldsymbol{m}\cdot\hat{\boldsymbol{\sigma}}) = \boldsymbol{i}\,\boldsymbol{l}\cdot(\boldsymbol{m}\times\boldsymbol{n})\,\boldsymbol{l} + ((\boldsymbol{m}\cdot\boldsymbol{n})\,\boldsymbol{l} - (\boldsymbol{l}\cdot\boldsymbol{n})\,\boldsymbol{m} + (\boldsymbol{l}\cdot\boldsymbol{m})\,\boldsymbol{n})\cdot\hat{\boldsymbol{\sigma}}\,.$$
(111)

Exc 7 Derive Eq. (111).

Commutator

Commutator of two operators \hat{O} and \hat{P}

 $\left[\hat{O},\,\hat{P}\right]=\,\hat{O}\,\hat{P}-\hat{P}\,\hat{O}.$

(112)

- Commutator is antisymmetric, $[\hat{O}, \hat{P}] = -[\hat{P}, \hat{O}].$
- As a result, *commutator* of an operator with *itself* always *vanishes* $[\hat{O}, \hat{O}] = 0$.
- If the commutator vanishes $[\hat{O}, \hat{P}] = 0$, we say that the two operators \hat{O} and \hat{P} commute, i.e. $\hat{O}\hat{P} = \hat{P}\hat{O}$ (operators can *pass though* each other as if they were *numbers*) \Rightarrow it does not matter which operator is applied first, the consequence will be the same.

Example: dressing up to school.

- A: put on the socks,
- B: put on the shoes,
- C: put on the hat,

A and B do *not commute* (changing the order leads to different result). But A and C *commute*, B and C also *commute* (changing the order does not affect the result).

Useful *rules* to evaluate commutators

• Bi-linearity:

$$\begin{bmatrix} \hat{O}, \ \hat{P} + \hat{Q} \end{bmatrix} = \begin{bmatrix} \hat{O}, \ \hat{P} \end{bmatrix} + \begin{bmatrix} \hat{O}, \ \hat{Q} \end{bmatrix}, \\ \begin{bmatrix} \hat{O} + \hat{P}, \ \hat{Q} \end{bmatrix} = \begin{bmatrix} \hat{O}, \ \hat{Q} \end{bmatrix} + \begin{bmatrix} \hat{P}, \ \hat{Q} \end{bmatrix}.$$

Exc 8 Prove Eq. (113). (113)

• Product rules:

(114)

$$\begin{bmatrix} \hat{O}, \hat{P} \ \hat{Q} \end{bmatrix} = \begin{bmatrix} \hat{O}, \hat{P} \end{bmatrix} \hat{Q} + \hat{P} \begin{bmatrix} \hat{O}, \hat{Q} \end{bmatrix},$$
$$\begin{bmatrix} \hat{O} \ \hat{P}, \ \hat{Q} \end{bmatrix} = \begin{bmatrix} \hat{O}, \ \hat{Q} \end{bmatrix} \hat{P} + \hat{O} \begin{bmatrix} \hat{P}, \ \hat{Q} \end{bmatrix}.$$

Exc 9 Prove Eq. (114).

Example: Commutators of Pauli operators

$$\begin{aligned} [\hat{\sigma}^x, \, \hat{\sigma}^y] &= 2 \, i \, \hat{\sigma}^z, \\ [\hat{\sigma}^y, \, \hat{\sigma}^z] &= 2 \, i \, \hat{\sigma}^x, \\ [\hat{\sigma}^z, \, \hat{\sigma}^x] &= 2 \, i \, \hat{\sigma}^y. \end{aligned}$$
(115)

Or more compactly as

$$\left[\hat{\sigma}^{a}, \hat{\sigma}^{b}\right] = 2\,i\,\epsilon^{abc}\,\hat{\sigma}^{c},\tag{116}$$

for a, b, c = x, y, z, using the Levi-Civita symbol ϵ^{abc} defined in Eq. (108).

• Eq. (116) can be considered as the defining algebraic properties of *single-qubit operators* (Pauli matrices). Or even more compactly expressed using the **cross product** of vectors

$$\hat{\boldsymbol{\sigma}} \times \hat{\boldsymbol{\sigma}} = 2\,i\,\hat{\boldsymbol{\sigma}}.\tag{117}$$

• Operator Function

. . .

Г

Operator power. *n*th power of an operator \hat{O} is the composition of \hat{O} by *n* times.

$$\hat{O}^{n} = \hat{O} \hat{O} \dots (n \text{ times}) \dots \hat{O}.$$
(118)

Operator function. Given a function f(x) that admits Taylor expansion

$$f(x) = \sum_{n} c_n x^n, \tag{119}$$

the corresponding operator function is defined as

$$f(\hat{O}) = \sum_{n} c_n \, \hat{O}^n,\tag{120}$$

with the same set of coefficients c_n .

- $f(\hat{O})$ is still an operator that can act on states in \mathcal{H} .
- Operator exponential. Given the exponential function

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots = \sum_{n=0}^{\infty} \frac{1}{n!} x^{n},$$
(121)

the exponential of an operator is defined as

$$e^{\hat{O}} = 1 + \hat{O} + \frac{\hat{O}^2}{2!} + \dots = \sum_{n=0}^{\infty} \frac{1}{n!} \hat{O}^n,$$
(122)

• Note: exponentiating an matrix is NOT exponentiating each of the matrix element.

See [8] for a nice video about matrix exponential.

[8] 3Blue1Brown. How (and why) to raise e to the power of a matrix. (watch on YouTube)Example: exponentiating a Pauli matrix

Exc 10 $\begin{aligned}
& \text{Given } \hat{\sigma}^{y} \approx \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \\
& \text{show that the matrix representation of } e^{i\theta\hat{\sigma}^{y}} \text{ is} \\
& e^{i\theta\hat{\sigma}^{y}} \approx \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}.
\end{aligned}$

HW 2 Use the definition Eq. (122) to prove that $\exp(i \theta \, \boldsymbol{n} \cdot \hat{\boldsymbol{\sigma}}) = \cos(\theta) \, \mathbbm{1} + i \sin(\theta) \, \boldsymbol{n} \cdot \hat{\boldsymbol{\sigma}}$ given that \boldsymbol{n} is a 3-component real unit vector.

• Operator Trace

The **trace** of an operator \hat{O} is defined as

$$\operatorname{Tr} \hat{O} = \sum_{i} \langle i | \hat{O} | i \rangle.$$
(123)

The result is a scalar.

• On the matrix level, taking the trace is simply summing over diagonal matrix elements

$$\operatorname{Tr} \begin{pmatrix} O_{11} & O_{12} & \cdots \\ O_{21} & O_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} = O_{11} + O_{22} + \dots = \sum_{i} O_{ii}.$$
(124)

• Linear property: trace is a *linear functional* of operators.

$$\operatorname{Tr}\left(\alpha \ \hat{O} + \beta \ \hat{P}\right) = a \operatorname{Tr} \ \hat{O} + \beta \operatorname{Tr} \ \hat{P}.$$
(125)

• Cyclic property: the trace of a product of operators is invariant under the cyclic permutation of the operators.

$$\operatorname{Tr}\left(\hat{O}\ \hat{P}\right) = \operatorname{Tr}\left(\hat{P}\ \hat{O}\right),$$

$$\operatorname{Tr}\left(\hat{O}\ \hat{P}\ \hat{Q}\right) = \operatorname{Tr}\left(\hat{P}\ \hat{Q}\ \hat{O}\right) = \operatorname{Tr}\left(\hat{Q}\ \hat{O}\ \hat{P}\right),$$

$$\dots$$
(126)

Exc 11 Prove Eq. (126).

The operator trace is *useful* in computing **scalar product** or **fidelity**:

• Scalar product

$\langle u $	$ v\rangle = \mathrm{Tr} v\rangle \langle u .$	(127)
• Fidelity	у	
$ \langle u v\rangle$	$\rangle ^{2} = \langle u v\rangle \langle v u\rangle = \mathrm{Tr} v\rangle \langle v u\rangle \langle u .$	(128)
Example:	trace of Pauli operators	
Pauli	operators are <i>traceless</i> .	
$\operatorname{Tr} \hat{\sigma}$	$a^x = \operatorname{Tr} \hat{\sigma}^y = \operatorname{Tr} \hat{\sigma}^z = 0.$	(129)
This is tr	ue for a Pauli operator along any direction	
Tr	$\boldsymbol{n}\cdot\hat{\boldsymbol{\sigma}}=0.$	(130)

Measurement

Hermitian Operators

• Hermitian Conjugate

We have explained how an operator \hat{O} acts on a *ket* state $|v\rangle$, what about its action on the *bra* state $\langle v|$?

	ket	bra (dual)
Hilbert space	\mathcal{H}	\mathcal{H}^*
basis	$\mathcal{B} = \{ i\rangle\}$	$\mathcal{B}^* = \{\langle i \}$
state	$ v\rangle = \sum_{i} v_{i} i\rangle$	$\langle v = \sum_i v_i^* \langle i $
vector	$\left(\begin{array}{c} v_1\\ v_2\\ \vdots \end{array}\right)$	$(v_1^* \ v_2^* \ \cdots)$
component	$v_i = \langle i v \rangle$	$v_i^* = \langle v i \rangle$
operator	$\hat{O} = \sum_{ij} i\rangle \; O_{ij} \langle j $	$\hat{\boldsymbol{O}}^{\dagger} = \sum_{ij} \left i \right\rangle \boldsymbol{O}_{ji}^{*} \left\langle j \right $
matrix	$\begin{pmatrix} O_{11} & O_{12} & \cdots \\ O_{21} & O_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$	$\begin{pmatrix} O_{11}^* & O_{21}^* & \cdots \\ O_{12}^* & O_{22}^* & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$
	^	^ †

action $|w\rangle = \hat{O} |v\rangle$ $\langle w| = \langle v| \hat{O}^{\dagger}$

- Just like the bra (v) is the dual of the ket |u>, the Hermitian conjugate operator Ô[†] is the dual of the original operator Ô, such that
 - if the operator \hat{O} takes $|v\rangle$ to $|w\rangle$:

$$\hat{O}: \mathcal{H} \to \mathcal{H}
|v\rangle \mapsto |w\rangle = \hat{O} |v\rangle$$
(132)

• then the operator \hat{O}^{\dagger} takes $\langle v |$ to $\langle w |$:

$$\hat{O}^{\dagger} : \mathcal{H}^* \to \mathcal{H}^*$$

$$\langle v| \mapsto \langle w| = \langle v| \ \hat{O}^{\dagger}$$
(133)

• Given an orthonormal basis $\mathcal{B} = \{|i\rangle : i = 1, 2, ...\}$ of the Hilbert space \mathcal{H} , if \hat{O} is given by

$$\hat{O} = \sum_{ij} |i\rangle \ O_{ij} \langle j|, \tag{134}$$

then \hat{O}^{\dagger} should be given by

$$\hat{O}^{\dagger} = \sum_{ij} |i\rangle \; O_{ji}^* \langle j|. \tag{135}$$

Exc 12 Verify that Eq. (135) is consistent with the definition Eq. (133).

 \bullet In terms of matrix representation, the Hermitian conjugate acts as

- matrix transpose (interchanges the rows and columns),
- followed by **complex conjugation** of each matrix element.

$$\begin{pmatrix} O_{11} & O_{12} & \cdots \\ O_{21} & O_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}^{\dagger} = \begin{pmatrix} O_{11}^{*} & O_{21}^{*} & \cdots \\ O_{12}^{*} & O_{22}^{*} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}.$$
(137)

How to think of it: Hermitian conjugate \sim a generalization of *complex conjugate* from complex *numbers* to *matrices*.

Hermitian conjugate has the following properties:

• **Duality**: suppose \hat{O} is an operator

$$\hat{O}^{\dagger\dagger} = \hat{O}. \tag{138}$$

• Linearity: suppose \hat{O} and \hat{P} are operators, α and β are complex numbers,

$$\left(\alpha \ \hat{O} + \beta \ \hat{P}\right)^{\dagger} = \alpha^* \ \hat{O}^{\dagger} + \beta^* \ \hat{P}^{\dagger}.$$
(139)

• Transpose Property: suppose \hat{O} and \hat{P} are operators

$$\left(\hat{O}\,\hat{P}\right)^{\dagger} = \hat{P}^{\dagger}\,\hat{O}^{\dagger}.\tag{140}$$

Exc 13 Prove the property Eq. (140).

Hermitian Operator

Real numbers play a special role in physics. The results of any measurements are real. If in quantum mechanics, physical observables are represented by *operators*, how do we impose the "real" condition on operators?

• A real number is a number whose *complex conjugation* is itself.

$$z = z^* \Leftrightarrow z \in \mathbb{R}. \tag{141}$$

• A real operator Hermitian operator is an linear operator whose *Hermitian conjugate* is itself.

An operator $\hat{O} = \sum_{ij} |i\rangle O_{ij} \langle j|$ is call **Hermitian**, if

$$\hat{O} = \hat{O}^{\dagger},\tag{142}$$

or in terms of matrix elements,

$$O_{ij} = O_{ji}^*$$
. (143)

• Eigensystem (General)

Given an operator \hat{O} , the **eigenvectors** $|O_k\rangle$ are a set of special vectors, on which the operator \hat{O} acts as a *scalar* multiplication

$$\hat{O} | O_k \rangle = O_k | O_k \rangle, \quad (k = 1, 2, ...)$$
 (144)

and the corresponding scalars O_k are called the **eigenvalues** (of the corresponding eigenvectors).

- Eq. (144) is called the **eigen equation** of an operator \hat{O} .
 - The eigenvalues can be found by solving the algebraic (polynomial) equation for O

$$\det(\hat{O} - O\mathbb{1}) = 0. \tag{145}$$

• For each solution of eigenvalue $O = O_k$, the corresponding eigenvector $|O_k\rangle$ is found by solving the linear equation

$$\left(\hat{O} - O_k \mathbf{1}\right) |O_k\rangle = 0. \tag{146}$$

• Use *Mathematica* to solve the eigen problem (recommended)

Eigensystem[{{0,1}, {1,0}}]

 $\{ \{ -1, 1 \}, \{ \{ -1, 1 \}, \{ 1, 1 \} \} \}$

• Eigensystem (Hermitian Operators)

What is special about Hermitian operators?

Suppose $\hat{O} = \hat{O}^{\dagger}$ is a Hermitian operator and

$$\hat{O}|O_k\rangle = O_k|O_k\rangle, \ (k = 1, 2, ...).$$
 (147)

• Eigenvalues are real.

$$\hat{O} = \hat{O}^{\dagger} \Rightarrow O_k \in \mathbb{R}.$$
(148)

- **Eigenvectors** form a **complete** set of basis. (Any vector can be expanded as a sum of these eigenvectors.)
 - Eigenvectors of *different* eigenvalues are *orthogonal* (automatically)

$$O_k \neq O_l \Rightarrow \langle O_k | O_l \rangle = 0. \tag{149}$$

• Eigenvectors of the *same* eigenvalue can be *made orthogonal* (by orthogonalization, e.g. Gram-Schmidt procedure).

Orthogonalize[{{1, 2}, {3, 4}}]

$$\left\{ \left\{ \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right\}, \left\{ \frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \right\} \right\}$$

• For *bounded* Hermitian operators (e.g. finite matrices in finite dimensional Hilbert space), eigenvectors can be *normalized*.

Exc 14 Prove Eq. (148) and Eq. (149).

Therefore each **Hermitian operator** \hat{O} generates a *complete* set of *orthonormal* basis $\{|O_k\rangle: k = 1, 2, ...\}$ for the Hilbert space \mathcal{H} , also called the **eigenbasis** of \hat{O} .

• The completeness of the basis implies

$$\sum_{k} |O_k\rangle \langle O_k| = \mathbb{1}.$$

• Hermitian operator \hat{O} can always be represented in its own eigenbasis, leading to the **spectral decomposition**

$$\hat{O} = \sum_{k} |O_{k}\rangle |O_{k}\langle O_{k}|.$$
(152)

(151)

- Note: unlike a generic matrix representation $\hat{O} = \sum_{ij} |i\rangle O_{ij} \langle j|$, in the spectral decomposition Eq. (152), the summation only run through the eigenbasis once.
- In the eigenbasis, the Hermitian operator is represented as a **diagonal matrix**.

$$\hat{O} \simeq \begin{pmatrix} O_1 \\ O_2 \\ & \ddots \end{pmatrix}. \tag{153}$$

So the procedure of bring the *matrix* representation to its *diagonal* form by transforming to its *eigenbasis* is called **diagonalization**. (We will discuss more about it later.)

Diagonalization is particularly useful in constructing the operator function. For example, the operator function $f(\hat{O})$ defined in Eq. (120) can be constructed by

$$f(\hat{O}) = \sum_{k} |O_k\rangle f(O_k) \langle O_k|, \tag{154}$$

Exc 15 Prove Eq. (154).

or in the matrix form as

$$f(\hat{O}) \simeq \begin{pmatrix} f(O_1) \\ & f(O_2) \\ & \ddots \end{pmatrix}.$$

A particle can travel on a graph.

Let $|i\rangle$ denotes the state that the particle stays on the $i{\rm th}$ vertex of the graph. The following operator

HW $\hat{H} = -\sum_{i \mapsto j} (|i\rangle \langle j| + |j\rangle \langle i|)$

3

describes the quantum process for the particle to tunnel from one vertex to the adjacent vertex (the summation sums over all links $i \leftarrow j$ on the graph).

(i) Represent the operator \hat{H} as a matrix in the basis of $\{|i\rangle\}$.

(ii) Write a computer program to compute the lowest and second lowest eigenvalues.

(iii) Visualizing the corresponding eigen vectors by marking the vector components on the graph. What do you find?

[Comment: quantum mechanics can be applied to classify vertices on a graph --- an algorithm known as the **spectral clustering**.]

• Eigensystem (Pauli Operators)

Example: Eigenvalues and eigenvectors of Pauli operators

Pauli matrices are 2×2 Hermitian matrices. Each one has two distinct eigenvalues, and two corresponding orthogonal eigenvectors.

opertor	$\hat{\sigma}^x$	$\hat{\sigma}^y$	$\hat{\sigma}^z$
(matrix)	$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$	$\left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right)$	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

eigenvalue	+1	-1	+1	-1	+1	-1
eigenvector	$ +\rangle$	$ -\rangle$	$ i\rangle$	$ \bar{i} angle$	0>	$ 1\rangle$
(vector)	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}$	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	$\begin{pmatrix} 0\\1 \end{pmatrix}$
projector	$\left +\right\rangle\left\langle +\right $	$\left -\right\rangle\left\langle -\right $	$ i\rangle\langle i $	$\ket{ar{i}}ra{ar{i}}$	$\left 0 ight angle\left\langle 0 ight $	$ 1\rangle\langle 1 $
(matrix)	$\frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	$\frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$	$\frac{1}{2} \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$	$\frac{1}{2} \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	$\left(\begin{smallmatrix} 0 & 0 \\ 0 & 1 \end{smallmatrix} \right)$

Spectral decompositions:

• Pauli-x

$$\hat{\sigma}^x = |+\rangle \langle +|-|-\rangle \langle -|, \tag{156}$$

with projection operators

$$|+\rangle \langle +| = \frac{1 + \hat{\sigma}^x}{2},$$

$$|-\rangle \langle -| = \frac{1 - \hat{\sigma}^x}{2}.$$
(157)

• Pauli-y

$$\hat{\sigma}^{y} = |i\rangle\langle i| - |\bar{i}\rangle\langle \bar{i}|, \tag{158}$$

with projection operators

$$|i\rangle \langle i| = \frac{1 + \hat{\sigma}^y}{2},$$

$$|\bar{i}\rangle \langle \bar{i}| = \frac{1 - \hat{\sigma}^y}{2}.$$
(159)

• Pauli-z

 $\hat{\sigma}^{z} = |0\rangle \langle 0| - |1\rangle \langle 1|, \tag{160}$

with projection operators

$$|0\rangle \langle 0| = \frac{1 + \hat{\sigma}^z}{2},$$

$$|1\rangle \langle 1| = \frac{1 - \hat{\sigma}^z}{2}.$$
(161)

In general, the Pauli operator $n \cdot \hat{\sigma}$ along the direction of the unit vector n has the following spectral decomposition

$$\boldsymbol{n} \cdot \hat{\boldsymbol{\sigma}} = |\boldsymbol{n} \cdot \boldsymbol{\sigma} = +1\rangle \langle \boldsymbol{n} \cdot \boldsymbol{\sigma} = +1| - |\boldsymbol{n} \cdot \boldsymbol{\sigma} = -1\rangle \langle \boldsymbol{n} \cdot \boldsymbol{\sigma} = -1|, \tag{162}$$

with the projection operators

$$|\mathbf{n}\cdot\boldsymbol{\sigma}=\pm1\rangle\langle\mathbf{n}\cdot\boldsymbol{\sigma}=\pm1|=\frac{1\pm\mathbf{n}\cdot\hat{\boldsymbol{\sigma}}}{2}$$

(163)

Exc 16 Prove Eq. (162) and Eq. (163).

Observables

Physical Observable

Postulate 2 (Observables): Physical observables of a quantum system are described by Hermitian operators (represented as Hermitian matrices) acting on the associated Hilbert space.

Consider a Hermitian operator \hat{O} with eigenvalues O_k and eigenvectors $|O_k\rangle$ $(m = 1, 2, ..., g_k)$, i.e.

$$\hat{O} = \sum_{k} |O_k\rangle |O_k\rangle |O_k\rangle |O_k|.$$
(164)

The operator \hat{O} corresponds to a physical observable O in the sense that

- All possible measurement outcomes (or observation values) of the observable O are given by (and only by) the *eigenvalues* O_k .
- The **measurement** projects (collapses) the quantum state to the eigenspace \mathcal{H}_k spanned by the eigenstates of the corresponding measurement outcome O_k .

Measurement Postulate

Postulate 3 (Measurement): Given a quantum system in the state $|\psi\rangle$ and the observable *O* to be measured:

(i) the **probability** to observe the measurement outcome O_k is $p(O_k | \psi) = |\langle O_k | \psi \rangle|^2$,

- (ii) if O_k is observed, the state will **collapse** to $|O_k\rangle$.
- In quantum measurement, there is no way to tell for certain which outcome will be observed. There is only a **conditional probability** $p(O_k | \psi)$ that we can predict.
- Upon observing the measurement outcome O_k , the quantum state will be updated --- a process known as **quantum state collapse**.

$$|\psi\rangle \xrightarrow[\text{observe } O_k] O_k\rangle.$$
 (165)

- $|\psi\rangle$ is called the **prior state** (pre-measurement state)
- $|O_k\rangle$ is called the **posterior state** (post-measurement state)

- Bayesian view of quantum state collapse:
 - The quantum state represents our *subjective* knowledge or belief about the system, not (necessarily) an *objective* physical reality.
 - Measurements provide new information that forces us to update our beliefs \rightarrow the "collapse" happens in our knowledge.
 - The measurement postulate tells us how to update the quantum state given the observation, in a logically consistent manner.
- How to deal with **degeneracy**?

An eigenvalue O_k is *n*-fold degenerated \Leftrightarrow there exists *n* orthonormal eigenstates (their choices are not unique) of \hat{O} corresponding to the same eigenvalue:

$$\hat{O} | O_k, 1 \rangle = O_k | O_k, 1 \rangle,
\hat{O} | O_k, 2 \rangle = O_k | O_k, 2 \rangle,
\dots
\hat{O} | O_k, n \rangle = O_k | O_k, n \rangle.$$
(166)

Then if the measurement outcome O_k is observed in measuring O on state $|\psi\rangle$, how to compute $p(O_k | \psi)$ and the posterior state?

• Step I: Compute the scalar products $\alpha_m = \langle O_k, m | \psi \rangle$, meaning that

$$|\psi\rangle = \sum_{m=1}^{n} \alpha_m |O_k, m\rangle + \dots \text{ (other states).}$$
(167)

• Step II: Aggregate the probability:

$$p(O_k | \psi) = \sum_{m=1}^n |\alpha_m|^2 = \sum_{m=1}^n |\langle O_k, m | \psi \rangle|^2.$$
(168)

• Step III: Renormalize the amplitudes α_m

$$\tilde{\alpha}_m = \frac{\alpha_m}{\sqrt{p(O_k | \psi)}} = \frac{\langle O_k, m | \psi \rangle}{\sqrt{p(O_k | \psi)}},$$
(169)

and reconstruct the posterior state

$$|\psi\rangle \xrightarrow{\text{measure } O}_{\text{observe } O_k} |\psi'\rangle = \sum_{m=1}^n \tilde{\alpha}_m |O_k, m\rangle.$$
(170)

Note: it is always a good practice to normalize the state (i.e. ensuring $\langle \psi' | \psi' \rangle = 1$) after quantum state collapse.

Let $\{|1\rangle, |2\rangle, |3\rangle\}$ be a set of orthonormal basis of a three-state system. Suppose the system is in the prior state $|\psi\rangle = \frac{1}{\sqrt{3}} (|1\rangle + |2\rangle + |3\rangle)$. Consider measuring the observable $\hat{O} = |1\rangle \langle 2| + |2\rangle \langle 1| - |3\rangle \langle 3|$. (i) What are the possible measurement outcomes (observation values)? (ii) What are the probabilities to observe each outcome? (iii) What posterior states will the system collapse to after observing each outcome?

HW 4

• Expectation Value

The expectation value of an observable O, denoted as $\langle O \rangle$, is the *averaged* measurement outcome of O over many repeated experiments (with the same prior state $|\psi\rangle$ prepared each time).

According to the measurement postulate

$$\langle O \rangle := \sum_{k} O_{k} p(O_{k} | \psi)$$

$$= \sum_{k} O_{k} |\langle O_{k} | \psi \rangle|^{2}$$

$$= \sum_{k} \langle \psi | O_{k} \rangle O_{k} \langle O_{k} | \psi \rangle$$

$$(171)$$

Given $\hat{O} = \sum_k |O_k\rangle O_k \langle O_k|$, we conclude

$$\langle O \rangle = \langle \psi | \ \hat{O} | \psi \rangle. \tag{172}$$

- The answer is a *real* scalar (as \hat{O} is Hermitian).
- Represented as *vectors* and *matrices*,

$$\langle O \rangle = (\psi_1^* \ \psi_2^* \ \cdots) \begin{pmatrix} O_{11} \ O_{12} \ \cdots \\ O_{21} \ O_{22} \ \cdots \\ \vdots \ \vdots \ \ddots \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \end{pmatrix}.$$
(173)

Alternatively, the expectation value can also be written as a trace of the product of the observable operator \hat{O} and the state projector $|\psi\rangle\langle\psi|$

$$\langle O \rangle = \operatorname{Tr} \hat{O} |\psi\rangle \langle \psi|.$$
 (174)

• The advantage of this approach is to circumvent solving for $|\psi\rangle$ explicitly (sometimes the state projector is easier to construct than the state vector).

Let m and n be three-component real unit vectors. For a qubit, consider measuring $n \cdot \sigma$ on the $|m \cdot \sigma = +1\rangle$ state.

HW 5 (i) What is the probability to observe $n \cdot \sigma = +1$?

(ii) What is the expectation value of the operator $\boldsymbol{n} \cdot \hat{\boldsymbol{\sigma}}$ on the state $|\boldsymbol{m} \cdot \boldsymbol{\sigma} = +1\rangle$? [Express your results in terms of \boldsymbol{m} and \boldsymbol{n} . Hint: using Eq. (174) and Eq. (163) can simplify the calculation.]

Variance

The **variance** of an observable O on a state $|\psi\rangle$ is defined as

$$\operatorname{var} O = \left\langle (O - \langle O \rangle)^2 \right\rangle = \left\langle O^2 \right\rangle - \left\langle O \right\rangle^2.$$
(175)

where $\langle O^2 \rangle = \langle \psi | \hat{O}^2 | \psi \rangle$ and $\langle O \rangle = \langle \psi | \hat{O} | \psi \rangle$. The square root of the variance defines the **standard deviation**:

std
$$O = \sqrt{\operatorname{var} O}$$
. (176)

(177)

Uncertainty Relation: for any pair of *observables* A and B measured on any given *state* (repeatedly),

$$(\operatorname{std} A) (\operatorname{std} B) \ge \frac{1}{2} |\langle [A, B] \rangle|.$$

Exc 17

- In words, the product of the *uncertainties* cannot be smaller than half of the magnitude of the expectation value of the *commutator*.
- For commuting observables ([A, B] = 0), $(\text{std } A) (\text{std } B) \ge 0$, it is possible to have std A = std B = 0 simultaneously, i.e. A and B can be jointly measured with perfect certainty.
- For *non-commuting* observables, there exists a state on which $|\langle [A, B] \rangle| \neq 0$. Then on such state, it is impossible to have std A = std B = 0 simultaneously, i.e. A and B can not be jointly measured with certainty.

Dynamics

Unitary Operators

Prove Eq. (177).

Basis Transformation

Suppose we have two sets of orthonormal basis of the same Hilbert space \mathcal{H}

$$\mathcal{B} = \{|i\rangle : i = 1, 2, ..., \dim \mathcal{H}\},\$$

$$\mathcal{B}' = \{|i\rangle' : i = 1, 2, ..., \dim \mathcal{H}\}.$$

(178)

For example, the eigen basis of $\hat{\sigma}^x$ v.s. that of $\hat{\sigma}^z$.

• The same state $|v\rangle$ can have different vector representations in different bases

$$v_i = \langle i | v \rangle, \ v'_i = \langle i |' v \rangle. \tag{179}$$

• The same operator \hat{O} can have different matrix representations in different bases

$$O_{ij} = \langle i | \hat{O} | j \rangle, \quad O'_{ij} = \langle i | ' \hat{O} | j \rangle'. \tag{180}$$

How are representations in different bases related? - Basis transformation. Basis transformation from \mathcal{B} to \mathcal{B}' is describe by a matrix U with the matrix element

$$U_{ij} = \langle i|' | j \rangle. \tag{181}$$

such that the representation in the new basis is related to that in the old basis by

$$v'_{i} = \sum_{j} U_{ij} v_{j},$$

$$O'_{ij} = \sum_{kl} U_{ik} O_{kl} U^{*}_{jl}.$$
(182)

Exc 18 Using Eq. (181) to prove that Eq. (182) is compatible with Eq. (179) and Eq. (180).

In quantum mechanics, every operator is a matrix, and every matrix is an operator. So does the basis transformation matrix.

$$\hat{U} = \sum_{i} |i\rangle \langle i|'.$$
(183)

Exc 19 Check that the matrix element of \hat{U} in Eq. (183) is indeed given by Eq. (181), regardless of represented in the basis \mathcal{B} or \mathcal{B}' .

 \hat{U} in Eq. (183) is an example of the **unitary operator**.

A operator \hat{U} is **unitary**, iff

$$\hat{U}^{\dagger} \ \hat{U} = \hat{U} \ \hat{U}^{\dagger} = \mathbf{1}.$$
(184)

Exc 20 Check that Eq. (183) satisfies the defining property Eq. (184) for unitary operator.

• The *inverse* of a unitary operator is its *Hermitian conjugate*

$$\hat{U}^{-1} = \hat{U}^{\dagger}.$$
 (185)

The operator (basis transformation) implemented by \hat{U} is *reversed* by that of \hat{U}^{\dagger} , and vice versa.

• When the two sets of basis $|i\rangle$ and $|i\rangle'$ are identical, U = 1 becomes the identity operator (which is also unitary).

In terms of the unitary operator, the basis transformation Eq. (182) can be written as

for ket state : $|v\rangle \rightarrow \hat{U} |v\rangle$, for bra state : $\langle v| \rightarrow \langle v| \hat{U}^{\dagger}$, for operator : $\hat{O} \rightarrow \hat{U} \hat{O} \hat{U}^{\dagger}$.

- The operator \hat{O} is also made of ket and bra states, so the unitary operator must be applied from both sides, when transforming an operator.
- The *expectation value* of an observable is *invariant* under *basis transformation*. (Physical reality should be *basis-independent*.)

$$\langle O \rangle = \langle \psi | \ \hat{O} | \psi \rangle \rightarrow \langle \psi | \ \hat{U}^{\dagger} \ \hat{U} \ \hat{O} \ \hat{U}^{\dagger} \ \hat{U} | \psi \rangle = \langle \psi | \ \mathbb{1} \ \hat{O} \ \mathbb{1} | \psi \rangle = \langle O \rangle.$$

$$(187)$$

(186)

Matrix Diagonalization

Diagonalization of a *Hermitian operator*: find a unitary operator \hat{U} to bring the Hermitian operator \hat{O} to *diagonal form* by transforming to its *eigenbasis*.

$$\hat{O} = \sum_{k} |O_{k}\rangle O_{k} \langle O_{k}|,$$

$$\hat{U} = \sum_{k} |k\rangle \langle O_{k}|,$$
(188)

such that under $\hat{O} \rightarrow \hat{U} \hat{O} \hat{U}^{\dagger}$,

$$\hat{\Lambda} = \hat{U} \hat{O} \hat{U}^{\dagger} = \sum_{k} |k\rangle O_{k} \langle k| \simeq \begin{pmatrix} O_{1} \\ O_{2} \\ & \ddots \end{pmatrix}$$
(189)

is diagonal in the basis of **one-hot vectors** $|k\rangle$.

• Every *Hermitian* matrix can be written as

$$\hat{O} = \hat{U}^{\dagger} \hat{\Lambda} \hat{U}, \tag{190}$$

with $\hat{\Lambda}$ being *diagonal* and \hat{U} being *unitary*.

• Or equivalently, the unitary transformation \hat{U} brings the Hermitian matrix to its diagonal form,

$$\hat{U}\,\hat{O}\,\hat{U}^{\dagger} = \hat{\Lambda}.\tag{191}$$

Example: diagonalization of Pauli matrix

The Pauli matrix $\hat{\sigma}^x$ can be diagonalized by the following unitary transformation (whose row

MatrixMechanics.nb 41

vectors are bra eigenvectors of $\hat{\sigma}^x$)

$$\hat{U}_{\mathsf{H}} = \begin{pmatrix} \langle + | \\ \langle - | \end{pmatrix} \simeq \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$
(192)

- This unitary operation \hat{U}_{H} is also known as the **Hadamard gate** in quantum information, an example of single-qubit gate.
- Under the unitary transformation, $\hat{\sigma}^x$ is brought to its diagonal form, which is $\hat{\sigma}^z$

$$\hat{U}_{\mathsf{H}} \,\hat{\sigma}^{x} \,\hat{U}_{\mathsf{H}}^{\dagger} \simeq \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}
= \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \simeq \hat{\sigma}^{z}.$$
(193)

• Hermitian Generators

If **Hermitian operators** are generalization of **real numbers**, then **unitary operators** are generalization of **phase factors**.

• A complex number $z \in \mathbb{C}$ is a phase factor, iff |z| = 1. Any phase factor can be written as $z = e^{i\theta}$, where $\theta \in \mathbb{R}$ is a *real* phase angle.

$$z^* z = z z^* = |z|^2 = 1 \Leftrightarrow z = e^{i\theta} \tag{194}$$

• Similar ideas apply to unitary operators: every **unitary operator** can be **generated** by a **Hermitian operator** $\hat{\Theta}$ in the form of

$$\hat{U} = e^{i\hat{\Theta}}.$$
(195)

Given a Hermitian operator $\hat{\Theta}$

$$\hat{\Theta} = \sum_{k} |\Theta_{k}\rangle \Theta_{k} \langle \Theta_{k}|, \tag{196}$$

by $e^{\,i\,\hat{\Theta}}$ we mean

• either by operator Taylor expansion (recall Eq. (122) on operator exponential)

$$e^{i\hat{\Theta}} = 1 + i\hat{\Theta} + \frac{(i\hat{\Theta})^2}{2!} + \frac{(i\hat{\Theta})^3}{3!} + \dots$$
(197)

• or by spectral decomposition (HW 2)

$$e^{i\hat{\Theta}} = \sum_{k} |\Theta_{k}\rangle \, e^{i\Theta_{k}} \, \langle\Theta_{k}| \tag{198}$$

Don't do element-wise exponentiation on the matrix!

Exc 21 Use Eq. (198) to show that $\hat{U} = e^{i\hat{\Theta}}$ is unitary as long as $\hat{\Theta}$ is Hermitian. Example: unitary generated by Pauli matrix. Recall $\hat{U}(\theta) = e^{i\theta \hat{\sigma}^y}$ in (Exc 10).

$$\hat{U}(\theta) = e^{i\theta\hat{\sigma}^y} \simeq \begin{pmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{pmatrix}.$$
(199)

It implements a basis rotation with θ being the rotation angle:

$$\hat{U}(\theta)|0\rangle \simeq \begin{pmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix} = \begin{pmatrix} \cos\theta\\ -\sin\theta \end{pmatrix}.$$
(200)

Special case: when $\theta = 0$, $\hat{U}(0) = 1 \Rightarrow$ no rotation is performed.

More generally, let $\hat{U}(\theta)$ be the **unitary operator** that implements certain *basis rotation* by a real **angle** θ . When $\theta = \Delta \theta$ is **small**, we can Taylor expand

$$\hat{U}(\Delta\theta) = \hat{U}(0) + \hat{U}'(0)\,\Delta\theta + \dots = 1 + \hat{U}'(0)\,\Delta\theta + \dots, \tag{201}$$

where $\hat{U}'(0)$ is $\partial_{\theta} \hat{U}(\theta)$ evaluated at $\theta = 0$.

• $\hat{U}'(0)$ is also an operator (matrix), usually denoted as $\hat{U}'(0) = i \hat{G}$. We call \hat{G} the **generator** of the rotation/unitary operator, because it *generates* an **infinitesimal rotation**

$$\hat{U}(\Delta\theta) = 1 + i\,\Delta\theta\,\,\hat{G} + \dots \tag{202}$$

• $\hat{U}(\Delta \theta)$ is unitary $\Rightarrow \hat{G}$ is Hermitian.

$$U(\Delta\theta)^{\dagger} U(\Delta\theta)$$

= $(1 - i \Delta\theta \ \hat{G}^{\dagger} + ...)(1 + i \Delta\theta \ \hat{G} + ...)$
= $1 + i \Delta\theta(\hat{G} - \hat{G}^{\dagger}) + ... = 1.$ (203)

• Large rotations can be accumulated from small rotations.

$$\hat{U}(N\,\Delta\theta) = \,\hat{U}(\Delta\theta)^N = \left(\mathbb{1} + i\,\Delta\theta\,\,\hat{G}\right)^N. \tag{204}$$

As $\Delta \theta$ is small (but N can be large, s.t. $\theta = N \Delta \theta$ is finite),

$$\ln \hat{U}(N \Delta \theta) = N \ln(1 + i \Delta \theta \hat{G}) = i N \Delta \theta \hat{G}, \qquad (205)$$

So $\hat{U}(N \Delta \theta) = e^{i N \Delta \theta \hat{G}}$, we obtain the *exponential* form

$$\hat{U}(\theta) = e^{i\,\theta\,\hat{G}}.\tag{206}$$

Conclusion: every *Hermitian* operator $\hat{\Theta} = \theta \hat{G}$ generates a *unitary* operator $e^{i\hat{\Theta}}$ by the exponential map.

Time Evolution

Time-Evolution is Unitary

Unitarity: information is never lost!

Basic assumption: quantum information is preserved under quantum dynamics, i.e. two identical and isolated systems

- start out in different states \Rightarrow remains in different states (towards both future and past).
- start out in the same state \Rightarrow follow identical evolution (towards both future and past).

Although measurement seems to be non-deterministic, evolution of quantum state is deterministic: suppose you know the state at one time, then the quantum equation of motion tell you what it will be later.

$$|\psi(t)\rangle = \hat{U}(t) |\psi(0)\rangle, \qquad (207)$$

 $|\psi(0)\rangle$ is the initial state, and $|\psi(t)\rangle$ is the state at time t. $\hat{U}(t)$ is the **time-evolution operator** that takes $|\psi(0)\rangle$ to $|\psi(t)\rangle$. We will show that $\hat{U}(t)$ should be unitary.

• *Distinct* states remain *distinct*:

$$\langle \phi(0) \mid \psi(0) \rangle = 0 \Rightarrow \langle \phi(t) \mid \psi(t) \rangle = \langle \phi(0) \mid \hat{U}(t)^{\dagger} \hat{U}(t) \mid \psi(0) \rangle = 0.$$
(208)

• *Identical* states remain the *identical*:

$$\langle \psi(0) \mid \psi(0) \rangle = 1 \Rightarrow \langle \psi(t) \mid \psi(t) \rangle = \langle \psi(0) \mid \hat{U}(t)^{\dagger} \mid \hat{U}(t) \mid \psi(0) \rangle = 1.$$
(209)

Or, the fact that the normalization condition must be preserved.

Treat $|\psi(0)\rangle$ and $|\phi(0)\rangle$ as members of any orthonormal basis, then Eq. (208) and Eq. (209) implies

$$\langle i| \ \hat{U}(t)^{\dagger} \ \hat{U}(t) | j \rangle = \delta_{ij} \Rightarrow \ \hat{U}(t)^{\dagger} \ \hat{U}(t) = \mathbb{I}.$$

$$(210)$$

Therefore, the **time-evolution** operator $\hat{U}(t)$ is **unitary**.

Hamiltonian

~

Hamiltonian generates time-evolution!

As a *unitary* operator, the *time-evolution* operator is also *generated* by a *Hermitian* operator, called the **Hamiltonian**,

$$\hat{H} = i \, \hat{U}'(0) = i \, \partial_t \, \hat{U}(t) \,|_{t=0} \,. \tag{211}$$

For small Δt , *infinitesimal* evolution is given by

$$\hat{U}(\Delta t) = 1 - i \hat{H} \Delta t + \dots, \tag{212}$$

therefore the state evolves as

$$|\psi(\Delta t)\rangle = \hat{U}(\Delta t) |\psi(0)\rangle = |\psi(0)\rangle - i \ \Delta t \ \hat{H} |\psi(0)\rangle, \tag{213}$$

meaning that

$$i \ \partial_t |\psi(0)\rangle = i \ \frac{|\psi(\Delta t)\rangle - |\psi(0)\rangle}{\Delta t} = \hat{H} |\psi(0)\rangle.$$
(214)

There is nothing special about t = 0. Eq. (214) should hold at any time.

$$i \partial_t |\psi(t)\rangle = \hat{H} |\psi(t)\rangle. \tag{215}$$

This is the Schrödinger equation, the equation of motion for the quantum state.

- The Hamiltonian $\hat{H}(t) = i \hat{U}'(t)$ can be **time-dependent** in general.
- But in many cases, we consider \hat{H} to be **time-independent**, by assuming the **time-translation symmetry**.

What happens to Planck's constant?

$$\hbar = \frac{\hbar}{2\pi} = 1.0545718\,(13) \times 10^{-34}\,\mathrm{J\,s.}$$
(216)

In quantum mechanics, the *observable* associated with the **Hamiltonian** is the **energy**. To balance the *dimensionality* across the Schrödinger equation, *Planck's constant* is inserted for Eq. (215):

$$i \hbar \partial_t |\psi(t)\rangle = \hat{H} |\psi(t)\rangle. \tag{217}$$

Why is \hbar so small? Well, the answer has more to do with biology than with physics \Rightarrow Why we are so big, heavy and slow? A natural choice for quantum mechanics is to set the units such that $\hbar = 1$. It is a common practice in theoretical physics (we will also use this convention sometimes).

Schrödinger Equation: State Dynamics

Postulate 4 (Dynamics): The time-evolution of the *state* of a quantum system is governed by the **Hamiltonian** of the system, according to the time-dependent Schrödinger equation.

 $i \hbar \partial_t |\psi(t)\rangle = \hat{H} |\psi(t)\rangle.$

If the Hamiltonian \hat{H} is **time-independent**, we can first find its eigenvalues (or **eigen ener-gies**) and eigenvectors (or **energy eigenstates**).

 $\hat{H} | E_k \rangle = E_k | E_k \rangle.$

This is also called the *time-independent* Schrödinger equation. Without solving a *differential* equation, we just need to *diagonalize* a *Hermitian* matrix in this case.

Each energy eigenstate will evolve in time simply by a rotating overall phase,

(218)

(219)

$$|E_k(t)\rangle = e^{-\frac{i}{\hbar} E_k t} |E_k\rangle.$$
(220)

• $|E_k\rangle$ form a complete set of orthonormal basis, called **energy eigenbasis**.

Exc Verify that Eq. (220) is a solution of Eq. (218):

Any initial state $|\psi(0)\rangle$ will evolve in time by first *representing* the initial state in the *energy* eigenbasis, and attaching to each energy eigenstate by its rotating overall phase,

$$\begin{aligned} |\psi(t)\rangle &= \sum_{i} e^{-\frac{i}{\hbar} E_{i} t} |E_{i}\rangle \langle E_{i} | \psi(0)\rangle \\ &= e^{-\frac{i}{\hbar} \hat{H} t} |\psi(0)\rangle. \end{aligned}$$
(221)

A time-independent Hamiltonian generates the time-evolution via matrix exponentiation

$$\hat{U}(t) = \exp\left(-\frac{i}{\hbar} \hat{H} t\right).$$
(222)

However, for *time-dependent* Hamiltonian, there no such a clean formula. Evolution must be carried out step by step, denoted as a *time-ordered* exponential

$$\hat{U}(t) = \mathcal{T} \exp\left(-\frac{i}{\hbar} \int_0^t \hat{H}(t') \, dt'\right).$$
(223)

Larmor Precession and Rabi Oscillation

How to write down a Hamiltonian?

- derive it from experiment,
- borrow it from some theory we like,
- pick one and see what happens. So

Hamiltonian must be *Hermitian* anyway. For a single spin (qubit), the most general Hamiltonian takes the form of

$$\hat{H} = h_0 \,\mathbb{1} + h_x \,\hat{\sigma}^x + h_y \,\hat{\sigma}^y + h_z \,\hat{\sigma}^z$$

$$= h_0 \,\mathbb{1} + \boldsymbol{h} \cdot \hat{\boldsymbol{\sigma}},$$
(224)

where $h_0, h_x, h_y, h_z \in \mathbb{R}$ are all *real* coefficients.

• The time-evolution operator (set $\hbar = 1$ in the following)

$$\hat{U}(t) = e^{-i\hat{H}t}
= e^{-ih_0 t} (\cos(|\boldsymbol{h}| t) \mathbf{1} - i\sin(|\boldsymbol{h}| t) \tilde{\boldsymbol{h}} \cdot \hat{\boldsymbol{\sigma}}),$$
(225)

where $|\mathbf{h}| = \sqrt{\mathbf{h} \cdot \mathbf{h}}$ and $\tilde{\mathbf{h}} = \mathbf{h} / |\mathbf{h}|$.

Exc 23 Derive Eq. (225) from Eq. (224). • A state $|\psi(0)\rangle$ will evolve with time following

$$\begin{aligned} |\psi(t)\rangle &= \hat{U}(t) |\psi(0)\rangle \\ &= e^{-i h_0 t} \Big(\cos(|\mathbf{h}| t) \,\mathbf{1} - i \sin(|\mathbf{h}| t) \,\tilde{\mathbf{h}} \cdot \hat{\boldsymbol{\sigma}} \Big) |\psi(0)\rangle. \end{aligned}$$
(226)

• If we measure σ on the state $|\psi(t)\rangle$, the expectation value will be given by

$$\begin{aligned} \langle \boldsymbol{\sigma} \rangle_t &= \langle \boldsymbol{\psi}(t) | \, \hat{\boldsymbol{\sigma}} \, | \boldsymbol{\psi}(t) \rangle \\ &= \cos(2 \, |\boldsymbol{h}| \, t) \, \langle \boldsymbol{\sigma} \rangle_0 + \sin(2 \, |\boldsymbol{h}| \, t) \, \tilde{\boldsymbol{h}} \times \langle \boldsymbol{\sigma} \rangle_0 + (1 - \cos(2 \, |\boldsymbol{h}| \, t)) \, \tilde{\boldsymbol{h}} \big(\tilde{\boldsymbol{h}} \cdot \langle \boldsymbol{\sigma} \rangle_0 \big). \end{aligned} \tag{227}$$

which also evolves with time.

Exc Derive Eq. (227) from Eq. (226).
24 Hint: Eq. (109) can make life much more easier.

Larmor precession: assume $h = (0, 0, h_z)$ along the z-direction, and parameterize the expectation of the spin vector by $\langle \boldsymbol{\sigma} \rangle = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$.

 $\langle \boldsymbol{\sigma} \rangle_t = (\sin \theta_0 \cos (\varphi_0 + 2 h_z t), \ \sin \theta_0 \sin(\varphi_0 + 2 h_z t), \ \cos \theta_0), \tag{228}$

where θ_0 and φ_0 are the initial azimuthal and polar angles.

• The solution describes the spin $\langle \sigma \rangle$ precessing around the axis of the Zeeman field **h**.

- The precession frequency $\omega = 2 |\mathbf{h}|$ is called the **Larmor frequency**. It can be used to probe the local Zeeman field strength, which has applications in nuclear magnetic resonance (NMR) and nitrogen-vacancy (NV) center.
- Energy of a spin in the Zeeman field is $\langle H \rangle = -h \cdot \langle \sigma \rangle$ (up to some constant energy shift h_0).

Rabi oscillation: a qubit initially prepared in state |0>, evolved under the Hamiltonian

$$\hat{H} = \Omega \,\hat{\sigma}^x + \Delta \,\hat{\sigma}^z \simeq \begin{pmatrix} \Delta & \Omega \\ \Omega & -\Delta \end{pmatrix},\tag{229}$$

where Ω is the *driving field* and Δ is called *detuning*. The probability to find the qubit in state $|1\rangle$ at time t is given by

$$p(1|0)_t = \frac{1 - \langle \sigma^z \rangle_t}{2} = \frac{\sin^2(\omega t/2)}{1 + (\Delta/\Omega)^2},$$
(230)

with the **Rabi frequency** $\omega = 2 \sqrt{\Omega^2 + \Delta^2}$.

• Rabi π -Pulse: flipping $|0\rangle$ to $|1\rangle$ (and vice versa) by a π -pulse (turn on the driving field Ω for time $t = \pi/\Omega$ and turn off) at resonance $\Delta = 0$. This implements a NOT gate (or X gate) on a single qubit.

• Heisenberg Equation: Operator Dynamics

Two *pictures* of the **quantum dynamics**:

• Schrödinger picture: state evolves in time, operator remains fixed,

$$\langle O(t) \rangle = \langle \psi(t) | \ O | \psi(t) \rangle. \tag{231}$$

• Heisenberg picture: operator evolves in time, state remains fixed,

$$\langle O(t) \rangle = \langle \psi | \ \hat{O}(t) | \psi \rangle. \tag{232}$$

The two pictures are consistent, if

$$|\psi(t)\rangle = \hat{U}(t) |\psi\rangle \Leftrightarrow \hat{O}(t) = \hat{U}(t)^{\dagger} \hat{O} \hat{U}(t), \tag{233}$$

such that Eq. (231) and Eq. (232) are consistent, as they both implies

$$\langle O(t) \rangle = \langle \psi | \ \hat{U}(t)^{\dagger} \ \hat{O} \ \hat{U}(t) | \psi \rangle. \tag{234}$$

Note: one should only apply one picture at a time, i.e. either the state or the operator is timedependent, **but not both**.

In the *Heisenberg picture*, the time-evolution of an operator

$$\hat{O}(t) = \hat{U}(t)^{\dagger} \hat{O} \hat{U}(t),$$
(235)

described by the **Heisenberg equation**

$$i\hbar\partial_t \hat{O}(t) = \left[\hat{O}(t), \,\hat{H}\right]. \tag{236}$$

Exc 25 Derive Eq. (236) from Eq. (235).

Correspondingly, its expectation value evolves as

$$i\hbar\partial_t\langle O(t)\rangle = \langle \left[\hat{O}(t), \hat{H}\right] \rangle.$$
 (237)

If $[\hat{O}, \hat{H}] = 0$, the *Heisenberg equation* Eq. (236) implies that $\partial_t \langle O \rangle = 0$, i.e. O will be invariant

in time. Conversely, the observable O is a conserved quantity (or an integral of motion) if \hat{O} commutes with the Hamiltonian \hat{H} .

Use the Heisenberg equation to solve Rabi oscillation. Set $\hbar = 1$ for this problem. The Hamiltonian is given by

 $\hat{H} = \Omega \, \hat{\sigma}^x + \Delta \, \hat{\sigma}^z.$

 $\hat{\sigma}^x$ $\partial_t \left| \hat{\sigma}^y \right|$

(i) Show that in the Heisenberg picture, the operator $\hat{\sigma}$ evolves by the following coupled linear differential equation

нw 6

 $= 2 \begin{pmatrix} 0 & -\Delta & 0 \\ \Delta & 0 & -\Omega \\ 0 & \Omega & 0 \end{pmatrix} \begin{pmatrix} \hat{\sigma}^x \\ \hat{\sigma}^y \\ \hat{\sigma}^z \end{pmatrix}$ $\left(\hat{\sigma}^{z}\right)$ (ii) Starting with the initial condition $\langle \sigma(0) \rangle = (0, 0, 1)$ (i.e. the qubit was initially in the $|0\rangle$ state), find the time evolution of $\langle \sigma(t) \rangle$ by solving the differential equation derived in (i). [Hint: linear differential equation can be simply solved by matrix exponential.]

(iii) Compute the probability to find the qubit in state $|1\rangle$ at time t, which is given by $p(1 \mid 0)_t = \frac{1}{2} (1 - \langle \sigma^z(t) \rangle).$