
130A Quantum Physics
Part 1. Matrix Mechanics

Introduction

◼ Everything Is a Vector

◼ What Is Quantum Mechanics?

Quantum mechanics is a physics theory that describes the behavior of quantum systems 
(microscopic particles, strings, qubits ...).

What does physics theory do in general?

 Describe the state of the system: a set of variables encoding the relevant information of the 
system.

 Predict (i) the observables (measurement outcomes) and (ii) their dynamics (time 
evolution).

Physics theory is about encoding the physical reality in the form of information and making 
predictions about the reality based on such information.

◼ How to Encode Information

State variables encode the information about the system. They are inferred from 

observations.

 State variables may not have “physical meaning”.

 Choice of state variables may not be unique. (There can be more than one way to describe a 
system.)

Example: how to describe the following images?



 Image file: brightness of each pixel. - describe a state by all possible observables.

 Human: digits 0, 1, 2, …, 9. - describe a state by a name.

 Machine learning: feature vectors in the latent space. - describe a state by a vector in a vector 
space. [This is the closest to what we do in quantum mechanics.]

feature 1
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In quantum mechanics, every state of a quantum system is described by a complex vector 
(an array of complex numbers), called the state vector.

 The vector components are the state variables, and they may not need to have physical 
meanings. [They are also called probability amplitudes or wave amplitudes, but I don’t 
explain what is “waving” here.]

 While the state vector (vector-based) approach is widely used, quantum mechanics can also 
be formulated using other frameworks. 

 Examples: density matrix (matrix-based), classical shadow (probability-based) [1], 
quantum bootstrap (observable-based) [2].

 However, the state vector description remains a precise and efficient method for repre-
senting pure states of quantum systems. Therefore, we will begin our discussion with state 
vectors. 

 The information encoded in the state vector, known as quantum information, forms the 
foundation for quantum computation and communication.
Hsin-Yuan Huang, Richard Kueng, John Preskill. arXiv:2002.08953.[1]
Xizhi Han, Sean A. Hartnoll, Jorrit Kruthoff. arXiv:2004.10212.[2]

◼ What Is a Vector?

 Geometrical interpretation: a vector (in high-school physics) is an arrow, used to represent a 
physical quantity that has both magnitude and direction.

 Example: the displacement vector x in a two-dimensional coordinate space
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x1

x2

0

x = (x1, x2) = (0.6, 0.8)

 Computational interpretation: a vector (in computer science) is an array of numbers, serves as 
a data structure to store and represent information. 

 Example 1: Color vector (the red/green/blue values form a vector)

.rgb = [1., 0.5, 0.25] # [r, g, b]

.rgb = [0.25, 0.5, 1.]

 Example 2: Word vector (in natural language processing), vector representations of words 
that encode the meaning and semantics of the words.

feature1

fe
at
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e 2

man
woman

king
queen

Use semantic relationship by vector arithmetic [3]:

king〉- man〉+ woman〉 = queen〉. (1)

Vector in Quantum Mechanics:

 The notion of state vector in quantum mechanics is closer to the computational interpreta-
tion --- it is used to encode the state of a quantum system, or to store the data of quantum 

information. There is no direct physical meaning associated with its amplitude and direction.

 Real and complex vectors:

 Real vector: an array of real numbers --- the space of n-component real vectors is denoted 
as n

x = (x1, x2,…, xn) ∈ n. (2)

 Complex vector: an array of complex numbers --- the space of n-component complex 
vectors is denoted as n

z = (z1, z2,…, zn) ∈ n. (3)
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They are just arrays of different data types. It has been shown [4] that the formulation of 
quantum mechanics involving complex rather than real numbers is necessary to reproduce 
certain behavior of quantum entanglement observed in experiments.
Ekaterina Vylomova, Laura Rimell, Trevor Cohn, Timothy Baldwin. arXiv:1509.01692[3]
Alessio Avella. Quantum Mechanics Must Be Complex. (2022)[4]

◼ Complex Algebra

◼ Complex Number

A complex number z is made of two real numbers (x, y) that combine with a real unit 1 
and an imaginary unit  = -1  respectively, 

x ∈ , y ∈  → z = x +  y ∈ . (4)

The real and imaginary units obey the following multiplication rules

1× 1 = 1, 1 ×  =  × 1 = , ×  = -1. (5)

 Addition:


z = x +  y
w = u +  v

→ z +w = (x + u) +  (y + v) (6)

 Multiplication:


z = x +  y
w = u +  v

→ z w = (x u - y v) +  (x v + y u) (7)

 Complex conjugation:

z = x +  y → z* = x -  y. (8)

Real and imaginary parts can be extracted from

Re z =
1

2
(z + z*) = x,

Im z =
1

2 
(z - z*) = y.

(9)

◼ Complex Number in Mathematica

The imaginary unit  can be typeset in Mathematica by ii. For example, here is a com-
plex number

3 + 1 

3 + 
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Multiplying two complex numbers together (Mathematica treats the space between two numbers 
as a multiplication operator just as a b = a × b in algebra)

(3 + ) (4 + 2 )

10 + 10 

Complex conjugation is given by

Conjugate[3 + ]

3 - 

Extract real and imaginary part by

Re[3 + ]

Im[3 + ]

3

1

◼ Polar Complex Form

Through Euler’s formula, a complex number z = x +  y may be written in a polar-coordinate 
form

z = z cos θ +  z sin θ = z  θ. (10)

z = x +  y

θ

z

x

y

 z - complex modulus (or magnitude)

z2 = z* z = x2 + y2. (11)

Note that z2 ≥ 0, such that its (positive) square root z is defined.

 θ - complex argument (or phase)

arg z = θ = Im ln z = arctan
y

x
. (12)

Multiplying a complex number z by  ϕ simply rotates the number by an angle ϕ in the 
complex plane [5],
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z = z  θ,


× ϕ

 ϕ z = z  (θ+ϕ).
(13)

 Two rotations can be composed into a new rotation with the rotation angles add up,

 ϕ1  ϕ2 =  (ϕ1+ϕ2). (14)

 Complex conjugation simply flips the phase angle (ϕ → -ϕ), representing an inverse rotation,

 ϕ
*
= - ϕ. (15)

3Blue1Brown.  π in 3.14 minutes, using dynamics. (watch on YouTube)[5]

◼ Linear Algebra

◼ Matrix and Vector

 A matrix is a two-dimensional array of numbers,

M =

M11 M12 ⋯

M21 M22 ⋯

⋮ ⋮ ⋱

∈ m×n. (16)

 Matrix elements (components) Mij are labeled by a row index i = 1,…, m and a column
index j =1,…, n. Each component itself is a number. Let us consider Mij ∈  to be general, 
such that the space of m-row n-column matrices will be denoted as m×n.

 If m = n, the matrix is said to be a square matrix. In quantum mechanics, we will be 
mostly dealing with square matrices.

 A vector can be viewed as a special case of a matrix.

 Column vectors (multi-row single-column)

v〉 =
v1
v2
⋮

∈ n×1 ≅ n. (17)

 Row vectors (single-row multi-column)

〈v = ( v1* v2* ⋯ ) ∈ 1×n ≅ n. (18)

 Column v.s. row: In terms of encoding information in n numbers, it doesn’t matter whether 
they are arranged in a column or a row. But when it comes to matrix-vector multiplication 
(to be discussed soon), there is a difference. So we use the  and  notation to distinguish 
them, instead of writing both as v.

◼ Linear Superposition
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Matrix (or vector) space. All m × n matrices forms a matrix space m×n. Its defining 
property is that any linear combination of matrices in the space is still a matrix in the same 
space (same applies to vectors)

∀ A, B ∈ m×n; α, β ∈  :

αA+ βB ∈ m×n (19)

A linear combination can be broken down into two types of basic operations:

 Scalar multiplication:

A =

A11 A12 ⋯

A21 A22 ⋯

⋮ ⋮ ⋱

→ αA =

αA11 αA12 ⋯

αA21 αA22 ⋯

⋮ ⋮ ⋱

, (20)

meaning that

(αA)i j = αAij. (21)

 Addition:

A =

A11 A12 ⋯

A21 A22 ⋯

⋮ ⋮ ⋱

, B =

B11 B12 ⋯

B21 B22 ⋯

⋮ ⋮ ⋱

→ A+B =

A11 +B11 A12 +B12 ⋯

A21 +B21 A22 +B22 ⋯

⋮ ⋮ ⋱

,

(22)

meaning that

(A+B)i j = Aij +Bij. (23)

All these rules applies to vectors when matrices are single-column or single-row.

◼ Matrix Multiplication

Matrix multiplication is an associative binary operation:

m×n ×n×l → m×l, (24)

meaning that two matrices can multiply if and only if the column dimension of the left matrix 
matches the row dimension of the right matrix.

 Explicitly, when we write

A11 A12 ⋯

A21 A22 ⋯

⋮ ⋮ ⋱

B11 B12 ⋯

B21 B22 ⋯

⋮ ⋮ ⋱

=

C11 C12 ⋯

C21 C22 ⋯

⋮ ⋮ ⋱

, (25)

we mean that
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Cij = 

k

Aik Bkj, (26)

where k = 1,…, n is the index to be contracted (to be summed over).

 We can denote Eq. (25) on the matrix level simply as

AB = C . (27)

Matrix-vector multiplication: If one of the matrix is reduced to a vector, the above rules 
still apply. A matrix can left-multiply a column vector or right-multiply a row vector, if their 
contracted dimensions matches.

 Left-multiplication

A11 A12 ⋯

A21 A22 ⋯

⋮ ⋮ ⋱

u1
u2
⋮

=

v1
v2
⋮

 vi = 

j

Aij uj,

(28)

 Right-multiplication

( u1 u2 ⋯ )

A11 A12 ⋯

A21 A22 ⋯

⋮ ⋮ ⋱

= ( v1 v2 ⋯ )

 vj = 

i

ui Aij,

(29)

Vector-vector multiplication: If both matrices are reduced to vectors of the same dimen-
sion, we can define a inner product and a outer product between them.

 Inner product

( u1 u2 ⋯ )

v1
v2
⋮

= 

i

ui vi = "a scalar (number)", (30)

 Outer product

v1
v2
⋮

( u1 u2 ⋯ ) =

v1 u1 v1 u2 ⋯

v2 u1 v2 u2 ⋯

⋮ ⋮ ⋱

. (31)

 Multiplying two row vectors or two column vectors are illegal (because dimensions do not 
match).
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( u1 u2 ⋯ ) ( u1 u2 ⋯ ) → No!

v1
v2
⋮

v1
v2
⋮

→ No!
(32)

◼ Identity Matrix and Kronecker Symbol

Identity matrix: a special n × n square matrix whose diagonal are all 1’s and off-diagonal 
are all 0’s. It looks like

 =

1 0 0 ⋯

0 1 0 ⋱

0 0 1 ⋱

⋮ ⋱ ⋱ ⋱

. (33)

 The matrix element of an identity matrix can be expressed using the Kronecker delta 
symbol δi j,

i j = δi j ≡ 
1 i = j,
0 i ≠ j. (34)

 Identity matrix multiplying on any vector keeps the vector unchanged, i.e. 
∀ u ∈ n :u  =  u = u. This implies that the Kronecker delta has the following property



i

ui δi j = uj,



j

δi j uj = ui.
(35)

 Rule of thumb: when δi j appears in a summation of i (or j), it annihilates with the summa-
tion symbol and replaces summation index i by j (or j by i) in the summand.

◼ Matrix Algebra in Mathematica

Construct two matrices

A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
B = {{9, 8, 7}, {6, 5, 4}, {3, 2, 1}};
A // MatrixForm
B // MatrixForm

1 2 3
4 5 6
7 8 9

9 8 7
6 5 4
3 2 1
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 Linear combine them simply as

A + B // MatrixForm
α A + β B // MatrixForm

10 10 10
10 10 10
10 10 10

α + 9 β 2 α + 8 β 3 α + 7 β

4 α + 6 β 5 α + 5 β 6 α + 4 β

7 α + 3 β 8 α + 2 β 9 α + β

 Multiply them using “.” symbol, standing for the “dot product”.

A.B // MatrixForm

30 24 18
84 69 54
138 114 90

B.A // MatrixForm

90 114 138
54 69 84
18 24 30

Unlike multiplying two number (a b = b a, which is commutative), matrix multiplication is 
non-commutative, meaning that

AB ≠ B A, (36)

for two square matrices A, B ∈ n×n in general.

◼ Matrix as a Machine

A matrix can be viewed as a machine that takes in a vector, acts (multiplies) on it, and 
returns a new vector. 

Examples of 2× 2 matrix M acting on 2-component vectors.

u →
M v =M u. (37)

 Exchanging the two components in the vector by

M =
0 1
1 0

. (38)
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0

u
v

u =
0.6
0.8

→
M v =

0.8
0.6

 Reflecting the vector with respect to an axis by

M =
1 0
0 -1

. (39)

0

u

v

u =
0.6
0.8

→
M v =

0.6
-0.8

 Rotating the vector by 90° counterclockwise by

M =
0 -1
1 0

. (40)

0

u
v

u =
0.6
0.8

→
M v =

-0.8
0.6

◼ Eigen System of a Matrix

An eigen system of a n × n square matrix M  refers to the set of eigenvalues λ(k) and the 
corresponding eigenvectors u(k) for k = 1,…, n such that

M u(k) = λ(k) u(k), (41)

meaning that the multiplication of the matrix M  to its eigenvector u (k) can be reduced to the 
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scalar multiplication by λ(k). See [6] for more intuitive discussions.

Examples eigen systems of 2× 2 matrices M .

 Exchanging the two components in the vector by

M =
0 1
1 0

. (42)

0

u(1) u(2)u
v

k λ(k) u(k)

1 -1
-

1
2

1
2

2 1
1
2
1
2

 Reflecting the vector with respect to an axis by

M =
1 0
0 -1

. (43)

0

u(1)

u(2)

u

v

k λ(k) u(k)

1 -1 0
1

2 1 1
0

 Rotating the vector by 90° counterclockwise by

M =
0 -1
1 0

. (44)
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0

Re u(1)
Re u(2)

Im u(1)
Im u(2)

u
v

k λ(k) u(k)

1 



2
1
2

2 -

-


2
1
2

3Blue1Brown. Eigenvectors and eigenvalues | Chapter 14, Essence of linear algebra. (watch on 
YouTube). 

[6]

◼ Finding eigen systems in Mathematica

Choose a matrix

M = {{3, 1}, {0, 2}};
M // MatrixForm


3 1
0 2



Find its eigenvalues and eigenvectors by Eigensystem, the result will be arranged as 
{{val1, val2, …}, {vec1, vec2, …}}.

Eigensystem[M]

{{3, 2}, {{1, 0}, {-1, 1}}}

Verify that the matrix multiplying on its eigenvector simply scales the eigenvector by the corre-
sponding eigenvalue

M.{1, 0}
M.{-1, 1}

{3, 0}

{-2, 2}
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Quantum States

◼ Ket and Bra

◼ Ket Vector

Postulate 1 (States): States of a quantum system are described as vectors in the associ-
ated Hilbert space.

In quantum mechanics, every state of a quantum system is described by a complex column 
vector, denoted by a ket (or ket state, ket vector) v〉 in Dirac’s notation,

v〉 ≏
v1
v2
⋮

, (45)

where v1, v2,… ∈ . The length of the vector depends on the dimension of the vector space.

 Note: “≏” implies the vector representation is basis dependent and the values of vector compo-
nents may change if we view the same state in a different basis.

 To write down the vector representation, we must specified a set of (orthonormal) basis 
vectors in the vector space, and represent them as one-hot unit vectors:

1〉 ≏
1
0
⋮

, 2〉 ≏
0
1
⋮

, …. (46)

 Such that v〉 can be expressed as a linear combination of basis vectors

v〉 = v1 1〉+ v2 2〉+…

= 

i

vi i〉. (47)

 The ith vector component vi is the linear combination coefficient in front of the ith basis 
vector .

Superposition Principle: any linear combination of quantum states of a given quantum 

system is still a valid quantum state of the same system.

◼ Bra Vector

Every ket v〉 has a dual vector, called bra 〈v, a complex row vector. They are related by 
conjugate transpose with respect to each other.
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v〉 ≏
v1
v2
⋮

dual
〈v ≏ ( v1* v2* ⋯ ). (48)

The name comes from the fact that they combine into a bracket, which represents a scalar 
product [to be introduced later].

 Every basis vector i〉 also has a dual basis vector 〈i, the are represented as

〈1 ≏ ( 1 0 ⋯ ),

〈2 ≏ ( 0 1 ⋯ ),

⋯.
(49)

 The dual basis vectors form a set of basis for the bra vector. In terms of basis vectors,

〈v = v1* 〈1+ v2* 〈2+…

= 

i

vi* 〈i. (50)

 The ith vector component vi* is the linear combination coefficient in front of the ith dual basis 
vector 〈i.

◼ Qubit System

A qubit (or quantum-bit) is a quantum system that has two distinct states.

 The two distinct states are 0〉 and 1〉.

 We can choose 0〉 and 1〉 to be the basis vectors (like choosing a coordinate system) and 
write:

0〉 ≏ 1
0
, 1〉 ≏ 0

1 (51)

 The vector representation of a quantum state is also called a state vector.

 By saying that a qubit is a two-state system, its state vector has two components.

 A generic quantum state of a qubit is a complex linear superposition of the basis states

ψ〉 = ψ0 0〉+ ψ1 1〉 ≏
ψ0

ψ1
. (52)

 ψ0, ψ1 ∈  are complex numbers. They parameterize the state ψ〉.

 Conversely, every two-component complex vector describes a qubit state.

 Statistical interpretation: ψ02 and ψ12 are respectively the probabilities to observe the 
qubit in the 0 and the 1 states.

 There is a dual bra vector 〈ψ associated with each ket vector ψ〉,
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〈ψ = ψ0
* 〈0+ ψ1

* 〈1 ≏ ( ψ0
* ψ1

* ), (53)

which, the bra state, encodes the same information about the qubit as the ket state. They are 
equally good description of the quantum state of a qubit (but play different roles in defining 
the scalar product, as to be discussed soon).

◼ Scalar Product

◼ Definition

Scalar product (or inner product) is a function that takes two ket vectors, u〉 and v〉,

u〉 ≏
u1
u2
⋮

, v〉 ≏
v1
v2
⋮

, (54)

and returns a complex number, denoted by the bracket 〈u v〉,

〈u v〉 ≏ ( u1* u2* ⋯ )

v1
v2
⋮

= u1* v1 + u2* v2 +…

= 

i

ui* vi.

(55)

 Exchanging the two states in a scalar product lead to a complex conjugation of result

〈v u〉 = 〈u v〉*. (56)

 Scalar product of any vector v〉 with itself is real and positive definite, 

〈v v〉 ≥ 0. (57)

More specifically,

〈v v〉 
= 0 if v〉 = 0
> 0 otherwise

. (58)

 This implies the Cauchy-Schwarz inequality

〈u v〉2 ≤ 〈u u〉 〈v v〉. (59)

Prove Eq. (59).Exc
1

Hilbert space: the space of all ket vectors together with their scalar product structure, 
denoted as ℋ , which is the space of all possible quantum states of a system.

◼ Normalization

Squared norm of a vector v〉 is the scalar product of the vector with itself, denoted as
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v2 = 〈v v〉. (60)

Taking off the square, v = 〈v v〉  is the norm of v〉.

Normalized state: a state v〉 is normalized ⇔ Its norm is one, i.e.

v2 = 〈v v〉 = 

i

vi2 = 1. (61)

 Example: Consider a qubit state

v〉 ≏
v0
v1
, (62)

the normalization condition means

〈v v〉 = v0* v0 + v1* v1 = 1. (63)

 In general, the normalization condition means

〈v v〉 = 

i

vi2 = 1. (64)

According to the statistical interpretation of quantum state, vi2 is the probability to observe 
the system in the ith basis state. The normalization condition is simply a requirement that 
the probabilities must sum up to unity.

 Normalization of a state: if a state  was not normalized, it can be normalized by

v〉 
v〉

v
=

1

〈v v〉
v〉, (65)

unless v is zero or infinity. 

Normalize the vector .Exc
2

◼ Orthogonality

Orthogonal states: two states  and  are orthogonal to each other ⇔ their scalar 
product is zero, i.e.

〈u v〉 = 

i

ui* vi = 0. (66)

 For example, the qubit states 0〉 and 1〉 (see Eq. (51)) are orthogonal, as

〈0 1〉 = ( 1 0 )
0
1

= 0. (67)

0〉 and 1〉 are orthogonal for a good reason: they are distinct states of a qubit, i.e. if the 
qubit is in state 0, it is definitely not in state 1, vice versa.
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◼ Basis and Hilbert Space

◼ Orthonormal Basis

Orthonormal basis: a (ordered) set of kets

ℬ = {i〉 : i = 1, 2,…, n}, (68)

in which the  vectors are normalized by themselves and orthogonal to each other:

〈i j〉 = δi j ≡ 
1 i = j,
0 i ≠ j. (69)

 Each orthogonal basis state describes a distinct reality of the quantum system.

 Orthonormal basis states are represented by one-hot vectors, as they are normalized and 
orthogonal to each other

1〉 ≏

1
0
0
⋮

, 2〉 ≏

0
1
0
⋮

, 3〉 ≏

0
0
1
⋮

, …. (70)

Choosing a basis is always a helpful practice in quantum mechanics. But quantum mechanics 
can be formulated in a basis independent manner.

◼ Hilbert Space

A set of orthonormal basis spans a Hilbert space (the vector space of kets), denoted as

ℋ = span ℬ = span {i〉 : i = 1, 2,…, n}. (71)

 The dimension of the vector space dim ℋ = the number n of basis vectors = the maximal 
number of linearly independent vectors in the space.

 The Hilbert space dimension of a quantum system can be finite or infinite. Example: a 
qubit - dimℋ = 2, ten qubits - dimℋ = 210 = 1024, a particle in a continuous space - 
dimℋ = ∞.

 Dimension of the Hilbert space is often a choice: we don’t really know how many indepen-
dent states are there in a quantum system. We only care about the states that are relevant 
to us. 

 Example: 0〉 and 1〉 form an orthonormal basis of the qubit Hilbert space. They represent two 
distinct realities: if the qubit is in state 0〉, it is definitely not in state 1〉 (and vice versa).

◼ State Basis Expansion

Completeness: Any full set of distinct states in the Hilbert space ℋ forms a complete set of 
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orthonormal basis ℬ, such that every state v〉 ∈ ℋ can be expanded as a linear superposition of 
the basis states,

v〉 = v1 1〉+ v2 2〉+… = 

i

vi i〉. (72)

 Each basis state i〉 describes a distinct reality that the quantum system can realize under 
observation.

 The superposition coefficient vi are the components of the state vector, which can be 
extracted by the scalar product with the basis state,

vi = 〈i v〉. (73)

Eq. (72) and Eq. (73) can be written in a more elegant form in terms of bras and kets only

v〉 = 

i

i〉 〈i v〉.
(74)

 Statistical interpretation: If a quantum system is known to be in a superposition state 
v〉 = ∑i vi i〉 of distinct realities described by orthogonal states i〉 (i = 1, 2,…), an observation 
designed to discern which reality the system is really in will find the system in the state i〉 
with the probability 

p(i v) = vi2 = 〈i v〉2. (75)

◼ Born’s Rule

◼ Fidelity

The fidelity F(u, v) between two quantum states u〉 and v〉 quantifies the similarity (over-
lap) between two states. It is given by the squared absolute value of their scalar product (assum-
ing the normalization of state vectors)

F(u, v) = 〈u v〉2. (76)

 Fidelity is symmetric: F (u, v) = F(v, u).

 Fidelity takes values in the range of

0 ≤ F(u, v) ≤ 1. (77)

This follows from the Cauchy-Schwarz inequality of scalar product Eq. (59) that 
〈u v〉2 ≤ 〈u u〉 〈v v〉.

◼ Statistical Interpretation

Hypothesis testing: If a quantum system is prepared in a state v〉, an observation 
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designed to check whether the system is in the state u〉 will return a confirmative result with 
probability

p(u v) = 〈u v〉2. (78)

Detailed balance: the probability to observe one state given another is the same as the other 
way round, both are given by their fidelity

p(u v) = p(v u) = F(u, v) = 〈u v〉2. (79)

 Identical states. Two states u〉 and v〉 are identical iff the fidelity between them is one 
(fully overlap)

〈u v〉2 = 1. (80)

 This is only achievable when

u〉 =  φ v〉, (81)

i.e. the two states are the same up to phase ambiguity.

 Reality must be confirmable by repeated observations: if a quantum system is known to be 
in a state v〉, observing the system again will certainly confirm the state v〉 (with proba-
bility 1).

 Distinct states. Two states u〉 and v〉 are distinct iff the fidelity between them is zero (no 
overlap)

〈u v〉2 = 0. (82)

 Orthogonal states ⇔ distinct realities.

 Distinct realities are distinguishable by repeated observations: if a quantum system is 
known to be in a state v〉, observing the system again will certainly not find the system in 
another orthogonal state u〉. 

 Overlapping states. In general, two different states u〉 and v〉 may have partial overlap 
(they don’t need to be orthogonal), i.e. their fidelity falls between zero and one

0 < 〈u v〉2 < 1. (83)

 Realities can overlap: if two quantum states are more similar to (more overlapped with) 
each other, the probability to confuse them is higher.

"3"〉 ≏ , "5"〉 ≏ .
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{0〉, 1〉}, {+〉, -〉}, and {〉, 〉} are three pairs of distinct states of a qubit (i.e. 2-
dimensional Hilbert space). Within each pair, the two states are orthogonal. However, 
any two states from different pairs have 50% overlap (i.e. 1/2 fidelity). Their overlap-
ping relations can be visualized as the following graph.    

50%50%

50%

50%

50%50%

50%

50%

50%

50%

50%

50%

0〉

1〉

+〉-〉

〉

〉

Can you figure out an assignment of 2-component vector representation for these 
states that is consistent with their overlapping relations? 
[Hint: read Lecture 2 of [7]]
[Comment: This result shows how it is possible to embed so many different realities 
just in a 2-dimensional Hilbert space.]

HW
1

Leonard Susskind, Art Friedman. Quantum Mechanics - the Theoretical Minimum. Publisher: 
Basic Books (2014).

[7]

Quantum Operators

◼Matrix Representation

◼ Definition

Operator: an operator acts on a state and returns a new state.

O

: ℋ → ℋ

v〉 ↦ w〉 = O

v〉

(84)

 Linear operator: action of the operator commutes with linear combination of the state

O


(α v〉+ β u〉) = αO

v〉+ βO


u〉. (85)

 Identity operator is a special operator that maps any state to itself (the do-nothing oper-
ator), denoted as .

∀ v〉 :  v〉 = v〉. (86)

◼ Operator Acting on State

Recall: a matrix multiplying on a vector produces a new vector. If every quantum state is 
described by a vector, one may conjecture that every quantum operator should be described 
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by a (square) matrix. --- This is indeed a basic assumption of quantum mechanics: states are to 
be operated (transformed) linearly.

Applying an operator to a state ≏ multiplying a matrix to a vector.

w〉 = O


v〉
↓≏ ↓≏ ↓≏

w1
w2
⋮

=

O11 O12 ⋯

O21 O22 ⋯

⋮ ⋮ ⋱

v1
v2
⋮

(87)

or equivalently

wi = 

j

Oij vj. (88)

 The matrix element Oij tells how the operator should act on each basis states: the operator 
O

 will turn a basis state j〉 to a superposition state of basis states i〉 with superposition coeffi-

cients Oij.

O

j〉 = 

i

Oij i〉. (89)

Show Eq. (89) as a result of Eq. (87) using one-hot representation for basis vectors.Exc
3

 In other words, Oij is the amplitude to transform basis state j〉 to basis state i〉 under the 
action of the operator O


. It is sufficient to specify the operator by specifying its action on 

basis states, as all possible states are just linear combination of basis states, and the operator 
acts linearly.

◼ Operator Basis Expansion

Given an orthonormal basis  ℬ = {i〉 : i = 1, 2,…} of the Hilbert space ℋ , every operator O

 

acting in ℋ can be expanded as a linear combination of basis operators i〉 〈j,

O

= 

ij

i〉Oij 〈j, (90)

 i〉 〈j denotes the operator that targets the state j〉 and transforms it to the state i〉, because

(i〉 〈j) k〉 = i〉 〈j k〉 = i〉 δjk

= 
i〉 if k = j,
0 if k ≠ j.

(91)

Thus Eq. (90) is consistent with the Eq. (89) in describing how the operator O

 acts on the 

state.

 Oij ∈  are complex coefficients, which can be extracted by
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Oij = 〈iO

j〉. (92)

Prove Eq. (92) from Eq. (90) using the orthonormal property of the basis vectors, 
without representing them as on-hot vectors explicitly.

Exc
4

 Alternatively, i〉 〈j can be represented as an one-hot matrix that is zero everywhere with a 
single 1 at the row-i column-j. For example, in a 2-dimensional Hilbert space [recall Eq. (31) 
for how to outer product two vectors]

1〉 〈1 ≏ 1
0

( 1 0 ) =
1 0
0 0

,

1〉 〈2 ≏ 1
0

( 0 1 ) =
0 1
0 0

,

2〉 〈1 ≏ 0
1

( 1 0 ) =
0 0
1 0

,

2〉 〈2 ≏ 0
1

( 0 1 ) =
0 0
0 1

.

(93)

Therefore, Eq. (90) indeed reconstructs the matrix representation

O11 1〉 〈1+O12 1〉 〈2+O21 2〉 〈1+O22 2〉 〈2

≏
O11 O12
O21 O22

.
(94)

The above can be generalized to larger matrices (higher dimensions).

Matrix representation. Every operator O

 can be represented as a matrix

O

≏

O11 O12 ⋯

O21 O22 ⋯

⋮ ⋮ ⋱

. (95)

The ith row jth column matrix element Oij describes:

 The linear combination coefficient in front of the basis operator i〉 〈j, as in Eq. (90).

 The amplitude to transform state j〉 to state i〉 under the action of the operator O

, as in Eq. 

(89).

◼ Examples of Operators
Example I: Identity operator

Identity operator is universally represented by the identity matrix in any orthonormal 
basis (independent of the basis choice).
According to Eq. (92),
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i j = 〈i  j〉 = 〈i j〉 = δi j = 
1 i = j
0 i ≠ j

. (96)

 In matrix representation Eq. (95),

 =

1
1
⋱

. (97)

 Using Dirac notation Eq. (90),

 = 

ij

i〉 i j 〈j = 

i

i〉 〈i.
(98)

This is also call the resolution of identity.
Example II: Pauli operators

Pauli operators are a set of operators acting on a qubit.

σ
 x

= 1〉 〈0+ 0〉 〈1,

σ
 y

=  1〉 〈0-  0〉 〈1,

σ
 z

= 0〉 〈0- 1〉 〈1,
(99)

Sometimes the identity operator

 = 0〉 〈0+ 1〉 〈1, (100)

is also included as the 0th Pauli operator.

Pauli matrices - matrix representations of Pauli operators on the qubit basis {0〉, 1〉}:

 ≏
1 0
0 1

, σ x ≏ 0 1
1 0

, σ y ≏ 0 -

 0
, σ z ≏ 1 0

0 -1
. (101)

◼ Operator Algebra

◼ Operator Product

Product (or composition) of two operators O

 and P


 is a combined operator O


P

 that 

first applies P

 to the sate then applies O


 (from right to left):

O

P

 v〉 = O


P

v〉. (102)

 Composing two operators ≏ multiplying two matrices.

O

P

≏

O11 O12 ⋯

O21 O22 ⋯

⋮ ⋮ ⋱

P11 P12 ⋯

P21 P22 ⋯

⋮ ⋮ ⋱

. (103)
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Prove Eq. (103) using Eq. (90).Exc
5

 Operator product is non-commutative in general, i.e.

O

P

≠ P


O

. (104)

◼ Single-Qubit Pauli Operators
Example: product of Pauli operators

Multiplication table

 σ
 x

σ
 y

σ
 z

  σ
 x

σ
 y

σ
 z

σ
 x

σ
 x

  σ
 z

- σ
 y

σ
 y

σ
 y

- σ
 z

  σ
 x

σ
 z

σ
 z

 σ
 y

- σ
 x



(105)

Verify Eq. (105) by multiplying Pauli matrices defined in Eq. (101). Exc
6

 The table Eq. (105) can be summarized in a single formula: the product of Pauli matrices (as 
the defining property of Pauli matrices)

σ
 a

σ
 b

= δab +  ϵabc σ
 c, (106)

where a, b, c = x, y, z.

 δab denotes the Kronecker delta symbol, defined as

δab = 
1 if a = b
0 if a ≠ b (107)

 ϵabc denotes the Levi-Civita symbol, defined as

ϵabc =

1 if (a b c) is a cyclic of (x y z)
-1 if (a b c) is a cyclic of (z y x)
0 otherwise

(108)

 Another version of Eq. (106) using vector notation

(m ·σ

) (n ·σ


) = (m ·n) +  (m ×n) ·σ , (109)

where m, n are three-component vectors (each component is a scalar). 

 The generalized vector σ  should be understood as a vector of matrices, or as a three-dimen-
sional tensor (shape: 3 × 2× 2).

 Here m ·σ

 means
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m ·σ

= mx σ

 x
+my σ

 y
+mz σ

 z

≏
mz mx - my

mx + my -mz
.

(110)

As we contract a 3-component vector m with a 3 × 2× 2-component tensor σ  along the first 
index (the dimension 3 index), the result is a 2 × 2 matrix.

 Repeatedly applying Eq. (109) enables us to product more Pauli operators together. For 
example

(l ·σ ) (m ·σ

) (n ·σ


) =  l · (m ×n) + ((m ·n) l - (l ·n)m + (l ·m) n) ·σ . (111)

Derive Eq. (111).Exc
7

◼ Commutator

Commutator of two operators O

 and P



O

, P

 = O


P

-P


O

. (112)

 Commutator is antisymmetric, O

, P

 = -P


, O

. 

 As a result, commutator of an operator with itself always vanishes O

, O

 = 0.

 If the commutator vanishes O

, P

 = 0, we say that the two operators O


 and P


 commute, i.e. 

O

P

= P


O

 (operators can pass though each other as if they were numbers)  it does not 

matter which operator is applied first, the consequence will be the same.
Example: dressing up to school.

 A: put on the socks,

 B: put on the shoes,

 C: put on the hat,

A and B do not commute (changing the order leads to different result). But A and C commute, 
B and C also commute (changing the order does not affect the result).

Useful rules to evaluate commutators

 Bi-linearity:

O

, P

+Q


 = O


, P

+ O


, Q

,

O

+P


, Q

 = O


, Q

+ P


, Q

.

(113)

Prove Eq. (113).Exc
8

 Product rules:
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O

, P

Q

 = O


, P

Q

+P


O

, Q

,

O

P

, Q

 = O


, Q

P

+O


P

, Q

.

(114)

Prove Eq. (114).Exc
9

Example: Commutators of Pauli operators

[σ
 x, σ y] = 2  σ z,

[σ
 y, σ z] = 2  σ x,

[σ
 z, σ x] = 2  σ y.

(115)

Or more compactly as

σ
 a, σ b = 2  ϵabc σ c, (116)

for a, b, c = x, y, z, using the Levi-Civita symbol ϵabc defined in Eq. (108).

 Eq. (116) can be considered as the defining algebraic properties of single-qubit operators 
(Pauli matrices). Or even more compactly expressed using the cross product of vectors

σ

×σ


= 2  σ . (117)

◼ Operator Function

Operator power. nth power of an operator O

 is the composition of O


 by n times.

O
 n

= O

O

…(n times) …O


. (118)

Operator function. Given a function f (x) that admits Taylor expansion

f (x) = 

n

cn xn, (119)

the corresponding operator function is defined as

f (O

) = 

n

cn O
 n
, (120)

with the same set of coefficients cn.

 f (O

) is still an operator that can act on states in ℋ .

 Operator exponential. Given the exponential function

x = 1+ x +
x2

2!
+… = 

n=0

∞ 1

n !
xn, (121)

the exponential of an operator is defined as
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O


= +O

+
O
 2

2!
+… = 

n=0

∞ 1

n !
O
 n
, (122)

 Note: exponentiating an matrix is NOT exponentiating each of the matrix element.

See [8] for a nice video about matrix exponential.
3Blue1Brown. How (and why) to raise  to the power of a matrix. (watch on YouTube)[8]
Example: exponentiating a Pauli matrix

Given σ y ≏ 0 -

 0
, 

show that the matrix representation of  θ σ
 y
 is 

 θ σ
 y
≏

cos θ sin θ
-sin θ cos θ

.

Exc
10

Use the definition Eq. (122) to prove that 
exp( θ n ·σ


) = cos(θ) +  sin(θ) n ·σ


 

given that n is a 3-component real unit vector.

HW
2

◼ Operator Trace

The trace of an operator O

 is defined as

TrO

= 

i

〈iO

i〉. (123)

The result is a scalar.

 On the matrix level, taking the trace is simply summing over diagonal matrix elements

Tr
O11 O12 ⋯

O21 O22 ⋯

⋮ ⋮ ⋱

= O11 +O22 +… = 

i

Oii. (124)

 Linear property: trace is a linear functional of operators.

Tr αO

+ β P


 = a TrO


+ βTrP


. (125)

 Cyclic property: the trace of a product of operators is invariant under the cyclic permuta-
tion of the operators.

Tr O

P

 = Tr P


O

,

Tr O

P

Q

 = Tr P


Q

O

 = Tr Q


O

P

,

…

(126)
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Prove Eq. (126).Exc
11

The operator trace is useful in computing scalar product or fidelity:

 Scalar product

〈u v〉 = Tr v〉 〈u. (127)

 Fidelity

〈u v〉2 = 〈u v〉 〈v u〉 = Tr v〉 〈v u〉 〈u. (128)

Example: trace of Pauli operators

Pauli operators are traceless.

Tr σ x = Tr σ y = Tr σ z = 0. (129)

This is true for a Pauli operator along any direction

Tr n ·σ

= 0. (130)

Measurement

◼ Hermitian Operators

◼ Hermitian Conjugate

We have explained how an operator O

 acts on a ket state v〉, what about its action on the 

bra state 〈v?

ket bra (dual)
Hilbert space ℋ ℋ*

basis ℬ = {i〉} ℬ* = {〈i}
state v〉 = ∑i vi i〉 〈v = ∑i vi* 〈i

vector
v1
v2
⋮

( v1* v2* ⋯ )

component vi = 〈i v〉 vi* = 〈v i〉

operator O

= ∑ij i〉Oij 〈j O

 †
= ∑ij i〉Oji* 〈j

matrix
O11 O12 ⋯

O21 O22 ⋯

⋮ ⋮ ⋱

O11* O21* ⋯

O12* O22* ⋯

⋮ ⋮ ⋱

component Oij = 〈iO

j〉 Oij* = 〈jO

 †
i〉

(131)
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action w〉 = O

v〉 〈w = 〈vO

 †

 Just like the bra 〈v is the dual of the ket u〉, the Hermitian conjugate operator O
 †

 is the 
dual of the original operator O


, such that

 if the operator O

 takes v〉 to w〉:

O

: ℋ → ℋ

v〉 ↦ w〉 = O

v〉

(132)

 then the operator O
 †

 takes 〈v to 〈w:

O
 †
: ℋ* → ℋ*

〈v ↦ 〈w = 〈vO
 †

(133)

 Given an orthonormal basis  ℬ = {i〉 : i = 1, 2,…} of the Hilbert space ℋ , if O

 is given by

O

= 

ij

i〉Oij 〈j, (134)

then O
 †

 should be given by

O
 †

= 

ij

i〉Oji* 〈j. (135)

Verify that Eq. (135) is consistent with the definition Eq. (133).Exc
12

 In terms of matrix representation, the Hermitian conjugate acts as

 matrix transpose (interchanges the rows and columns),

 followed by complex conjugation of each matrix element.

O11 O12 ⋯

O21 O22 ⋯

⋮ ⋮ ⋱

†

=

O11* O21* ⋯

O12* O22* ⋯

⋮ ⋮ ⋱

. (137)

How to think of it: Hermitian conjugate ∼ a generalization of complex conjugate from complex 
numbers to matrices.

Hermitian conjugate has the following properties:

 Duality: suppose O

 is an operator 

O
 † †

= O

. (138)

 Linearity: suppose O

 and P


 are operators, α and β are complex numbers,

αO

+ β P



†
= α* O

 †
+ β* P

 †
. (139)
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 Transpose Property: suppose O

 and P


 are operators

O

P


†
= P

 †
O
 †
. (140)

Prove the property Eq. (140).Exc
13

◼ Hermitian Operator

Real numbers play a special role in physics. The results of any measurements are real. If in 
quantum mechanics, physical observables are represented by operators, how do we impose the 
“real” condition on operators?

 A real number is a number whose complex conjugation is itself.

z = z* ⇔ z ∈ . (141)

 A real operator Hermitian operator is an linear operator whose Hermitian conjugate is 
itself. 

An operator O

= ∑ij i〉Oij 〈j is call Hermitian, if

O

= O

 †
, (142)

or in terms of matrix elements,

Oij = Oji* . (143)

◼ Eigensystem (General)

Given an operator O

, the eigenvectors Ok〉 are a set of special vectors, on which the oper-

ator O

 acts as a scalar multiplication

O

Ok〉 = Ok Ok〉, (k = 1, 2,…) (144)

and the corresponding scalars Ok are called the eigenvalues (of the corresponding eigenvectors).

 Eq. (144) is called the eigen equation of an operator O

.

 The eigenvalues can be found by solving the algebraic (polynomial) equation for O

detO

-O  = 0. (145)

 For each solution of eigenvalue O = Ok, the corresponding eigenvector Ok〉 is found by 
solving the linear equation

O

-Ok  Ok〉 = 0. (146)

 Use Mathematica to solve the eigen problem (recommended)

MatrixMechanics.nb     31



Eigensystem[{{0, 1}, {1, 0}}]

{{-1, 1}, {{-1, 1}, {1, 1}}}

◼ Eigensystem (Hermitian Operators)
What is special about Hermitian operators?

Suppose O

= O

 †
 is a Hermitian operator and

O

Ok〉 = Ok Ok〉, (k = 1, 2,…). (147)

 Eigenvalues are real.

O

= O

 †
 Ok ∈ . (148)

 Eigenvectors form a complete set of basis. (Any vector  can be expanded as a sum of these 
eigenvectors.)

 Eigenvectors of different eigenvalues are orthogonal (automatically)

Ok ≠ Ol  〈Ok Ol〉 = 0. (149)

 Eigenvectors of the same eigenvalue can be made orthogonal (by orthogonalization, e.g. 
Gram-Schmidt procedure).

Orthogonalize[{{1, 2}, {3, 4}}]


1

5
,

2

5
, 

2

5
, -

1

5


 For bounded Hermitian operators (e.g. finite matrices in finite dimensional Hilbert space), 
eigenvectors can be normalized.

Prove Eq. (148) and Eq. (149).Exc
14

Therefore each Hermitian operator O

 generates a complete set of orthonormal basis 

{Ok〉 : k = 1, 2,…} for the Hilbert space ℋ , also called the eigenbasis of O

. 

 The completeness of the basis implies



k

Ok〉 〈Ok  = .
(151)

 Hermitian operator O

 can always be represented in its own eigenbasis, leading to the spec-

tral decomposition

O

= 

k

Ok〉Ok 〈Ok . (152)
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 Note: unlike a generic matrix representation O

= ∑i j i〉Oij 〈j, in the spectral decomposition 

Eq. (152), the summation only run through the eigenbasis once.

 In the eigenbasis, the Hermitian operator is represented as a diagonal matrix.

O

≏

O1
O2

⋱

. (153)

So the procedure of bring the matrix representation to its diagonal form by transforming to 
its eigenbasis is called diagonalization. (We will discuss more about it later.)

Diagonalization is particularly useful in constructing the operator function. For example, the 
operator function f (O


) defined in Eq. (120) can be constructed by

f (O

) = 

k

Ok〉 f (Ok) 〈Ok , (154)

Prove Eq. (154).Exc
15

or in the matrix form as

f (O

) ≏

f (O1)
f (O2)

⋱

.

A particle can travel on a graph. 

Let i〉 denotes the state that the particle stays on the ith vertex of the graph. The 
following operator
H

= -∑ij (i〉 〈j+ j〉 〈i) 

describes the quantum process for the particle to tunnel from one vertex to the adja-
cent vertex (the summation sums over all links i  j on the graph).
(i) Represent the operator H


 as a matrix in the basis of {i〉}.

(ii) Write a computer program to compute the lowest and second lowest eigenvalues.
(iii) Visualizing the corresponding eigen vectors by marking the vector components on 
the graph. What do you find?
[Comment: quantum mechanics can be applied to classify vertices on a graph --- an 
algorithm known as the spectral clustering.]

HW
3

◼ Eigensystem (Pauli Operators)
Example: Eigenvalues and eigenvectors of Pauli operators

Pauli matrices are 2 × 2 Hermitian matrices. Each one has two distinct eigenvalues, and two 
corresponding orthogonal eigenvectors.

opertor σ
 x

σ
 y

σ
 z

(matrix) 0 1
1 0

0 -

 0
1 0
0 -1
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eigenvalue +1 -1 +1 -1 +1 -1

eigenvector +〉 -〉 〉 〉 0〉 1〉

(vector) 1
2

1
1

1
2

1
-1

1
2

1


1
2

1
-

1
0

0
1

projector +〉 〈+ -〉 〈- 〉 〈 〉 〈 0〉 〈0 1〉 〈1

(matrix) 1
2
1 1
1 1

1
2

1 -1
-1 1

1
2
1 -

 1
1
2
1 

- 1
1 0
0 0

0 0
0 1

Spectral decompositions:

 Pauli-x

σ
 x

= +〉 〈+- -〉 〈-, (156)

with projection operators

+〉 〈+ =
+σ

 x

2
,

-〉 〈- =
-σ

 x

2
.

(157)

 Pauli-y

σ
 y

= 〉 〈- 〉 〈, (158)

with projection operators

〉 〈 =
+σ

 y

2
,

〉 〈 =
-σ

 y

2
.

(159)

 Pauli-z

σ
 z

= 0〉 〈0- 1〉 〈1, (160)

with projection operators

0〉 〈0 =
+σ

 z

2
,

1〉 〈1 =
-σ

 z

2
.

(161)

In general, the Pauli operator n ·σ

 along the direction of the unit vector n has the following 

spectral decomposition

n ·σ

= n·σ=+1〉 〈n·σ=+1- n·σ=-1〉 〈n·σ=-1, (162)

with the projection operators
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n·σ=±1〉 〈n·σ=±1 =
±n ·σ



2
. (163)

Prove Eq. (162) and Eq. (163).Exc
16

◼ Observables

◼ Physical Observable

Postulate 2 (Observables): Physical observables of a quantum system are described 
by Hermitian operators (represented as Hermitian matrices) acting on the associated 
Hilbert space.

Consider a Hermitian operator O

 with eigenvalues Ok and eigenvectors Ok〉 (m = 1, 2,…, gk), 

i.e.

O

= 

k

Ok〉Ok 〈Ok . (164)

The operator O

 corresponds to a physical observable O in the sense that

 All possible measurement outcomes (or observation values) of the observable O are 
given by (and only by) the eigenvalues Ok.

 The measurement projects (collapses) the quantum state to the eigenspace ℋk spanned by
the eigenstates of the corresponding measurement outcome Ok.

◼ Measurement Postulate

Postulate 3 (Measurement): Given a quantum system in the state ψ〉 and the observ-
able O to be measured: 
(i) the probability to observe the measurement outcome Ok is p(Ok ψ) = 〈Ok ψ〉2, 
(ii) if Ok is observed, the state will collapse to Ok〉.

 In quantum measurement, there is no way to tell for certain which outcome will be observed. 
There is only a conditional probability p(Ok ψ) that we can predict.

 Upon observing the measurement outcome Ok, the quantum state will be updated --- a pro-
cess known as quantum state collapse.

ψ〉
measureO

observeOk
Ok〉. (165)

 ψ〉 is called the prior state (pre-measurement state)

 Ok〉 is called the posterior state (post-measurement state)
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 Bayesian view of quantum state collapse:

 The quantum state represents our subjective knowledge or belief about the system, not 
(necessarily) an objective physical reality.

 Measurements provide new information that forces us to update our beliefs → the “col-
lapse” happens in our knowledge.

 The measurement postulate tells us how to update the quantum state given the observa-
tion, in a logically consistent manner. 

 How to deal with degeneracy? 

An eigenvalue Ok is n-fold degenerated ⇔ there exists n orthonormal eigenstates (their 
choices are not unique) of O


 corresponding to the same eigenvalue:

O

Ok,1〉 = Ok Ok,1〉,

O

Ok,2〉 = Ok Ok,2〉,

…

O

Ok,n〉 = Ok Ok,n〉.

(166)

Then if the measurement outcome Ok is observed in measuring O on state ψ〉, how to com-
pute p(Ok ψ) and the posterior state?

 Step I: Compute the scalar products αm = 〈Ok,m ψ〉, meaning that

ψ〉 = 

m=1

n

αm Ok,m〉+… (other states). (167)

 Step II: Aggregate the probability:

p(Ok ψ) = 

m=1

n

αm
2 = 

m=1

n

〈Ok,m ψ〉2. (168)

 Step III: Renormalize the amplitudes αm

α

m =

αm

p(Ok ψ)

=
〈Ok,m ψ〉

p(Ok ψ)

, (169)

and reconstruct the posterior state

ψ〉
measureO

observeOk
ψ′〉 = 

m=1

n

α

m Ok,m〉. (170)

Note: it is always a good practice to normalize the state (i.e. ensuring 〈ψ′ ψ′〉 = 1) after 
quantum state collapse.
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Let {1〉, 2〉, 3〉} be a set of orthonormal basis of a three-state system. Suppose the 
system is in the prior state ψ〉 = 1

3
(1〉+ 2〉+ 3〉).

Consider measuring the observable O

= 1〉 〈2+ 2〉 〈1- 3〉 〈3.  

(i) What are the possible measurement outcomes (observation values)?
(ii) What are the probabilities to observe each outcome?
(iii) What posterior states will the system collapse to after observing each outcome?

HW
4

◼ Expectation Value

The expectation value of an observable O, denoted as 〈O〉, is the averaged measurement 
outcome of O over many repeated experiments (with the same prior state ψ〉 prepared each 
time). 

According to the measurement postulate

〈O〉 := 

k

Ok p(Ok ψ)

= 

k

Ok 〈Ok ψ〉2

= 

k

〈ψOk〉Ok 〈Ok ψ〉

(171)

Given O

= ∑k Ok〉Ok 〈Ok , we conclude

〈O〉 = 〈ψO

ψ〉. (172)

 The answer is a real scalar (as O

 is Hermitian).

 Represented as vectors and matrices,

〈O〉 = ( ψ1
* ψ2

* ⋯ )

O11 O12 ⋯

O21 O22 ⋯

⋮ ⋮ ⋱

ψ1

ψ2

⋮

. (173)

Alternatively, the expectation value can also be written as a trace of the product of the 
observable operator O


 and the state projector ψ〉 〈ψ

〈O〉 = Tr O

ψ〉 〈ψ. (174)

 The advantage of this approach is to circumvent solving for ψ〉 explicitly (sometimes the state 
projector is easier to construct than the state vector).
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Let m and n be three-component real unit vectors. For a qubit, consider measuring 
n ·σ on the m·σ=+1〉 state.
(i) What is the probability to observe n ·σ = +1?
(ii) What is the expectation value of the operator n ·σ


 on the state  m·σ=+1〉?

[Express your results in terms of m and n. Hint: using Eq. (174) and Eq. (163) can 
simplify the calculation.]

HW
5

◼ Variance

The variance of an observable O on a state ψ〉 is defined as

varO = (O - 〈O〉)2 = O2- 〈O〉2. (175)

where O2 = 〈ψO
 2

ψ〉 and 〈O〉 = 〈ψO

ψ〉. The square root of the variance defines the standard 

deviation:

stdO = varO . (176)

Uncertainty Relation: for any pair of observables A and B measured on any given state 
(repeatedly),

(stdA) (stdB) ≥
1

2
〈[A, B]〉. (177)

Prove Eq. (177).Exc
17

 In words, the product of the uncertainties cannot be smaller than half of the magnitude of the 
expectation value of the commutator.

 For commuting observables ([A, B] = 0), (stdA) (stdB) ≥ 0, it is possible to have 
stdA = stdB = 0 simultaneously, i.e. A and B can be jointly measured with perfect certainty.

 For non-commuting observables, there exists a state on which 〈[A, B]〉 ≠ 0. Then on such 
state, it is impossible to have stdA = stdB = 0 simultaneously, i.e. A and B can not be jointly 
measured with certainty.

Dynamics

◼ Unitary Operators

◼ Basis Transformation

Suppose we have two sets of orthonormal basis of the same Hilbert space ℋ
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ℬ = {i〉 : i = 1, 2,…, dimℋ},

ℬ′ = {i〉′ : i = 1, 2,…, dimℋ}.
(178)

For example, the eigen basis of σ x v.s. that of σ z.

 The same state v〉 can have different vector representations in different bases

vi = 〈i v〉, vi′ = 〈i′ v〉. (179)

 The same operator O

 can have different matrix representations in different bases

Oij = 〈iO

j〉, Oij′ = 〈i′ O


j〉′. (180)

How are representations in different bases related? - Basis transformation. Basis transforma-
tion from ℬ to ℬ′ is describe by a matrix U  with the matrix element

Uij = 〈i′ j〉. (181)

such that the representation in the new basis is related to that in the old basis by

vi′ = 

j

Uij vj,

Oij′ = 

kl

Uik Okl Ujl* .
(182)

Using Eq. (181) to prove that Eq. (182) is compatible with Eq. (179) and Eq. (180).Exc
18

In quantum mechanics, every operator is a matrix, and every matrix is an operator. So does 
the basis transformation matrix.

U

= 

i

i〉 〈i′. (183)

Check that the matrix element of U

 in Eq. (183) is indeed given by Eq. (181), regard-

less of represented in the basis ℬ or ℬ′.
Exc
19

U

 in Eq. (183) is an example of the unitary operator.

A operator U

 is unitary, iff

U
 †
U

= U


U
 †

= . (184)

Check that Eq. (183) satisfies the defining property Eq. (184) for unitary operator.Exc
20

 The inverse of a unitary operator is its Hermitian conjugate

U
 -1

= U
 †
. (185)
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The operator (basis transformation) implemented by U

 is reversed by that of U

 †
, and vice 

versa.

 When the two sets of basis i〉 and i〉′ are identical, U =  becomes the identity operator 
(which is also unitary).

In terms of the unitary operator, the basis transformation Eq. (182) can be written as

for ket state : v〉  U

v〉,

for bra state : 〈v → 〈vU
 †
,

for operator : O

→ U


O

U
 †
.

(186)

 The operator O

 is also made of ket and bra states, so the unitary operator must be applied 

from both sides, when transforming an operator.

 The expectation value of an observable is invariant under basis transformation. (Physical 
reality should be basis-independent.)

〈O〉 = 〈ψO

ψ〉 → 〈ψU

 †
U

O

U
 †
U

ψ〉 = 〈ψ  O


 ψ〉 = 〈O〉. (187)

◼ Matrix Diagonalization

Diagonalization of a Hermitian operator: find a unitary operator U

 to bring the Hermitian 

operator O

 to diagonal form by transforming to its eigenbasis.

O

= 

k

Ok〉Ok 〈Ok ,

U

= 

k

k〉 〈Ok ,
(188)

such that under O

 U


O

U
 †
,

Λ

= U


O

U
 †

= 

k

k〉Ok 〈k ≏
O1

O2
⋱

(189)

is diagonal in the basis of one-hot vectors k〉.

 Every Hermitian matrix can be written as

O

= U

 †
Λ

U

, (190)

with Λ

 being diagonal and U


 being unitary.

 Or equivalently, the unitary transformation U

 brings the Hermitian matrix to its diagonal 

form,

U

O

U
 †

= Λ

. (191)

Example: diagonalization of Pauli matrix

The Pauli matrix σ x can be diagonalized by the following unitary transformation (whose row 
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vectors are bra eigenvectors of σ x)

U

H =

〈+

〈-
≏

1

2

1 1
1 -1

. (192)

 This unitary operation U

H is also known as the Hadamard gate in quantum information, an 

example of single-qubit gate.

 Under the unitary transformation, σ x is brought to its diagonal form, which is σ z

U

H σ
 x U


H
†
≏

1

2

1 1
1 -1

0 1
1 0

1

2

1 1
1 -1

=
1 0
0 -1

≏ σ
 z.

(193)

◼ Hermitian Generators

If Hermitian operators are generalization of real numbers, then unitary operators are 
generalization of phase factors. 

 A complex number z ∈  is a phase factor, iff z = 1. Any phase factor can be written as 
z =  θ, where θ ∈  is a real phase angle.

z* z = z z* = z2 = 1⇔ z =  θ (194)

 Similar ideas apply to unitary operators: every unitary operator can be generated by a 
Hermitian operator Θ


 in the form of

U

=   Θ



. (195)

Given a Hermitian operator Θ


Θ

= 

k

Θk〉 Θk 〈Θk , (196)

by   Θ


 we mean

 either by operator Taylor expansion (recall Eq. (122) on operator exponential)

  Θ


= +  Θ

+
 Θ



2

2!
+
 Θ



3

3!
+…. (197)

 or by spectral decomposition (HW 2)

  Θ


= 

k

Θk〉 
 Θk 〈Θk  (198)

Don’t do element-wise exponentiation on the matrix!

Use Eq. (198) to show that U

=   Θ



 is unitary as long as Θ

 is Hermitian.

Exc
21
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Example: unitary generated by Pauli matrix. Recall U

(θ) = e θ σ

 y
 in (Exc 10).

U

(θ) =  θ σ

 y
≏

cos θ sin θ
-sin θ cos θ

. (199)

It implements a basis rotation with θ being the rotation angle:

U

(θ) 0〉 ≏ cos θ sin θ

-sin θ cos θ
1
0

=
cos θ
-sin θ

. (200)

Special case: when θ = 0, U

(0) =   no rotation is performed.

More generally, let U

(θ) be the unitary operator that implements certain basis rotation by

a real angle θ. When θ = Δθ is small, we can Taylor expand

U

(Δθ) = U


(0) +U

 ′
(0) Δθ +… = +U

 ′
(0) Δθ +…, (201)

where U
 ′
(0) is ∂θU


(θ) evaluated at θ = 0.

 U
 ′
(0) is also an operator (matrix), usually denoted as U

 ′
(0) = G


. We call G


 the generator of 

the rotation/unitary operator, because it generates an infinitesimal rotation

U

(Δθ) = +  ΔθG


+ .... (202)

 U

(Δθ) is unitary  G


 is Hermitian.

U (Δθ)† U (Δθ)

= -  ΔθG
 †

+ ... +  ΔθG

+ ...

= +  ΔθG

-G

 †
+… = .

(203)

 Large rotations can be accumulated from small rotations.

U

(N Δθ) = U


(Δθ)

N
= +  ΔθG



N
. (204)

As Δθ is small (but N  can be large, s.t. θ = N Δθ is finite),

lnU

(N Δθ) = N ln+  ΔθG


 = N ΔθG


, (205)

So U

(N Δθ) = N ΔθG



, we obtain the exponential form

U

(θ) =  θG



. (206)

Conclusion: every Hermitian operator Θ

= θG


 generates a unitary operator  Θ



 by the exponen-
tial map.
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◼ Time Evolution

◼ Time-Evolution is Unitary

Unitarity: information is never lost!
Basic assumption: quantum information is preserved under quantum dynamics, i.e. two identical 
and isolated systems

 start out in different states  remains in different states (towards both future and past).

 start out in the same state  follow identical evolution (towards both future and past).

Although measurement seems to be non-deterministic, evolution of quantum state is 
deterministic: suppose you know the state at one time, then the quantum equation of motion 
tell you what it will be later.

ψ(t)〉 = U

(t) ψ(0)〉, (207)

ψ(0)〉 is the initial state, and ψ(t)〉 is the state at time t. U

(t) is the time-evolution operator 

that takes ψ(0)〉 to ψ(t)〉. ☟We will show that U

(t) should be unitary.

 Distinct states remain distinct:

〈ϕ(0) ψ(0)〉 = 0  〈ϕ(t) ψ(t)〉 = 〈ϕ(0)U

(t)† U


(t) ψ(0)〉 = 0. (208)

 Identical states remain the identical:

〈ψ(0) ψ(0)〉 = 1  〈ψ(t) ψ(t)〉 = 〈ψ(0)U

(t)† U


(t) ψ(0)〉 = 1. (209)

Or, the fact that the normalization condition must be preserved.
Treat ψ(0)〉 and ϕ(0)〉 as members of any orthonormal basis, then Eq. (208) and Eq. (209) implies

〈iU

(t)† U


(t) j〉 = δi j  U


(t)† U


(t) = . (210)

Therefore, the time-evolution operator U

(t) is unitary.

◼ Hamiltonian

Hamiltonian generates time-evolution!

As a unitary operator, the time-evolution operator is also generated by a Hermitian operator, 
called the Hamiltonian,

H

= U

 ′
(0) =  ∂t U


(t) t=0 . (211)

For small Δt, infinitesimal evolution is given by

U

(Δt) = - H


Δt + ..., (212)

therefore the state evolves as

ψ(Δt)〉 = U

(Δt) ψ(0)〉 = ψ(0)〉-  Δ t H


ψ(0)〉, (213)
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meaning that

 ∂t ψ(0)〉 = 
ψ(Δt)〉- ψ(0)〉

Δt
= H


ψ(0)〉. (214)

There is nothing special about t = 0. Eq. (214) should hold at any time.

 ∂t ψ(t)〉 = H

ψ(t)〉. (215)

This is the Schrödinger equation, the equation of motion for the quantum state.

 The Hamiltonian H

(t) = U

 ′
(t) can be time-dependent in general.

 But in many cases, we consider H

 to be time-independent, by assuming the time-transla-

tion symmetry.

What happens to Planck’s constant?

ℏ =
h

2 π
= 1.0545718 (13) × 10-34 J s. (216)

In quantum mechanics, the observable associated with the Hamiltonian is the energy. To
balance the dimensionality across the Schrödinger equation, Planck’s constant is inserted for Eq. 
(215):

 ℏ ∂t ψ(t)〉 = H

ψ(t)〉. (217)

Why is ℏ so small? Well, the answer has more to do with biology than with physics  Why we 
are so big, heavy and slow? A natural choice for quantum mechanics is to set the units such 
that ℏ = 1. It is a common practice in theoretical physics (we will also use this convention 
sometimes).

◼ Schrödinger Equation: State Dynamics

Postulate 4 (Dynamics): The time-evolution of the state of a quantum system is gov-
erned by the Hamiltonian of the system, according to the time-dependent 
Schrödinger equation.

 ℏ ∂t ψ(t)〉 = H

ψ(t)〉. (218)

If the Hamiltonian H

 is time-independent, we can first find its eigenvalues (or eigen ener-

gies) and eigenvectors (or energy eigenstates).

H

Ek〉 = Ek Ek〉. (219)

This is also called the time-independent Schrödinger equation. Without solving a differential 
equation, we just need to diagonalize a Hermitian matrix in this case.

Each energy eigenstate will evolve in time simply by a rotating overall phase,
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Ek(t)〉 = 
-



ℏ
Ek t Ek〉. (220)

 Ek〉 form a complete set of orthonormal basis, called energy eigenbasis. 

Verify that Eq. (220) is a solution of Eq. (218):Exc
22

Any initial state ψ(0)〉 will evolve in time by first representing the initial state in the energy 
eigenbasis, and attaching to each energy eigenstate by its rotating overall phase,

ψ(t)〉 = 

i


-



ℏ
Ei t Ei〉 〈Ei ψ(0)〉

= 
-



ℏ
H

t
ψ(0)〉.

(221)

A time-independent Hamiltonian generates the time-evolution via matrix exponentiation

U

(t) = exp -



ℏ
H

t . (222)

However, for time-dependent Hamiltonian, there no such a clean formula. Evolution must be 
carried out step by step, denoted as a time-ordered exponential

U

(t) =  exp -



ℏ

0

t
H

(t′)  t′ . (223)

◻ Larmor Precession and Rabi Oscillation

How to write down a Hamiltonian?

 derive it from experiment,

 borrow it from some theory we like,

 pick one and see what happens.☜

Hamiltonian must be Hermitian anyway. For a single spin (qubit), the most general Hamilto-
nian takes the form of

H

= h0 + hx σ

 x
+ hy σ

 y
+ hz σ

 z

= h0 + h ·σ
 ,

(224)

where h0, hx, hy, hz ∈  are all real coefficients.

 The time-evolution operator (set ℏ = 1 in the following)

U

(t) = -H


t

= - h0 tcos(h t) -  sin(h t) h

·σ

,

(225)

where h = h · h  and h

= h / h.

Derive Eq. (225) from Eq. (224).Exc
23
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 A state ψ(0)〉 will evolve with time following

ψ(t)〉 = U

(t) ψ(0)〉

= - h0 tcos(h t) -  sin(h t) h

·σ

 ψ(0)〉.

(226)

 If we measure σ on the state ψ(t)〉, the expectation value will be given by

〈σ〉t = 〈ψ(t) σ ψ(t)〉

= cos(2 h t) 〈σ〉0 + sin(2 h t) h

× 〈σ〉0 + (1- cos(2 h t)) h


h

· 〈σ〉0.

(227)

which also evolves with time.

Derive Eq. (227) from Eq. (226).
Hint: Eq. (109) can make life much more easier.

Exc
24

Larmor precession: assume h = (0, 0, hz) along the z-direction, and parameterize the expec-
tation of the spin vector by 〈σ〉 = (sin θ cos φ, sin θ sin φ, cos θ).

〈σ〉t = (sin θ0 cos (φ0 + 2 hz t), sin θ0 sin(φ0 + 2 hz t), cos θ0), (228)

where θ0 and φ0 are the initial azimuthal and polar angles.

 The solution describes the spin 〈σ〉 precessing around the axis of the Zeeman field h.

 The precession frequency ω = 2 h is called the Larmor frequency. It can be used to probe 
the local Zeeman field strength, which has applications in nuclear magnetic resonance (NMR) 
and nitrogen-vacancy (NV) center.

 Energy of a spin in the Zeeman field is 〈H 〉 = -h · 〈σ〉 (up to some constant energy shift h0).

Rabi oscillation: a qubit initially prepared in state 0〉, evolved under the Hamiltonian

H

= Ω σ

 x
+ Δ σ

 z
≏

Δ Ω

Ω -Δ
, (229)

where Ω is the driving field and Δ is called detuning. The probability to find the qubit in state 
1〉 at time t is given by

p(1 0)t =
1- 〈σz〉t

2
=
sin2(ω t / 2)

1+ (Δ /Ω)2
, (230)

with the Rabi frequency ω = 2 Ω2 + Δ2 .
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 Rabi π-Pulse: flipping 0〉 to 1〉 (and vice versa) by a π-pulse (turn on the driving field Ω for 
time t = π /Ω and turn off) at resonance Δ = 0. This implements a NOT gate (or X gate) on a 
single qubit.

◼ Heisenberg Equation: Operator Dynamics

Two pictures of the quantum dynamics:

 Schrödinger picture: state evolves in time, operator remains fixed,

〈O(t)〉 = 〈ψ(t)O

ψ(t)〉. (231)

 Heisenberg picture: operator evolves in time, state remains fixed,

〈O(t)〉 = 〈ψO

(t) ψ〉. (232)

The two pictures are consistent, if

ψ(t)〉 = U

(t) ψ〉 ⇔ O


(t) = U


(t)† O


U

(t), (233)

such that Eq. (231) and Eq. (232) are consistent, as they both implies

〈O(t)〉 = 〈ψU

(t)† O


U

(t) ψ〉. (234)

Note: one should only apply one picture at a time, i.e. either the state or the operator is time-
dependent, but not both.

In the Heisenberg picture, the time-evolution of an operator

O

(t) = U


(t)† O


U

(t), (235)

described by the Heisenberg equation

 ℏ ∂t O

(t) = O


(t), H


. (236)

Derive Eq. (236) from Eq. (235).Exc
25

Correspondingly, its expectation value evolves as

 ℏ ∂t 〈O(t)〉 = O

(t), H


. (237)

If O

, H

 = 0, the Heisenberg equation Eq. (236) implies that ∂t 〈O〉 = 0, i.e. O will be invariant 
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in time. Conversely, the observable O is a conserved quantity (or an integral of motion) if 
O

 commutes with the Hamiltonian H


.

Use the Heisenberg equation to solve Rabi oscillation. Set ℏ = 1 for this problem. The 
Hamiltonian is given by 
H

= Ω σ

 x
+ Δ σ

 z. 
(i) Show that in the Heisenberg picture, the operator σ  evolves by the following 
coupled linear differential equation

∂t

σ
 x

σ
 y

σ
 z

= 2
0 -Δ 0
Δ 0 -Ω

0 Ω 0

σ
 x

σ
 y

σ
 z
.

(ii) Starting with the initial condition 〈σ(0)〉 = (0, 0, 1) (i.e. the qubit was initially in 
the 0〉 state), find the time evolution of 〈σ(t)〉 by solving the differential equation 
derived in (i). [Hint: linear differential equation can be simply solved by matrix expo-
nential.]
(iii) Compute the probability to find the qubit in state 1〉 at time t, which is given by
p(1 0)t =

1
2
(1- 〈σz(t)〉).

HW
6
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