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Background
• Mott insulator and superconductivity on Moire superlattice  
 
 
 
 
 
 
 
 

• Band width ~ interaction strength: correlated system

• Theoretical approaches

• Strong coupling: starting from Mott limit

• Weak coupling: starting from band limit
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Figure 2: Transport of gate tunable Mott state. a,b, Top gate dependent resistance
of ABC TLG/hBN Moire ́ superlattice when Vb = 0 V and 20 V, respectively. c, Color
plot of resistance as a function of Vt and Vb. The color-scale is from 20 : (dark) to 200
k: (bright) in log scale. The highlighted straight lines correspond to CNP, 1/4 filling,
1/2 fillings, FFPs and 3/2 fillings resistance peaks. d, Resistance of CNP (green), 1/4
filling in the hole side (red), and 1/2 filling in the hole side (blue) tuned by electric
displacement D. Insulating behavior at 1/4 and 1/2 fillings, correspond to one and two
charge per lattice site, provides the defining signature of a Mott insulator.
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proximity effects. The carrier density n is tuned by applying a voltage 
to a Pd/Au bottom gate electrode. In Fig. 1b we show the longitudi-
nal resistance Rxx as a function of temperature for two magic-angle 
devices, M1 and M2, with twist angles of 1.16° and 1.05°, respectively. 
At the lowest temperature studied of 70 mK, both devices show zero 
resistance, and therefore a superconducting state. The critical temper-
ature Tc as calculated using a resistance of 50% of the ‘normal’-state 
(non-superconducting) value is approximately 1.7 K and 0.5 K for the 
two devices that we studied in detail. In Fig. 1c, d we show a single- 
particle band structure and density of states (DOS) near the charge 
neutrality point calculated for θ = 1.05°. The superconductivity in both 
devices occurs when the Fermi energy EF is tuned away from charge 
neutrality (EF = 0) to be near half-filling of the lower flat band (EF < 0, 
as indicated in Fig. 1d). The DOS within the energy scale of the flat 
bands is more than three orders of magnitudes higher than that of 
two uncoupled graphene sheets, owing to the reduction of the Fermi 
velocity and the increase in localization that occurs near the magic 
angle. However, the energy at which the DOS peaks does not gener-
ally coincide with the density that is required to half-fill the bands. 
In addition, we did not observe any appreciable superconductivity 
when the Fermi energy was tuned into the flat conduction bands 
(EF > 0). In Fig. 1e we show the current–voltage (I–Vxx, where Vxx 
is the four-probe voltage, as defined in Fig. 1a) curves of device M2 
at different temperatures. We observe typical behaviour for a two- 
dimensional superconductor. The inset shows a tentative fit of the 
same data to a Vxx ∝ I3 power law, as is predicted in a Berezinskii–
Kosterlitz–Thouless transition in two-dimensional superconductors23. 
This analysis yields a Berezinskii–Kosterlitz–Thouless transition tem-
perature of TBKT ≈ 1.0 K at n = −1.44 × 1012 cm−2, where, as before, 

n is the carrier density induced by the gate and measured from the 
charge neutrality point (which is different from the actual carrier  
density involved in transport, as we show below).

In contrast to other known two-dimensional and layered super-
conductors, the superconductivity in magic-angle TBG requires the 
application of only a small gate voltage, corresponding to a minimal 
density of only 1.2 × 1012 cm−2 from charge neutrality, an order of mag-
nitude lower than the value of 1.5 × 1013 cm−2 in LaAlO3/SrTiO3 inter-
faces and of 7 × 1013 cm−2 in electrochemically doped MoS2, among 
others24. Therefore, gate-tunable superconductivity can be realized 
in a high-mobility system without the need for ionic-liquid gating or 
chemical doping. In Fig. 2a we show the two-probe conductance of 
device M1 versus n at zero magnetic field and at a 0.4-T perpendic-
ular magnetic field. Near the charge neutrality point (n = 0), a typical 
V-shaped conductance is observed, which originates from the renor-
malized Dirac cones of the TBG band structure. The insulating states 
centred at approximately ±3.2 × 1012 cm−2 (which corresponds to ns 
for θ = 1.16°) are due to single-particle bandgaps in the band structure 
that correspond to filling ±4 electrons in each superlattice unit cell. In 
between, there are conductance minima at ±2 and ±3 electrons per 
unit cell. These minima are associated with many-body gaps induced by 
the competition between the Coulomb energy and the reduced kinetic 
energy due to confinement of the electronic state in the superlattice 
near the magic angle; these gaps give rise to insulating behaviour near 
the integer fillings18. One possible mechanism for the gaps is similar 
to the gap mechanism in Mott insulators, but with an extra two-fold 
degeneracy (for the case of ±2 electrons) from the valleys in the origi-
nal graphene Brillouin zone17,18,25,26. In the vicinity of −2 electrons 
per unit cell (n ≈ −1.3 × 1012 cm−2 to n ≈ −1.9 × 1012 cm−2) and at a 
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Figure 2 | Gate-tunable superconductivity in magic-angle TBG. 
a, Two-probe conductance G2 = I/Vbias of device M1 (θ = 1.16°) measured 
in zero magnetic field (red) and at a perpendicular field of B⊥ = 0.4 T 
(blue). The curves exhibit the typical V-shaped conductance near charge 
neutrality (n = 0, vertical purple dotted line) and insulating states at the 
superlattice bandgaps n = ±ns, which correspond to filling ±4 electrons 
in each moiré unit cell (blue and red bars). They also exhibit reduced 
conductance at intermediate integer fillings of the superlattice owing to 
Coulomb interactions (other coloured bars). Near a filling of −2 electrons 
per unit cell, there is considerable conductance enhancement at zero field 
that is suppressed in B⊥ = 0.4 T. This enhancement signals the onset of 

superconductivity. Measurements were conducted at 70 mK; Vbias = 10 µV. 
b, Four-probe resistance Rxx, measured at densities corresponding to 
the region bounded by pink dashed lines in a, versus temperature. Two 
superconducting domes are observed next to the half-filling state, which 
is labelled ‘Mott’ and centred around −ns/2 = −1.58 × 1012 cm−2. The 
remaining regions in the diagram are labelled as ‘metal’ owing to the 
metallic temperature dependence. The highest critical temperature 
observed in device M1 is Tc = 0.5 K (at 50% of the normal-state resistance). 
c, As in b, but for device M2, showing two asymmetric and overlapping 
domes. The highest critical temperature in this device is Tc = 1.7 K.
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Background
• Small Mott gap ~ 0.4meV compared to band width ~ 10 meV 
 
 
 
 
 
 

• Different filling-factor 
sequences of Landau fans 
around the Mott insulator

• 2,4,6,8 …

• 4,8,12,16…

12 
 

 
Figure 2. (a) Measured conductance of magic-angle TwBLG device D1 with 𝜃=1.08°. 
Dirac point is located at 𝑛 = 0. The lighter shaded regions are superlattice gaps at carrier 

density 𝑛 = ±𝑛𝑠 = ±2.7×1012 cm-2. The darker shaded regions denote HFIPs at ±𝑛𝑠
2

. 

Inset shows the density locations of half-filling insulating phases (HFIPs) in four 
different devices. The method for obtaining the error bars is explained in the 
supplementary information.26 (b) Minimum conductance values in the two HFIPs in 
device D1, labeled by corresponding colors as defined in (a) and (c-d). The dashed lines 
are fits of the formula exp(−Δ/2𝑘𝑇) to the data, where Δ ≈0.31 meV is the thermal 
activation gap. (c-d) Temperature dependent conductance of D1 from 0.3~1.7 K near the 
(c) p-side and (d) n-side HFIPs.  

14 
 

Figure 4. 𝐵⊥ dependence of the conductance of the HFIPs for D1 on (a) p-side and (b) 
n-side. The white line cuts show the conductance at the labeled fields. (c) Arrhenius plot 
of the conductance of the p-side HFIP at different magnetic fields. The inset shows the 
thermal activation gap extracted from fitting the data of the main plot with 
exp(−Δ/2𝑘𝑇). (d-f) Schematic density of states (DOS) pictures. The single-particle flat-
bands (both E>0 and E<0 bands are shown, with EF in the E>0 band, i.e. n-doping) in (d) 
is split into upper and lower Hubbard bands by interactions (e). This occurs when EF is at 
half-filling of the upper band. Upon applying a Zeeman field, the excitations can be 
further polarized and close the charge gap when the Zeeman energy is comparable to the 
gap (f). Purple shading denotes a spin-degenerate band, while blue and red shading 
denote spin-up and spin-down bands respectively. CNP abbreviates for charge neutrality 
point. The shape of the DOS drawn here is purely illustrative and does not represent the 
actual DOS profile (see supplementary information for a numerical result).26 
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fan, being very close to zero field and next to the correlated insulating 
region. Unlike commonly observed broken-symmetry states that split 
from a single degenerate Landau level into multiple levels, the halved 
filling factors appear to be intrinsic to the fan, holding down to the 
lowest magnetic field at which oscillations are still visible. Fractional 
values for s have been reported in graphene superlattices as a result 
of Hofstadter’s butterfly, which typically occurs in much stronger 
magnetic fields (greater than 10 T) but becomes obvious only at the 
intersection of Landau levels with different integer s (refs 29–31). 
Therefore, the physics of Hofstadter’s butterfly cannot explain the addi-
tional stand-alone fan observed here, which appears at fields as low 
as 1 T. Furthermore, the halving of the filling factors and s is unlikely 
to be explained in a non-interacting picture of unit-cell doubling due 
to strain or to the formation of a charge density wave, in which case 
either spin or valley degeneracy must be broken. We observed the same 
Landau level sequence in two other magic-angle TBG devices, so it 
is robust against small variations in twist angle and consistent across 
samples (Methods, Extended Data Fig. 2).

To study the non-trivial origin of the Landau fan near half-filling fur-
ther, we measured the effective mass from the temperature-dependent  
quantum oscillation amplitude according to the Lifshitz–Kosevich 
formula (Methods). In Fig. 5b, c we show the oscillations and oscil-
lation amplitudes at three different densities (indicated by arrows in 
Fig. 5a). In Fig. 5d, e we show the oscillation frequency fSdH and the 
effective mass extracted by fitting the oscillation amplitudes to the 
Lifshitz–Kosevich formula. The dependence of fSdH on carrier density 
n provides another perspective on the oscillations because the value 
of M = φ0∆n/∆fSdH extracted from the slope ∆n/∆fSdH provides the 
number of degenerate Fermi pockets M directly. The experimental data 
clearly fit to M = 4 near the charge neutrality point and for densities 
beyond the superlattice gap, whereas M = 2 for the quantum oscilla-
tions that start near the correlated insulator state and right above the 

superconducting dome. The effective mass of the anomalous oscilla-
tions is about (0.2–0.4)me, where me is the bare electron mass. This 
mass is much larger than the mass near charge neutrality (about 0.1me) 
and beyond the superlattice gap (about 0.05me) at the same ∆n, where 
∆n is density relative to the value of n at which fSdH = 0 in Fig. 5d.

The quantum oscillations above the superconducting dome clearly 
indicate the existence of small Fermi surfaces that originate from 
the correlated insulating state, which have areas proportional to 
n′ = |n| −  ns/2, rather than of a large Fermi surface with an area that 
corresponds to the density |n| itself. The Hall measurements shown 
in Extended Data Fig. 3 also support this conclusion. Notably, similar  
small Fermi pockets that do not correspond to any pockets in the 
single-particle Fermi surface have been observed in underdoped 
cuprates, although their origin is debated32–34. Among the possibilities,  
the small Fermi surface that we observe could be the Fermi surface 
of quasiparticles that are created by doping a Mott insulator6,35. On 
the other hand, the halved degeneracy might be related to spin–
charge separation, as predicted in a doped Mott insulator35. More  
experimental and theoretical work is needed to clarify the origin of 
the quantum oscillations.

Discussion
The appearance of both superconductor and correlated insulator 
phases in the flat bands of magic-angle TBG at such a small carrier  
density cannot be explained by weak-coupling BCS theory. The 
carrier density that is responsible for Tc = 1.7 K is extremely small 
according to the quantum oscillation measurements, merely 
n′ = 1.5 ×  1011 cm− 2 at optimal doping. To place this in the context 
of other superconductors, in Fig. 6 we plot Tc against TF on a logari-
thmic scale for various materials, where TF is the Fermi temperature. 
TF is proportional to the two-dimensional carrier density n2D, which 
the quantum oscillations data show to be equivalent to n′ for the  
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Figure 5 | Quantum oscillations in magic-angle TBG at high fields. 
a, Resistance Rxx versus density n (hole-doped side with respect to charge 
neutrality) and B⊥  in device M2. The lower half of the diagram shows the 
Landau-level structure deduced from the oscillations. The blue Landau fan, 
which originates from the charge neutrality point (CNP), and the purple 
Landau fan, which originates from the superlattice density (n = –ns, yellow 
shaded region), illustrate the filling-factor sequences − 4, − 8, − 12, … 
expected from the single-particle band structure with four-fold spin and 
valley degeneracies. The additional red fan, which originates from − ns/2 
(red shaded region), instead has a filling-factor sequence of − 2, − 4, − 6, … 

that is not expected from the single-particle band structure. b, Temperature-
dependent quantum oscillation traces ∆Rxx/Rxx(B = 1 T) at the carrier 
densities labelled A, B and C in a. From black to orange, the temperatures 
are 0.7 K, 1.2 K, 2.0 K, 3.0 K, 4.2 K, 6 K, 10 K, 15 K, 20 K and 30 K. c, Lifshitz–
Kosevich fit (solid lines) of the normalized amplitudes of the oscillations 
shown in b (data points). d, e, Shubnikov–de Haas oscillation frequencies 
fSdH and effective masses m*/me as a function of carrier density n. The 
error bars correspond to the 90% confidence level in fitting to the Lifshitz–
Kosevich formula (see Methods for definition). M = φ0∆n/∆fSdH is the 
Fermi surface degeneracy.
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Band Structure
• We start with the weak coupling approach

• Twisted bilayer graphene  
 
 
 
 
 
 
 
 
 
 

• Each super cell: 2 orbital (AB/BA) × 2 valley × 2 spin
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θ

ΓM

KM

KM′
MM q

Moire superlattice Moire Brillouin zone  
(MBZ)

q = 2 sin(θ /2)K
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Band Structure
• Without interlayer coupling, Dirac cones from top and bottom 

layers locate at conners of the MBZ 
 
 
 
 

• With interlayer coupling, Dirac cones hybridize, leading to 
nearly flat bands
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Band Structure
• Very close to the magic-angle, band structure is highly 

sensitive to parameters / lattice relaxation, hard to make 
universal statements.

• Stay away from magic (nominally θ ~ 2°) 
 
 
 
 
 
 
 

• Mott phases (and superconducting phases) found around 
±1/2 filling.
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Band Structure
• The triangular shape of Fermi surface is generic on 

symmetry ground (valley-preserving symmetries: C6T, My) 
 
 
 
 

• Low-energy effective band theory: pocket model  
 
 
 

• At each momentum: 2 valley × 2 spin (orbital frozen if we 
choose to focus on the lower branch) 
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the orbital space). By diagonalization ⇢ =
P

i
| iipih i|,

we can identify the leading natural orbitals | ii (orbitals
with largest weights pi). The number n of the leading
orbitals to be involved in the e↵ective theory can be set
by the desired fidelity level. To retain above 95% fidelity,
s.t.

P
n

i=1 pi > 0.95, we typically need to take up to six
orbitals (i.e. n = 6). Projecting the continuum model
Eq. (1) to the six orbitals leads to the e↵ective Hamilto-
nian HK =

P
k c

†
khKkck with

hKk =

2

4
✏1�

1

�
k 

�
k


+
k �k 0

+
k 0 ��k

3

5 (2)

where ±k = v1(kx�0
± iky�3) and �k = ✏2 + v2k · � are

set by four real parameters ✏1,2 and v1,2. The band struc-
ture of the six-orbital model is shown in Fig. 3(b). We
can see that the features around �M is well captured com-
pared to the continuum model in Fig. 3(a), but the Dirac
dispersions around KM and K

0
M

can not be described
by the six-orbital model (as expected). The six-orbital
model provides a simpler and more flexible description of
the near-�M band structure compared to the continuum
model. Its parameters can be determined by fitting to
the first-principle calculations or experimental observa-
tions towards a more realistic modeling.

One can further simplify the six-orbital model by in-
tegrating out the high-energy electrons in the top and
bottom bands, reducing the 6 ⇥ 6 Hamiltonian hKk in
Eq. (2) to its first 2 ⇥ 2 block: h

0
Kk = (✏1 � bk2)�1 +

aRe k3+�
0 +O[k4], which describes both branches of the

middle band, where k± ⌘ kx±iky and the coe�cients are
given by b = 2✏1v21/(✏

2
2�✏

2
1) and a = 4✏1✏2v21v2/(✏

2
2�✏

2
1)

2.
If we only focus on the lower branch, the e↵ective band
theory boils down to a single-orbital model

H0 =
X

k

c
†
Kk✏kcKk + c

†
K0k✏�kcK0k,

✏k = k2
� µ+ ↵Re k3+,

(3)

where we have chosen to rescaled the energy such that
the single-orbital depends on only one tuning parame-
ter ↵ = a/b = 2✏2v2/(✏22 � ✏

2
1) that characterizes the

strength of the triangular Fermi surface anisotropy. The
band structure of ✏k is plotted in Fig. 3(c). In Eq. (3),
the K 0 valley Hamiltonian is also included, which can be
inferred from that of the K valley by the time-reversal
symmetry T : cKk ! KcK0,�k. The Fermi surfaces in
both valleys are drawn in Fig. 2(b) with µ = 1,↵ = 1/3
for example. One can see that the model essentially cap-
tures the triangular shape of the Fermi surface. There are
three nesting vectors between K and K

0 pockets, which
are set by the chemical potential µ: Q1 = (

p
3µ, 0) and

Q2 = R2⇡/3Q1, Q3 = R�2⇡/3Q1 are related to Q1 by
C3 rotations. Note that the electronic spin degrees of
freedom can be included in Eq. (3) implicitly.

In this single-orbital model, the notions of filling frac-
tion and nesting commensurability are lost, but by go-

ing back to the original continuum model, we can iden-
tify the commensurate wavevector that has a high de-
gree of nesting, which is found to be the MM points,
i.e. Q1 ' q2 � q1/2. A commensurate perfect nesting
will be achieved at the filling �5/8, which is hole-doped
by 25% from the half-filling. We will show later in Sec. VI
that including a commensurate inter valley ordering with
a period corresponding to the MM point of the MBZ, we
can induce a full gap for relatively small order parame-
ters, and obtain an insulating state when we are at the
filling �(1/2 + 1/8) in the microscopic model given by
the continuum theory Eq. (1).

III. INTERACTIONS AND SO(4) SYMMETRY

We now introduce interactions into the single-
orbital model in Eq. (3). As the electron c =
(cK", cK#, cK0", cK0#) in the MBZ carries both the spin
(� =", #) and the valley (v = K,K

0) degrees of free-
dom, one may expect an emergent U(4) symmetry at
low energy that rotates all four components of the elec-
tron, as pointed out in Ref. 16, 19, 20, and 29. However,
the electron kinetic energy (the band structure) strongly
breaks this U(4) symmetry. For example, the triangu-
lar Fermi surface anisotropy ↵ in the band Hamiltonian
Eq. (3) explicitly breaks the symmetry as the Fermi sur-
face deformations are opposite between the two valleys
as shown in Fig. 2. The U(4) symmetry is broken down
to U(1)c ⇥ U(1)v ⇥ SO(4), where U(1)c is the charge
U(1) symmetry generated by nc = c

†
�
00
c, U(1)v de-

notes the emergent valley U(1) symmetry generated by
nv = c

†
�
30
c and SO(4) ⇠ SU(2)K ⇥ SU(2)K0 stands for

the two independent SU(2) spin rotation symmetries in
both valleys generated by Sv = c

†
v
�cv (for v = K,K

0

separately). The original SU(4) generators that are bro-
ken by the Fermi surface anisotropy ↵ form a (complex)
SO(4) vector, which corresponds to the inter-valley co-
herence (IVC) order I

µ = c
†
K
�
µ
cK0 (µ = 0, 1, 2, 3) as

proposed in Ref. 19. The pairing channels can also be
classified by the SO(4) symmetry. There are only two
possibilities: the inter-valley pairing �µ = c

|
K
i�2

�
µ
cK0

that transforms as SO(4) (pseudo)vector, and the intra-
valley pairing �v = c

|
v
i�2

cv (v = K,K
0) that transforms

as SO(4) (pseudo)scalar. These operators are summa-
rized in Tab. I, which exhaust all fermion bilinear opera-
tors that can be written down on a local Wannier orbital.

Therefore any U(1)c ⇥U(1)v ⇥ SO(4) symmetric local
interaction should be mediated by one of these fermion
bilinear channels. Further taken into account the time-
reversal symmetry T (that interchanges valleys), it turns
out that there are only two linearly independent and sym-
metric interactions (see AppendixA for details), which
can be written purely in terms of density-density inter-

4

the orbital space). By diagonalization ⇢ =
P

i
| iipih i|,

we can identify the leading natural orbitals | ii (orbitals
with largest weights pi). The number n of the leading
orbitals to be involved in the e↵ective theory can be set
by the desired fidelity level. To retain above 95% fidelity,
s.t.

P
n

i=1 pi > 0.95, we typically need to take up to six
orbitals (i.e. n = 6). Projecting the continuum model
Eq. (1) to the six orbitals leads to the e↵ective Hamilto-
nian HK =

P
k c

†
khKkck with

hKk =

2

4
✏1�

1

�
k 

�
k


+
k �k 0

+
k 0 ��k

3

5 (2)
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set by four real parameters ✏1,2 and v1,2. The band struc-
ture of the six-orbital model is shown in Fig. 3(b). We
can see that the features around �M is well captured com-
pared to the continuum model in Fig. 3(a), but the Dirac
dispersions around KM and K
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can not be described
by the six-orbital model (as expected). The six-orbital
model provides a simpler and more flexible description of
the near-�M band structure compared to the continuum
model. Its parameters can be determined by fitting to
the first-principle calculations or experimental observa-
tions towards a more realistic modeling.

One can further simplify the six-orbital model by in-
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where we have chosen to rescaled the energy such that
the single-orbital depends on only one tuning parame-
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1) that characterizes the

strength of the triangular Fermi surface anisotropy. The
band structure of ✏k is plotted in Fig. 3(c). In Eq. (3),
the K 0 valley Hamiltonian is also included, which can be
inferred from that of the K valley by the time-reversal
symmetry T : cKk ! KcK0,�k. The Fermi surfaces in
both valleys are drawn in Fig. 2(b) with µ = 1,↵ = 1/3
for example. One can see that the model essentially cap-
tures the triangular shape of the Fermi surface. There are
three nesting vectors between K and K

0 pockets, which
are set by the chemical potential µ: Q1 = (

p
3µ, 0) and

Q2 = R2⇡/3Q1, Q3 = R�2⇡/3Q1 are related to Q1 by
C3 rotations. Note that the electronic spin degrees of
freedom can be included in Eq. (3) implicitly.

In this single-orbital model, the notions of filling frac-
tion and nesting commensurability are lost, but by go-

ing back to the original continuum model, we can iden-
tify the commensurate wavevector that has a high de-
gree of nesting, which is found to be the MM points,
i.e. Q1 ' q2 � q1/2. A commensurate perfect nesting
will be achieved at the filling �5/8, which is hole-doped
by 25% from the half-filling. We will show later in Sec. VI
that including a commensurate inter valley ordering with
a period corresponding to the MM point of the MBZ, we
can induce a full gap for relatively small order parame-
ters, and obtain an insulating state when we are at the
filling �(1/2 + 1/8) in the microscopic model given by
the continuum theory Eq. (1).

III. INTERACTIONS AND SO(4) SYMMETRY

We now introduce interactions into the single-
orbital model in Eq. (3). As the electron c =
(cK", cK#, cK0", cK0#) in the MBZ carries both the spin
(� =", #) and the valley (v = K,K

0) degrees of free-
dom, one may expect an emergent U(4) symmetry at
low energy that rotates all four components of the elec-
tron, as pointed out in Ref. 16, 19, 20, and 29. However,
the electron kinetic energy (the band structure) strongly
breaks this U(4) symmetry. For example, the triangu-
lar Fermi surface anisotropy ↵ in the band Hamiltonian
Eq. (3) explicitly breaks the symmetry as the Fermi sur-
face deformations are opposite between the two valleys
as shown in Fig. 2. The U(4) symmetry is broken down
to U(1)c ⇥ U(1)v ⇥ SO(4), where U(1)c is the charge
U(1) symmetry generated by nc = c
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separately). The original SU(4) generators that are bro-
ken by the Fermi surface anisotropy ↵ form a (complex)
SO(4) vector, which corresponds to the inter-valley co-
herence (IVC) order I
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Therefore any U(1)c ⇥U(1)v ⇥ SO(4) symmetric local
interaction should be mediated by one of these fermion
bilinear channels. Further taken into account the time-
reversal symmetry T (that interchanges valleys), it turns
out that there are only two linearly independent and sym-
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can be written purely in terms of density-density inter-
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SO(4) Symmetry and Interaction
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model provides a simpler and more flexible description of
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strength of the triangular Fermi surface anisotropy. The
band structure of ✏k is plotted in Fig. 3(c). In Eq. (3),
the K 0 valley Hamiltonian is also included, which can be
inferred from that of the K valley by the time-reversal
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both valleys are drawn in Fig. 2(b) with µ = 1,↵ = 1/3
for example. One can see that the model essentially cap-
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are set by the chemical potential µ: Q1 = (
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Q2 = R2⇡/3Q1, Q3 = R�2⇡/3Q1 are related to Q1 by
C3 rotations. Note that the electronic spin degrees of
freedom can be included in Eq. (3) implicitly.

In this single-orbital model, the notions of filling frac-
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ing back to the original continuum model, we can iden-
tify the commensurate wavevector that has a high de-
gree of nesting, which is found to be the MM points,
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will be achieved at the filling �5/8, which is hole-doped
by 25% from the half-filling. We will show later in Sec. VI
that including a commensurate inter valley ordering with
a period corresponding to the MM point of the MBZ, we
can induce a full gap for relatively small order parame-
ters, and obtain an insulating state when we are at the
filling �(1/2 + 1/8) in the microscopic model given by
the continuum theory Eq. (1).
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We now introduce interactions into the single-
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(cK", cK#, cK0", cK0#) in the MBZ carries both the spin
(� =", #) and the valley (v = K,K
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dom, one may expect an emergent U(4) symmetry at
low energy that rotates all four components of the elec-
tron, as pointed out in Ref. 16, 19, 20, and 29. However,
the electron kinetic energy (the band structure) strongly
breaks this U(4) symmetry. For example, the triangu-
lar Fermi surface anisotropy ↵ in the band Hamiltonian
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ken by the Fermi surface anisotropy ↵ form a (complex)
SO(4) vector, which corresponds to the inter-valley co-
herence (IVC) order I
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proposed in Ref. 19. The pairing channels can also be
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as SO(4) (pseudo)scalar. These operators are summa-
rized in Tab. I, which exhaust all fermion bilinear opera-
tors that can be written down on a local Wannier orbital.

Therefore any U(1)c ⇥U(1)v ⇥ SO(4) symmetric local
interaction should be mediated by one of these fermion
bilinear channels. Further taken into account the time-
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out that there are only two linearly independent and sym-
metric interactions (see AppendixA for details), which
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metric interactions (see AppendixA for details), which
can be written purely in terms of density-density inter-
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the orbital space). By diagonalization ⇢ =
P

i
| iipih i|,

we can identify the leading natural orbitals | ii (orbitals
with largest weights pi). The number n of the leading
orbitals to be involved in the e↵ective theory can be set
by the desired fidelity level. To retain above 95% fidelity,
s.t.

P
n

i=1 pi > 0.95, we typically need to take up to six
orbitals (i.e. n = 6). Projecting the continuum model
Eq. (1) to the six orbitals leads to the e↵ective Hamilto-
nian HK =

P
k c

†
khKkck with

hKk =

2

4
✏1�

1

�
k 

�
k


+
k �k 0

+
k 0 ��k

3

5 (2)

where ±k = v1(kx�0
± iky�3) and �k = ✏2 + v2k · � are

set by four real parameters ✏1,2 and v1,2. The band struc-
ture of the six-orbital model is shown in Fig. 3(b). We
can see that the features around �M is well captured com-
pared to the continuum model in Fig. 3(a), but the Dirac
dispersions around KM and K

0
M

can not be described
by the six-orbital model (as expected). The six-orbital
model provides a simpler and more flexible description of
the near-�M band structure compared to the continuum
model. Its parameters can be determined by fitting to
the first-principle calculations or experimental observa-
tions towards a more realistic modeling.

One can further simplify the six-orbital model by in-
tegrating out the high-energy electrons in the top and
bottom bands, reducing the 6 ⇥ 6 Hamiltonian hKk in
Eq. (2) to its first 2 ⇥ 2 block: h
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the single-orbital depends on only one tuning parame-
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2
1) that characterizes the

strength of the triangular Fermi surface anisotropy. The
band structure of ✏k is plotted in Fig. 3(c). In Eq. (3),
the K 0 valley Hamiltonian is also included, which can be
inferred from that of the K valley by the time-reversal
symmetry T : cKk ! KcK0,�k. The Fermi surfaces in
both valleys are drawn in Fig. 2(b) with µ = 1,↵ = 1/3
for example. One can see that the model essentially cap-
tures the triangular shape of the Fermi surface. There are
three nesting vectors between K and K

0 pockets, which
are set by the chemical potential µ: Q1 = (

p
3µ, 0) and

Q2 = R2⇡/3Q1, Q3 = R�2⇡/3Q1 are related to Q1 by
C3 rotations. Note that the electronic spin degrees of
freedom can be included in Eq. (3) implicitly.
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tion and nesting commensurability are lost, but by go-

ing back to the original continuum model, we can iden-
tify the commensurate wavevector that has a high de-
gree of nesting, which is found to be the MM points,
i.e. Q1 ' q2 � q1/2. A commensurate perfect nesting
will be achieved at the filling �5/8, which is hole-doped
by 25% from the half-filling. We will show later in Sec. VI
that including a commensurate inter valley ordering with
a period corresponding to the MM point of the MBZ, we
can induce a full gap for relatively small order parame-
ters, and obtain an insulating state when we are at the
filling �(1/2 + 1/8) in the microscopic model given by
the continuum theory Eq. (1).

III. INTERACTIONS AND SO(4) SYMMETRY

We now introduce interactions into the single-
orbital model in Eq. (3). As the electron c =
(cK", cK#, cK0", cK0#) in the MBZ carries both the spin
(� =", #) and the valley (v = K,K

0) degrees of free-
dom, one may expect an emergent U(4) symmetry at
low energy that rotates all four components of the elec-
tron, as pointed out in Ref. 16, 19, 20, and 29. However,
the electron kinetic energy (the band structure) strongly
breaks this U(4) symmetry. For example, the triangu-
lar Fermi surface anisotropy ↵ in the band Hamiltonian
Eq. (3) explicitly breaks the symmetry as the Fermi sur-
face deformations are opposite between the two valleys
as shown in Fig. 2. The U(4) symmetry is broken down
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ken by the Fermi surface anisotropy ↵ form a (complex)
SO(4) vector, which corresponds to the inter-valley co-
herence (IVC) order I

µ = c
†
K
�
µ
cK0 (µ = 0, 1, 2, 3) as

proposed in Ref. 19. The pairing channels can also be
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as SO(4) (pseudo)scalar. These operators are summa-
rized in Tab. I, which exhaust all fermion bilinear opera-
tors that can be written down on a local Wannier orbital.

Therefore any U(1)c ⇥U(1)v ⇥ SO(4) symmetric local
interaction should be mediated by one of these fermion
bilinear channels. Further taken into account the time-
reversal symmetry T (that interchanges valleys), it turns
out that there are only two linearly independent and sym-
metric interactions (see AppendixA for details), which
can be written purely in terms of density-density inter-
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TABLE I. Symmetry classification of fermion bilinear opera-
tors (labeled in the bottom row). Electrical charge is labeled
by qc, thus qc = 0 corresponds to charge neutral (particle-
hole) operators, while qc = 2 corresponds to Cooper pair
(particle-particle) operators. The valley quantum number of
the U(1)v symmetry is labeled by qv, hence inter-valley co-
herence order is obtained on condensing qv = 2 operators.
Non-Abelian symmetry representations are labeled by the di-
mension (with a prime to denote the pseudo- representation).
For a more detailed version, see Tab. IV in AppendixA.

U(4)

U(1)c qc = 0 qc = 2

SU(4) 1 15 6� 60

' U(1)v qv = 0 qv = 2 qv = 0 qv = 2

SO(6) SO(4) 1 10 6 4� 40 4� 40 2(1� 10)

nc nv Sv Iµ �µ �v

actions as

Hint =
X

q

U0nK�qnK0q +
U1

2
(nK�qnKq + nK0�qnK0q),

(4)
where nvq ⌘

P
k,� c

†
v�k+qcv�k is the density operator of

each valley. Since the density-density interaction is gen-
erally repulsive, we expect both parameters U0 and U1

to be positive (typically U0 ⇡ U1 > 0). At the spe-
cial point of U0 = U1 = U , the U(4) symmetry is re-
stored for the interaction Hint. However, even if Hint

is tuned to the U(4) symmetric point, when combined
with the kinetic energy H0 in Eq. (3), the symmetry of
the full Hamiltonian H = H0 + Hint is still reduced to
U(1)c ⇥ U(1)v ⇥ SO(4). Later in Sec. VIII, we will fur-
ther discuss the e↵ect of adding small interaction terms
to finally break the emergent SO(4) symmetry down to
the microscopic SO(3) spin rotation symmetry.

In summary, by putting together Eq. (3) and Eq. (4),
we propose an e↵ective model H = H0 + Hint for the
tBLG with Fermi level resting in the lower branch of the
nearly-flat band but not too close to the charge neutrality
(such that the Fermi surface is still within the control
of �M point expansion). More specifically, we assume
that the Fermi level does not go beyond the van Hove
singularity that separates Fermi pockets around the KM

points near charge neutrality from those centered around
�M , see also Fig. 2(a). Our remaining goal is to analyze
the model within a weak coupling approach.

IV. RANDOM PHASE APPROXIMATION

We calculate the renormalized interactions within
the random phase approximation (RPA)[34–36] to an-
alyze the electron instabilities in all six fermion bi-
linear channels as enumerated in Tab. I. We will first
restrict our analysis within the s-wave channels for
simplicity. For each fermion bilinear operator Aq =

1
2

P
k �

|
�k+qA�k generally expressed in the Majorana ba-

sis �k, we evaluate its bare static (zero frequency) sus-
ceptibility �0(q) = hA

†
qAqi0 on the ground state of the

single-orbital model H0. Then we rewrite the interaction
Hint = g0

P
q A

†
qAq + · · · in the same channel to extract

the bare coupling g0. The RPA corrected coupling is then
given by gRPA(q) = g0(1 + g0�0(q))�1.

FIG. 4. (a) RPA e↵ective coupling gRPA in di↵erent interac-
tion channels v.s. the bare interaction strength U0 = U1 = U .
The inter-valley coherence (IVC) channel Iµ has the strongest
instability. (b) The bare susceptibility �0(q) = hIµ†q Iµq i0 of
the IVC order at zero frequency (! = 0). (c) The RPA cor-
rected coupling gRPA(q) in the IVC channel. The coupling is
strongly peaked around the nesting momentums.

The largest (in magnitude) value of gRPA(q) is taken
and plotted in Fig. 4(a) as a function of U0 = U1 = U for
various channels. The most attractive coupling appears
in the IVC channel, which is associated with the oper-
ator I

µ

q =
P

k c
†
Kk+q�

µ
cK0k. Fig. 4(b) shows the bare

susceptibility of the IVC fluctuation and Fig. 4(c) is its
RPA corrected coupling, which peaks strongly around
three momentums that exactly correspond to the nesting
momentums Q1,2,3. So as the bare interaction is strong
enough, Iµ will condense at these momentums, leading
to a finite-momentum IVC order, which we called the
inter-valley coherence wave (IVCW). Suppose the nest-
ing vector is pinned by the Moiré pattern to MM .

Upon doping, the nesting condition will quickly dete-
riorate and the IVCW order will cease to develop. Nev-
ertheless the low-energy valley fluctuations can play the
role of the pairing glue, mediating an e↵ective pairing
interaction between electrons. A hint that can already
be observed from Fig. 4 in which the attractive coupling
diverges in the Iµ channel, while at the same time a repul-
sive coupling in the s-wave inter-valley pairing �µ chan-
nel also diverges. This implies that if the pairing form
factor is allowed to change sign along the Fermi surface
(which goes beyond s-wave), the repulsive coupling in
this pairing channel can be e↵ectively converted to an
attractive one, leading to a strong pairing instability.
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The inter-valley coherence (IVC) channel Iµ has the strongest
instability. (b) The bare susceptibility �0(q) = hIµ†q Iµq i0 of
the IVC order at zero frequency (! = 0). (c) The RPA cor-
rected coupling gRPA(q) in the IVC channel. The coupling is
strongly peaked around the nesting momentums.

The largest (in magnitude) value of gRPA(q) is taken
and plotted in Fig. 4(a) as a function of U0 = U1 = U for
various channels. The most attractive coupling appears
in the IVC channel, which is associated with the oper-
ator I

µ

q =
P

k c
†
Kk+q�

µ
cK0k. Fig. 4(b) shows the bare

susceptibility of the IVC fluctuation and Fig. 4(c) is its
RPA corrected coupling, which peaks strongly around
three momentums that exactly correspond to the nesting
momentums Q1,2,3. So as the bare interaction is strong
enough, Iµ will condense at these momentums, leading
to a finite-momentum IVC order, which we called the
inter-valley coherence wave (IVCW). Suppose the nest-
ing vector is pinned by the Moiré pattern to MM .

Upon doping, the nesting condition will quickly dete-
riorate and the IVCW order will cease to develop. Nev-
ertheless the low-energy valley fluctuations can play the
role of the pairing glue, mediating an e↵ective pairing
interaction between electrons. A hint that can already
be observed from Fig. 4 in which the attractive coupling
diverges in the Iµ channel, while at the same time a repul-
sive coupling in the s-wave inter-valley pairing �µ chan-
nel also diverges. This implies that if the pairing form
factor is allowed to change sign along the Fermi surface
(which goes beyond s-wave), the repulsive coupling in
this pairing channel can be e↵ectively converted to an
attractive one, leading to a strong pairing instability.
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each valley. Since the density-density interaction is gen-
erally repulsive, we expect both parameters U0 and U1

to be positive (typically U0 ⇡ U1 > 0). At the spe-
cial point of U0 = U1 = U , the U(4) symmetry is re-
stored for the interaction Hint. However, even if Hint

is tuned to the U(4) symmetric point, when combined
with the kinetic energy H0 in Eq. (3), the symmetry of
the full Hamiltonian H = H0 + Hint is still reduced to
U(1)c ⇥ U(1)v ⇥ SO(4). Later in Sec. VIII, we will fur-
ther discuss the e↵ect of adding small interaction terms
to finally break the emergent SO(4) symmetry down to
the microscopic SO(3) spin rotation symmetry.

In summary, by putting together Eq. (3) and Eq. (4),
we propose an e↵ective model H = H0 + Hint for the
tBLG with Fermi level resting in the lower branch of the
nearly-flat band but not too close to the charge neutrality
(such that the Fermi surface is still within the control
of �M point expansion). More specifically, we assume
that the Fermi level does not go beyond the van Hove
singularity that separates Fermi pockets around the KM

points near charge neutrality from those centered around
�M , see also Fig. 2(a). Our remaining goal is to analyze
the model within a weak coupling approach.

IV. RANDOM PHASE APPROXIMATION

We calculate the renormalized interactions within
the random phase approximation (RPA)[34–36] to an-
alyze the electron instabilities in all six fermion bi-
linear channels as enumerated in Tab. I. We will first
restrict our analysis within the s-wave channels for
simplicity. For each fermion bilinear operator Aq =
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�k+qA�k generally expressed in the Majorana ba-

sis �k, we evaluate its bare static (zero frequency) sus-
ceptibility �0(q) = hA

†
qAqi0 on the ground state of the

single-orbital model H0. Then we rewrite the interaction
Hint = g0
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qAq + · · · in the same channel to extract

the bare coupling g0. The RPA corrected coupling is then
given by gRPA(q) = g0(1 + g0�0(q))�1.
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tion channels v.s. the bare interaction strength U0 = U1 = U .
The inter-valley coherence (IVC) channel Iµ has the strongest
instability. (b) The bare susceptibility �0(q) = hIµ†q Iµq i0 of
the IVC order at zero frequency (! = 0). (c) The RPA cor-
rected coupling gRPA(q) in the IVC channel. The coupling is
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The largest (in magnitude) value of gRPA(q) is taken
and plotted in Fig. 4(a) as a function of U0 = U1 = U for
various channels. The most attractive coupling appears
in the IVC channel, which is associated with the oper-
ator I
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cK0k. Fig. 4(b) shows the bare

susceptibility of the IVC fluctuation and Fig. 4(c) is its
RPA corrected coupling, which peaks strongly around
three momentums that exactly correspond to the nesting
momentums Q1,2,3. So as the bare interaction is strong
enough, Iµ will condense at these momentums, leading
to a finite-momentum IVC order, which we called the
inter-valley coherence wave (IVCW). Suppose the nest-
ing vector is pinned by the Moiré pattern to MM .

Upon doping, the nesting condition will quickly dete-
riorate and the IVCW order will cease to develop. Nev-
ertheless the low-energy valley fluctuations can play the
role of the pairing glue, mediating an e↵ective pairing
interaction between electrons. A hint that can already
be observed from Fig. 4 in which the attractive coupling
diverges in the Iµ channel, while at the same time a repul-
sive coupling in the s-wave inter-valley pairing �µ chan-
nel also diverges. This implies that if the pairing form
factor is allowed to change sign along the Fermi surface
(which goes beyond s-wave), the repulsive coupling in
this pairing channel can be e↵ectively converted to an
attractive one, leading to a strong pairing instability.
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the orbital space). By diagonalization ⇢ =
P

i
| iipih i|,

we can identify the leading natural orbitals | ii (orbitals
with largest weights pi). The number n of the leading
orbitals to be involved in the e↵ective theory can be set
by the desired fidelity level. To retain above 95% fidelity,
s.t.

P
n

i=1 pi > 0.95, we typically need to take up to six
orbitals (i.e. n = 6). Projecting the continuum model
Eq. (1) to the six orbitals leads to the e↵ective Hamilto-
nian HK =

P
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†
khKkck with

hKk =

2
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✏1�

1

�
k 

�
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
+
k �k 0

+
k 0 ��k
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where ±k = v1(kx�0
± iky�3) and �k = ✏2 + v2k · � are

set by four real parameters ✏1,2 and v1,2. The band struc-
ture of the six-orbital model is shown in Fig. 3(b). We
can see that the features around �M is well captured com-
pared to the continuum model in Fig. 3(a), but the Dirac
dispersions around KM and K

0
M

can not be described
by the six-orbital model (as expected). The six-orbital
model provides a simpler and more flexible description of
the near-�M band structure compared to the continuum
model. Its parameters can be determined by fitting to
the first-principle calculations or experimental observa-
tions towards a more realistic modeling.

One can further simplify the six-orbital model by in-
tegrating out the high-energy electrons in the top and
bottom bands, reducing the 6 ⇥ 6 Hamiltonian hKk in
Eq. (2) to its first 2 ⇥ 2 block: h

0
Kk = (✏1 � bk2)�1 +

aRe k3+�
0 +O[k4], which describes both branches of the

middle band, where k± ⌘ kx±iky and the coe�cients are
given by b = 2✏1v21/(✏

2
2�✏

2
1) and a = 4✏1✏2v21v2/(✏

2
2�✏

2
1)

2.
If we only focus on the lower branch, the e↵ective band
theory boils down to a single-orbital model

H0 =
X

k

c
†
Kk✏kcKk + c

†
K0k✏�kcK0k,

✏k = k2
� µ+ ↵Re k3+,

(3)

where we have chosen to rescaled the energy such that
the single-orbital depends on only one tuning parame-
ter ↵ = a/b = 2✏2v2/(✏22 � ✏

2
1) that characterizes the

strength of the triangular Fermi surface anisotropy. The
band structure of ✏k is plotted in Fig. 3(c). In Eq. (3),
the K 0 valley Hamiltonian is also included, which can be
inferred from that of the K valley by the time-reversal
symmetry T : cKk ! KcK0,�k. The Fermi surfaces in
both valleys are drawn in Fig. 2(b) with µ = 1,↵ = 1/3
for example. One can see that the model essentially cap-
tures the triangular shape of the Fermi surface. There are
three nesting vectors between K and K

0 pockets, which
are set by the chemical potential µ: Q1 = (

p
3µ, 0) and

Q2 = R2⇡/3Q1, Q3 = R�2⇡/3Q1 are related to Q1 by
C3 rotations. Note that the electronic spin degrees of
freedom can be included in Eq. (3) implicitly.

In this single-orbital model, the notions of filling frac-
tion and nesting commensurability are lost, but by go-

ing back to the original continuum model, we can iden-
tify the commensurate wavevector that has a high de-
gree of nesting, which is found to be the MM points,
i.e. Q1 ' q2 � q1/2. A commensurate perfect nesting
will be achieved at the filling �5/8, which is hole-doped
by 25% from the half-filling. We will show later in Sec. VI
that including a commensurate inter valley ordering with
a period corresponding to the MM point of the MBZ, we
can induce a full gap for relatively small order parame-
ters, and obtain an insulating state when we are at the
filling �(1/2 + 1/8) in the microscopic model given by
the continuum theory Eq. (1).

III. INTERACTIONS AND SO(4) SYMMETRY

We now introduce interactions into the single-
orbital model in Eq. (3). As the electron c =
(cK", cK#, cK0", cK0#) in the MBZ carries both the spin
(� =", #) and the valley (v = K,K

0) degrees of free-
dom, one may expect an emergent U(4) symmetry at
low energy that rotates all four components of the elec-
tron, as pointed out in Ref. 16, 19, 20, and 29. However,
the electron kinetic energy (the band structure) strongly
breaks this U(4) symmetry. For example, the triangu-
lar Fermi surface anisotropy ↵ in the band Hamiltonian
Eq. (3) explicitly breaks the symmetry as the Fermi sur-
face deformations are opposite between the two valleys
as shown in Fig. 2. The U(4) symmetry is broken down
to U(1)c ⇥ U(1)v ⇥ SO(4), where U(1)c is the charge
U(1) symmetry generated by nc = c

†
�
00
c, U(1)v de-

notes the emergent valley U(1) symmetry generated by
nv = c

†
�
30
c and SO(4) ⇠ SU(2)K ⇥ SU(2)K0 stands for

the two independent SU(2) spin rotation symmetries in
both valleys generated by Sv = c

†
v
�cv (for v = K,K

0

separately). The original SU(4) generators that are bro-
ken by the Fermi surface anisotropy ↵ form a (complex)
SO(4) vector, which corresponds to the inter-valley co-
herence (IVC) order I

µ = c
†
K
�
µ
cK0 (µ = 0, 1, 2, 3) as

proposed in Ref. 19. The pairing channels can also be
classified by the SO(4) symmetry. There are only two
possibilities: the inter-valley pairing �µ = c

|
K
i�2

�
µ
cK0

that transforms as SO(4) (pseudo)vector, and the intra-
valley pairing �v = c

|
v
i�2

cv (v = K,K
0) that transforms

as SO(4) (pseudo)scalar. These operators are summa-
rized in Tab. I, which exhaust all fermion bilinear opera-
tors that can be written down on a local Wannier orbital.

Therefore any U(1)c ⇥U(1)v ⇥ SO(4) symmetric local
interaction should be mediated by one of these fermion
bilinear channels. Further taken into account the time-
reversal symmetry T (that interchanges valleys), it turns
out that there are only two linearly independent and sym-
metric interactions (see AppendixA for details), which
can be written purely in terms of density-density inter-
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TABLE I. Symmetry classification of fermion bilinear opera-
tors (labeled in the bottom row). Electrical charge is labeled
by qc, thus qc = 0 corresponds to charge neutral (particle-
hole) operators, while qc = 2 corresponds to Cooper pair
(particle-particle) operators. The valley quantum number of
the U(1)v symmetry is labeled by qv, hence inter-valley co-
herence order is obtained on condensing qv = 2 operators.
Non-Abelian symmetry representations are labeled by the di-
mension (with a prime to denote the pseudo- representation).
For a more detailed version, see Tab. IV in AppendixA.
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(nK�qnKq + nK0�qnK0q),

(4)
where nvq ⌘

P
k,� c

†
v�k+qcv�k is the density operator of

each valley. Since the density-density interaction is gen-
erally repulsive, we expect both parameters U0 and U1

to be positive (typically U0 ⇡ U1 > 0). At the spe-
cial point of U0 = U1 = U , the U(4) symmetry is re-
stored for the interaction Hint. However, even if Hint

is tuned to the U(4) symmetric point, when combined
with the kinetic energy H0 in Eq. (3), the symmetry of
the full Hamiltonian H = H0 + Hint is still reduced to
U(1)c ⇥ U(1)v ⇥ SO(4). Later in Sec. VIII, we will fur-
ther discuss the e↵ect of adding small interaction terms
to finally break the emergent SO(4) symmetry down to
the microscopic SO(3) spin rotation symmetry.

In summary, by putting together Eq. (3) and Eq. (4),
we propose an e↵ective model H = H0 + Hint for the
tBLG with Fermi level resting in the lower branch of the
nearly-flat band but not too close to the charge neutrality
(such that the Fermi surface is still within the control
of �M point expansion). More specifically, we assume
that the Fermi level does not go beyond the van Hove
singularity that separates Fermi pockets around the KM

points near charge neutrality from those centered around
�M , see also Fig. 2(a). Our remaining goal is to analyze
the model within a weak coupling approach.

IV. RANDOM PHASE APPROXIMATION

We calculate the renormalized interactions within
the random phase approximation (RPA)[34–36] to an-
alyze the electron instabilities in all six fermion bi-
linear channels as enumerated in Tab. I. We will first
restrict our analysis within the s-wave channels for
simplicity. For each fermion bilinear operator Aq =

1
2

P
k �

|
�k+qA�k generally expressed in the Majorana ba-

sis �k, we evaluate its bare static (zero frequency) sus-
ceptibility �0(q) = hA

†
qAqi0 on the ground state of the

single-orbital model H0. Then we rewrite the interaction
Hint = g0

P
q A

†
qAq + · · · in the same channel to extract

the bare coupling g0. The RPA corrected coupling is then
given by gRPA(q) = g0(1 + g0�0(q))�1.

FIG. 4. (a) RPA e↵ective coupling gRPA in di↵erent interac-
tion channels v.s. the bare interaction strength U0 = U1 = U .
The inter-valley coherence (IVC) channel Iµ has the strongest
instability. (b) The bare susceptibility �0(q) = hIµ†q Iµq i0 of
the IVC order at zero frequency (! = 0). (c) The RPA cor-
rected coupling gRPA(q) in the IVC channel. The coupling is
strongly peaked around the nesting momentums.

The largest (in magnitude) value of gRPA(q) is taken
and plotted in Fig. 4(a) as a function of U0 = U1 = U for
various channels. The most attractive coupling appears
in the IVC channel, which is associated with the oper-
ator I

µ

q =
P

k c
†
Kk+q�

µ
cK0k. Fig. 4(b) shows the bare

susceptibility of the IVC fluctuation and Fig. 4(c) is its
RPA corrected coupling, which peaks strongly around
three momentums that exactly correspond to the nesting
momentums Q1,2,3. So as the bare interaction is strong
enough, Iµ will condense at these momentums, leading
to a finite-momentum IVC order, which we called the
inter-valley coherence wave (IVCW). Suppose the nest-
ing vector is pinned by the Moiré pattern to MM .

Upon doping, the nesting condition will quickly dete-
riorate and the IVCW order will cease to develop. Nev-
ertheless the low-energy valley fluctuations can play the
role of the pairing glue, mediating an e↵ective pairing
interaction between electrons. A hint that can already
be observed from Fig. 4 in which the attractive coupling
diverges in the Iµ channel, while at the same time a repul-
sive coupling in the s-wave inter-valley pairing �µ chan-
nel also diverges. This implies that if the pairing form
factor is allowed to change sign along the Fermi surface
(which goes beyond s-wave), the repulsive coupling in
this pairing channel can be e↵ectively converted to an
attractive one, leading to a strong pairing instability.
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to be positive (typically U0 ⇡ U1 > 0). At the spe-
cial point of U0 = U1 = U , the U(4) symmetry is re-
stored for the interaction Hint. However, even if Hint

is tuned to the U(4) symmetric point, when combined
with the kinetic energy H0 in Eq. (3), the symmetry of
the full Hamiltonian H = H0 + Hint is still reduced to
U(1)c ⇥ U(1)v ⇥ SO(4). Later in Sec. VIII, we will fur-
ther discuss the e↵ect of adding small interaction terms
to finally break the emergent SO(4) symmetry down to
the microscopic SO(3) spin rotation symmetry.

In summary, by putting together Eq. (3) and Eq. (4),
we propose an e↵ective model H = H0 + Hint for the
tBLG with Fermi level resting in the lower branch of the
nearly-flat band but not too close to the charge neutrality
(such that the Fermi surface is still within the control
of �M point expansion). More specifically, we assume
that the Fermi level does not go beyond the van Hove
singularity that separates Fermi pockets around the KM

points near charge neutrality from those centered around
�M , see also Fig. 2(a). Our remaining goal is to analyze
the model within a weak coupling approach.
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We calculate the renormalized interactions within
the random phase approximation (RPA)[34–36] to an-
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linear channels as enumerated in Tab. I. We will first
restrict our analysis within the s-wave channels for
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�k+qA�k generally expressed in the Majorana ba-
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qAqi0 on the ground state of the

single-orbital model H0. Then we rewrite the interaction
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qAq + · · · in the same channel to extract

the bare coupling g0. The RPA corrected coupling is then
given by gRPA(q) = g0(1 + g0�0(q))�1.

FIG. 4. (a) RPA e↵ective coupling gRPA in di↵erent interac-
tion channels v.s. the bare interaction strength U0 = U1 = U .
The inter-valley coherence (IVC) channel Iµ has the strongest
instability. (b) The bare susceptibility �0(q) = hIµ†q Iµq i0 of
the IVC order at zero frequency (! = 0). (c) The RPA cor-
rected coupling gRPA(q) in the IVC channel. The coupling is
strongly peaked around the nesting momentums.

The largest (in magnitude) value of gRPA(q) is taken
and plotted in Fig. 4(a) as a function of U0 = U1 = U for
various channels. The most attractive coupling appears
in the IVC channel, which is associated with the oper-
ator I
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q =
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cK0k. Fig. 4(b) shows the bare

susceptibility of the IVC fluctuation and Fig. 4(c) is its
RPA corrected coupling, which peaks strongly around
three momentums that exactly correspond to the nesting
momentums Q1,2,3. So as the bare interaction is strong
enough, Iµ will condense at these momentums, leading
to a finite-momentum IVC order, which we called the
inter-valley coherence wave (IVCW). Suppose the nest-
ing vector is pinned by the Moiré pattern to MM .

Upon doping, the nesting condition will quickly dete-
riorate and the IVCW order will cease to develop. Nev-
ertheless the low-energy valley fluctuations can play the
role of the pairing glue, mediating an e↵ective pairing
interaction between electrons. A hint that can already
be observed from Fig. 4 in which the attractive coupling
diverges in the Iµ channel, while at the same time a repul-
sive coupling in the s-wave inter-valley pairing �µ chan-
nel also diverges. This implies that if the pairing form
factor is allowed to change sign along the Fermi surface
(which goes beyond s-wave), the repulsive coupling in
this pairing channel can be e↵ectively converted to an
attractive one, leading to a strong pairing instability.
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tBLG with Fermi level resting in the lower branch of the
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susceptibility of the IVC fluctuation and Fig. 4(c) is its
RPA corrected coupling, which peaks strongly around
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enough, Iµ will condense at these momentums, leading
to a finite-momentum IVC order, which we called the
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Upon doping, the nesting condition will quickly dete-
riorate and the IVCW order will cease to develop. Nev-
ertheless the low-energy valley fluctuations can play the
role of the pairing glue, mediating an e↵ective pairing
interaction between electrons. A hint that can already
be observed from Fig. 4 in which the attractive coupling
diverges in the Iµ channel, while at the same time a repul-
sive coupling in the s-wave inter-valley pairing �µ chan-
nel also diverges. This implies that if the pairing form
factor is allowed to change sign along the Fermi surface
(which goes beyond s-wave), the repulsive coupling in
this pairing channel can be e↵ectively converted to an
attractive one, leading to a strong pairing instability.

5

TABLE I. Symmetry classification of fermion bilinear opera-
tors (labeled in the bottom row). Electrical charge is labeled
by qc, thus qc = 0 corresponds to charge neutral (particle-
hole) operators, while qc = 2 corresponds to Cooper pair
(particle-particle) operators. The valley quantum number of
the U(1)v symmetry is labeled by qv, hence inter-valley co-
herence order is obtained on condensing qv = 2 operators.
Non-Abelian symmetry representations are labeled by the di-
mension (with a prime to denote the pseudo- representation).
For a more detailed version, see Tab. IV in AppendixA.

U(4)

U(1)c qc = 0 qc = 2

SU(4) 1 15 6� 60

' U(1)v qv = 0 qv = 2 qv = 0 qv = 2

SO(6) SO(4) 1 10 6 4� 40 4� 40 2(1� 10)

nc nv Sv Iµ �µ �v

actions as

Hint =
X

q

U0nK�qnK0q +
U1

2
(nK�qnKq + nK0�qnK0q),

(4)
where nvq ⌘

P
k,� c

†
v�k+qcv�k is the density operator of

each valley. Since the density-density interaction is gen-
erally repulsive, we expect both parameters U0 and U1

to be positive (typically U0 ⇡ U1 > 0). At the spe-
cial point of U0 = U1 = U , the U(4) symmetry is re-
stored for the interaction Hint. However, even if Hint

is tuned to the U(4) symmetric point, when combined
with the kinetic energy H0 in Eq. (3), the symmetry of
the full Hamiltonian H = H0 + Hint is still reduced to
U(1)c ⇥ U(1)v ⇥ SO(4). Later in Sec. VIII, we will fur-
ther discuss the e↵ect of adding small interaction terms
to finally break the emergent SO(4) symmetry down to
the microscopic SO(3) spin rotation symmetry.

In summary, by putting together Eq. (3) and Eq. (4),
we propose an e↵ective model H = H0 + Hint for the
tBLG with Fermi level resting in the lower branch of the
nearly-flat band but not too close to the charge neutrality
(such that the Fermi surface is still within the control
of �M point expansion). More specifically, we assume
that the Fermi level does not go beyond the van Hove
singularity that separates Fermi pockets around the KM

points near charge neutrality from those centered around
�M , see also Fig. 2(a). Our remaining goal is to analyze
the model within a weak coupling approach.
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We calculate the renormalized interactions within
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to a finite-momentum IVC order, which we called the
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Upon doping, the nesting condition will quickly dete-
riorate and the IVCW order will cease to develop. Nev-
ertheless the low-energy valley fluctuations can play the
role of the pairing glue, mediating an e↵ective pairing
interaction between electrons. A hint that can already
be observed from Fig. 4 in which the attractive coupling
diverges in the Iµ channel, while at the same time a repul-
sive coupling in the s-wave inter-valley pairing �µ chan-
nel also diverges. This implies that if the pairing form
factor is allowed to change sign along the Fermi surface
(which goes beyond s-wave), the repulsive coupling in
this pairing channel can be e↵ectively converted to an
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The largest (in magnitude) value of gRPA(q) is taken
and plotted in Fig. 4(a) as a function of U0 = U1 = U for
various channels. The most attractive coupling appears
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three momentums that exactly correspond to the nesting
momentums Q1,2,3. So as the bare interaction is strong
enough, Iµ will condense at these momentums, leading
to a finite-momentum IVC order, which we called the
inter-valley coherence wave (IVCW). Suppose the nest-
ing vector is pinned by the Moiré pattern to MM .

Upon doping, the nesting condition will quickly dete-
riorate and the IVCW order will cease to develop. Nev-
ertheless the low-energy valley fluctuations can play the
role of the pairing glue, mediating an e↵ective pairing
interaction between electrons. A hint that can already
be observed from Fig. 4 in which the attractive coupling
diverges in the Iµ channel, while at the same time a repul-
sive coupling in the s-wave inter-valley pairing �µ chan-
nel also diverges. This implies that if the pairing form
factor is allowed to change sign along the Fermi surface
(which goes beyond s-wave), the repulsive coupling in
this pairing channel can be e↵ectively converted to an
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V. SUPERCONDUCTIVITY

To pin down the pairing instability mediated by the
valley fluctuations, we take the RPA corrected interac-
tion in the IVCW channel I

µ†
I
µ and recast it in the

inter-valley pairing channel �µ†�µ (restricting to the
zero momentum pairing ckc�k)

X

q,µ

gRPA(q)I
µ†
q I

µ

q ' �

X

q,k,µ

gRPA(q)�
µ†
�k+q�

µ

k, (5)

where I
µ

q =
P

k c
†
Kk+q�

µ
cK0k is the IVCW operator and

�µ

k = c
|
Kki�

2
�
µ
cK0�k is the inter-valley pairing opera-

tor. The attractive interaction (gRPA < 0) in the IVCW
channel implies the repulsive interaction (�gRPA > 0)
between �µ

k and �µ

�k+q. So the pairing can gain en-
ergy only if there is a relative sign change between
the pairing form factors connected by the nesting mo-
mentums Qa (at which the scattering is the strongest),
i.e. �µ

k = ��µ

�k+Qa
, as illustrated in Fig. 5(a).

FIG. 5. (a) A Cooper pair scattered by the valley fluctuation
of the nesting vector Q1 leads to a sign change along the
Fermi surface (between �µ

k and �µ
�k+Q1

). (b) The leading
inter-valley pairing form factors on the Fermi surface. The
pairing phase is indicated by the hue and the gap size by the
color intensity. Here we show the case of wd/wp = 1 (i.e. d-
wave and p-wave are equal in strength) such that there are
nodal points on the Fermi surface. For generic wd/wp, the
Fermi surface will be fully gapped.

By solving the linearized gap equation,

X

k02FS

v
�1
F

(k0)gRPA(k + k0)�µ

k0 = ��µ

k, (6)

the leading gap function (i.e. the eigen function �µ

k with
the largest eigenvalue �) is found to be of the form

�µ

k = u
µ
wk + v

µ
w

⇤
k, (7)

where u
µ and v

µ are complex vectors, and the form fac-
tor wk = wdk

2
+ + wpk� is a linear combination of the

d+ id and the p� ip waves with real coe�cients wd and
wp, as shown in Fig. 5(b). The mixing between the d+id
and the p� ip pairing is generic, because in the presence
of the triangular Fermi surface distortion ↵, the angu-
lar momentum is only mod 3 conserved, meaning that
there is no distinction between the d+ id and the p� ip
wave on symmetry ground. The ratio |wp/wd| carries
the dimension of momentum and sets a momentum scale
kQ = |wp/wd|, which is expected to be associated with

the nesting momentum kQ ' |Qa|/2. The form factor
wk has three zeros (vortices) on the circle of kQ in the
momentum space. If the Fermi surface circumvents the
zeros from outside (or inside), the pairing will be domi-
nated by d+ id (or p� ip) wave.
Topological Superconductivity: To determine the

coe�cients uµ and v
µ in Eq. (7), we can write down the

Landau-Ginzburg (LG) free energy F within the mean-
field theory,[16]

F =
X

k

r�µ⇤
k �µ

k+(2(�µ⇤
k �µ

k)
2
� |�µ

k�
µ

k|
2)+ · · · . (8)

As studied in Ref. 16, the free energy admits two types
of minimum, which are degenerated in energy,

chiral :

(
u
µ = e

i�
n
µ
,

v
µ = 0,

or

(
u
µ = 0,

v
µ = e

i�
n
µ
,

helical :

(
u
µ = e

i�1(nµ

1 + inµ

2 ),

v
µ = e

i�2(nµ

1 � inµ

2 ),

(9)

where �,�1,�2 are arbitrary phases and n
µ
, n

µ

1 , n
µ

2 are
real O(4) vectors with n

µ

1n
µ

2 = 0. The chiral solution
preferentially choose the form factor of one chirality (ei-
ther wk or w

⇤
k), which corresponds to four copies of the

d+ id or the p� ip superconductors (or its time-reversal
partners). The helical solution is a superposition of wk

(in one spin sector) and w
⇤
k (in the other spin sector),

which corresponds to two copies of the d± id or the p⌥ ip
superconductors.
In the valley and spin space, �µ

k transforms as a (com-
plex) SO(4) vector, whose four components corresponds
to the spin-singlet pairing �0

k and the spin-triplet pair-
ing �k = (�1

k,�
2
k,�

3
k). In the presence of the emergent

SO(4) symmetry, the singlet and triplet pairings are de-
generated. This can be considered as an SO(4) general-
ization of the SO(3) pairing �k proposed in Ref. 16, such
that the singlet pairing is also included as a possible op-
tion in our discussion. However, the SO(4) symmetry is
not exact in the tBLG. Any inter-valley spin-spin inter-
action will break the SO(4) symmetry down to the global
(valley-locked) SO(3) spin rotation symmetry, and thus
splits the degeneracy between singlet and triplet pairings.
If the singlet pairing is favored, then only the chiral gap
function is possible, because there is no room for two per-
pendicular O(4) vectors nµ

1 and n
µ

2 to coexist just in the
singlet channel. If the triplet pairing is favored, then both
the chiral and helical gap functions are allowed. We will
discuss the e↵ective of explicit SO(4) symmetry breaking
in more details later.
In general, the superconductor will be a topological su-

perconductor (TSC) with fully gapped Fermi surface.[41–
43] The chiral TSC breaks the time-reversal symmetry
and also breaks the U(1)c ⇥ U(1)v ⇥ SO(4) symmetry
to ZF

2 ⇥ U(1)v ⇥ SO(3). The topological classification
for the chiral TSC is Z. If the d + id (or p � ip) pair-
ing is stronger, the topological index will be ⌫ = 8
(or ⌫ = �4), which admits 8 (or 4) chiral Majorana
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lar momentum is only mod 3 conserved, meaning that
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the dimension of momentum and sets a momentum scale
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SO(4) symmetry, the singlet and triplet pairings are de-
generated. This can be considered as an SO(4) general-
ization of the SO(3) pairing �k proposed in Ref. 16, such
that the singlet pairing is also included as a possible op-
tion in our discussion. However, the SO(4) symmetry is
not exact in the tBLG. Any inter-valley spin-spin inter-
action will break the SO(4) symmetry down to the global
(valley-locked) SO(3) spin rotation symmetry, and thus
splits the degeneracy between singlet and triplet pairings.
If the singlet pairing is favored, then only the chiral gap
function is possible, because there is no room for two per-
pendicular O(4) vectors nµ

1 and n
µ

2 to coexist just in the
singlet channel. If the triplet pairing is favored, then both
the chiral and helical gap functions are allowed. We will
discuss the e↵ective of explicit SO(4) symmetry breaking
in more details later.
In general, the superconductor will be a topological su-

perconductor (TSC) with fully gapped Fermi surface.[41–
43] The chiral TSC breaks the time-reversal symmetry
and also breaks the U(1)c ⇥ U(1)v ⇥ SO(4) symmetry
to ZF

2 ⇥ U(1)v ⇥ SO(3). The topological classification
for the chiral TSC is Z. If the d + id (or p � ip) pair-
ing is stronger, the topological index will be ⌫ = 8
(or ⌫ = �4), which admits 8 (or 4) chiral Majorana
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nodal points on the Fermi surface. For generic wd/wp, the
Fermi surface will be fully gapped.

By solving the linearized gap equation,

X

k02FS

v
�1
F

(k0)gRPA(k + k0)�µ

k0 = ��µ

k, (6)

the leading gap function (i.e. the eigen function �µ

k with
the largest eigenvalue �) is found to be of the form

�µ

k = u
µ
wk + v

µ
w

⇤
k, (7)

where u
µ and v

µ are complex vectors, and the form fac-
tor wk = wdk

2
+ + wpk� is a linear combination of the

d+ id and the p� ip waves with real coe�cients wd and
wp, as shown in Fig. 5(b). The mixing between the d+id
and the p� ip pairing is generic, because in the presence
of the triangular Fermi surface distortion ↵, the angu-
lar momentum is only mod 3 conserved, meaning that
there is no distinction between the d+ id and the p� ip
wave on symmetry ground. The ratio |wp/wd| carries
the dimension of momentum and sets a momentum scale
kQ = |wp/wd|, which is expected to be associated with

the nesting momentum kQ ' |Qa|/2. The form factor
wk has three zeros (vortices) on the circle of kQ in the
momentum space. If the Fermi surface circumvents the
zeros from outside (or inside), the pairing will be domi-
nated by d+ id (or p� ip) wave.
Topological Superconductivity: To determine the

coe�cients uµ and v
µ in Eq. (7), we can write down the

Landau-Ginzburg (LG) free energy F within the mean-
field theory,[16]

F =
X

k

r�µ⇤
k �µ

k+(2(�µ⇤
k �µ

k)
2
� |�µ

k�
µ

k|
2)+ · · · . (8)

As studied in Ref. 16, the free energy admits two types
of minimum, which are degenerated in energy,

chiral :

(
u
µ = e

i�
n
µ
,

v
µ = 0,

or

(
u
µ = 0,

v
µ = e

i�
n
µ
,

helical :

(
u
µ = e

i�1(nµ

1 + inµ

2 ),

v
µ = e

i�2(nµ

1 � inµ

2 ),

(9)

where �,�1,�2 are arbitrary phases and n
µ
, n

µ

1 , n
µ

2 are
real O(4) vectors with n

µ

1n
µ

2 = 0. The chiral solution
preferentially choose the form factor of one chirality (ei-
ther wk or w

⇤
k), which corresponds to four copies of the

d+ id or the p� ip superconductors (or its time-reversal
partners). The helical solution is a superposition of wk

(in one spin sector) and w
⇤
k (in the other spin sector),

which corresponds to two copies of the d± id or the p⌥ ip
superconductors.
In the valley and spin space, �µ

k transforms as a (com-
plex) SO(4) vector, whose four components corresponds
to the spin-singlet pairing �0

k and the spin-triplet pair-
ing �k = (�1

k,�
2
k,�

3
k). In the presence of the emergent

SO(4) symmetry, the singlet and triplet pairings are de-
generated. This can be considered as an SO(4) general-
ization of the SO(3) pairing �k proposed in Ref. 16, such
that the singlet pairing is also included as a possible op-
tion in our discussion. However, the SO(4) symmetry is
not exact in the tBLG. Any inter-valley spin-spin inter-
action will break the SO(4) symmetry down to the global
(valley-locked) SO(3) spin rotation symmetry, and thus
splits the degeneracy between singlet and triplet pairings.
If the singlet pairing is favored, then only the chiral gap
function is possible, because there is no room for two per-
pendicular O(4) vectors nµ

1 and n
µ

2 to coexist just in the
singlet channel. If the triplet pairing is favored, then both
the chiral and helical gap functions are allowed. We will
discuss the e↵ective of explicit SO(4) symmetry breaking
in more details later.
In general, the superconductor will be a topological su-

perconductor (TSC) with fully gapped Fermi surface.[41–
43] The chiral TSC breaks the time-reversal symmetry
and also breaks the U(1)c ⇥ U(1)v ⇥ SO(4) symmetry
to ZF

2 ⇥ U(1)v ⇥ SO(3). The topological classification
for the chiral TSC is Z. If the d + id (or p � ip) pair-
ing is stronger, the topological index will be ⌫ = 8
(or ⌫ = �4), which admits 8 (or 4) chiral Majorana
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would be translated into the pairing channel as

Hg =
X

q

g(q)I0†q I
0
q

'
1

2

X

k,q

g(q)(�0†
�k+q�

0
k ��†

�k+q ·�k) + · · · ,

(17)

which is also an attractive interaction in the spin-singlet
pairing channel �0 (note that g < 0). In contrast to
Eq. (5), only the I0†I0 interaction is involved in Eq. (17),
which completely changes the interaction sign in the sin-
glet pairing channel. Under the RPA correction, g(q)
peaks strongly around the nesting momentums q =
Q1,2,3, thus the attractive interaction between �0

k and
�0

�k+Qa
e↵ectively reduces the energy gain in the sin-

glet channel, due to the sign-changing TSC pairing form
factor (i.e. �0

k = ��0
�k+Qa

). Therefore a slightly en-
hanced attractive interaction in the spin-singlet IVCW
channel will actually suppresses the spin-singlet TSC
pairing and favors the spin-triplet TSC pairing, as sum-
marized in Tab. III. The spin-triplet TSC can be either
chiral or helical as discussed Sec.V previously. Although
HJ in Eq. (16) and Hg in Eq. (17) are both SO(4) sym-
metry breaking terms in the (1, 1) representation that
favor the singlet IVCW order, yet their e↵ects on split-
ting the singlet-triplet degeneracy in the TSC channel
is completely opposite. This has to do with the fact
that under the RPA correction, the interaction HJ in
the spin channel is not sensitive to the nesting e↵ect, but
the interaction Hg in the valley channel exhibit a strong
nesting e↵ect. This results in very di↵erent momentum-
dependence of their coupling functions (J(q) or g(q)),
which finally divide the fate of the singlet-triplet split-
ting. The competition between these two symmetry
breaking e↵ects demands further analysis by more re-
fined approach such as the functional renormalization
group[93, 94], which will be left for future works. [95]

Finally, we would like to comment on the connec-
tion to Ref. 21, where the valley XY interaction Hg in
Eq. (17) was considered to be the dominant interaction
in the tBLG. In this case, the emergent SO(4) symme-
try is strongly broken. The e↵ective attraction in the
spin-singlet pairing channel can simply drive the s-wave
valley-symmetric spin-singlet pairing, which then leads
to a nontopological superconductor as in ,21. Therefore,
whether the superconductivity in the tBLG is topologi-
cal or not could sensitively depend on the form and the
strength of the SO(4) symmetry breaking interactions, as
summarized in Tab. III.

IX. EFFECT OF ELECTRIC FIELD

Within the framework of the weak coupling theory, we
can further consider the e↵ective of a vertical electric
field. In the continuum model, turning on the electric
field amounts to introducing a potential di↵erence be-

tween the layers,

HK ! HK + V

X

kl

(�)lc†
Klk

cKlk. (18)

As the time-reversal symmetry T remains unbroken un-
der the electric field, the K

0 valley Hamiltonian HK0 =
T HKT

�1 is still related to that of the K valley HK

by the time-reversal operation. We will focus on the
band structure around the K valley. Fig. 8 shows the
e↵ect of the electric field on the band structure and the
Fermi surfaces for the cases of (a) V = 0.2vF |qa| and (b)
V = 0.6vF |qa|. One can see that the Fermi surface is dis-
torted as the electric field shifts the Dirac cones at KM

and K
0
M

relative to each other in energy (as they origi-
nated from the top and the bottom layers respectively).

KMMM ΓM MM′ KM′
-0.4
-0.2
0.0
0.2
0.4

E
[a
.u
.]

ΓMMM

MM
′

KM

KM′

(a)

KMMM ΓM MM′ KM′
-0.2
-0.1
0.0
0.1
0.2

E
[a
.u
.]

ΓMMM

MM
′

KM

KM′

(b)

FIG. 8. Band structure (left panel) and the equal-filling Fermi
surfaces (right panel) in the Moiré Brillouin zone around the
K valley in the presence of vertical electric field, for (a) weak
field and (b) intermediate field. The f = �1/2 filling level is
marked out as dashed lines in the band structure plot and as
thick lines in the Fermi surface contour.

We can follow the procedure described in Sec. II to ex-
tract the e↵ect of the vertical electric field in the single-
orbital model. However a symmetry analysis already
su�ces to determine the more relevant deformation of
the Fermi surface. Given that the electric field breaks
the My : k+ ! k� mirror symmetry and preserves the
C3 : k+ ! e

2⇡i/3
k+ rotational symmetry, new terms can

be added to the single-orbital model Eq. (3) as

✏k ! ✏k + ↵
0 Im k

3
+ + ↵

00 Im k
6
+ + · · · . (19)

The ↵0 and ↵
00 terms describes the rotation and deforma-

tion of the Fermi surface as shown in Fig. 8(a) for weak
field. If the electric field is of the same order of the band
width, the Fermi surface could be strongly deformed as in
Fig. 8(b), which goes beyond the perturbative description
of Eq. (19).
As a consequence of the Fermi surface deformation, the

Fermi surface nesting between K and K
0 valley will be

suppressed by the electric field, therefore both the IVCW
and the SC instability should reduce with the electric

weak field

stronger field
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edge modes. The helical (non-chiral) TSC preserves the
(spin-flipping) time-reversal symmetry ZT

2 (under which
cKk ! Ki�2

cK0,�k, cK0k ! Ki�2
cK,�k) and breaks the

U(1)c⇥U(1)v ⇥SO(4) symmetry to ZF

2 ⇥U(1)v ⇥SO(2).
The SO(2) symmetry may be loosely called a spin U(1)s
symmetry since it corresponds to a joint spin rotation for
both valleys (in either the same or the opposite manner).
In the presence of both U(1)v and U(1)s, the topological
classification of the helical TSC is also Z. If the d± id (or
p ⌥ ip) pairing is stronger, the topological index will be
⌫ = 4 (or ⌫ = �2), which admits 4 (or 2) helical Majo-
rana edge modes. It is also possible to fine tune the ratio
wd/wp to the topological phase transition between the
d-wave and p-wave TSC, then superconducting gap will
close at the nodal points on the Fermi surface resulting
in 12 Majorana cones in the bulk.

Nematic Superconductivity: Finally, we would like
to briefly comment on the possibility of the nematic d-
wave or p-wave pairing. We could go beyond the mean-
field theory by considering more general momentum-
dependent quartic terms in the LG free energy

X

k,k0

kk0(2�µ⇤
k �µ

k�
⌫⇤
k0 �⌫

k0 ��µ⇤
k �µ⇤

k �⌫

k0�⌫

k0). (10)

If kk0 satisfies
P

k,k0 kk0(w⇤
kwk0)2 < 0, the LG free

energy will have only one type of minimum,

nematic:

(
u
µ = e

i�1n
µ
,

v
µ = e

i�2n
µ
,

(11)

where �1, �2 are arbitrary phases and n
µ is a real O(4)

vector. This solution corresponds to the nodal d-wave
or p-wave pairing, as �µ

k ⇠ Re(ei(�1��2)wk)nµ, which
preserves the time-reversal symmetry and breaks the
U(1)c ⇥U(1)v ⇥ SO(4) symmetry down to ZF

2 ⇥U(1)v ⇥
SO(3). The nodal line lies along the direction set by
�1 � �2, which breaks the C3 rotational symmetry. So
the nodal superconductor also has a “nematic” (orienta-
tional) order[44, 45]. As the Fermi surface is not fully
gapped, the nematic superconductor is not topological
and has no protected edge mode. Apart from strong cou-
pling, explicit breaking of C3 rotation symmetry could
also favor nematic superconductivity.

VI. SLATER INSULATOR AND VALLEY
ORDER

When the Fermi surface is tune to optimal nesting, the
strong nesting instability could lead to the condensation
of the IVC order parameter I

µ at the nesting momen-
tums, which drives the system into the IVCW phase. In
the weak coupling approach, the IVCW and the TSC or-
der compete for the Fermi surface density of state. Here
we provide a mean-field theory calculation that captures
both competing orders and gives a rough estimate of the
overall structure of the phase diagram. We start with

the mean-field Hamiltonian HMF that incorporates the
order parameters of both the IVCW I

0
Q and the TSC �0

k

(which are restricted to the singlet channel without loss
of generality given the SO(4) symmetry),

HMF = H0 + gIHI + g�H�,

HI =
X

Q,k

I
0⇤
Q c

†
Kk+QcK0k + h.c.+ I

0⇤
Q I

0
Q,

H� =
X

Q,k

�0⇤
k c

|
Kki�

2
cK0�k + h.c.��0⇤

�k+Q�0
k,

(12)

where H0 is taken to be the single-orbital model Eq. (3)
and Q is summed over the three nesting vectors Q1,2,3.
gI = gRPA(Q) and g� = avgk,k02FSgRPA(k + k0) are
the e↵ective couplings in the IVC and the pairing chan-
nels respectively. Both of them originate from the RPA
corrected coupling gRPA(q) and are expected to scale
together with the interaction strength U = U0 = U1.
By tracing out the electron, we obtain the free energy
F = ��

�1 lnTr e��HMF for the order parameters I0Q and
�0

k. We find the free energy saddle point solution in
the low temperature limit for di↵erent W/U ⇠ g

�1
I

, g
�1
�

(where W is the band width) and di↵erent chemical po-
tentials µ. This allows us to map out the mean-field
phase diagram as shown in Fig. 1. As we tune the twist
angle towards the magic angle, the band gets flatten and
the e↵ective coupling increases. The TSC phase will first
appear at low temperature. With stronger coupling, the
IVCW phase will emerge around the optimal nesting and
gradually expand to a wider range of chemical potential.

FIG. 6. Mean field phase diagram in the vicinity of f = �1/2
and at finite temperature. TSC: topological superconductor,
IVCW: inter-valley coherence wave. The TSC appears below
Tc around the IVCW insulator on both the hole and electron
doped sides, with a d+id and p�ip mixed inter-valley pairing.
The IVCW order on sets at the temperature TIVCW and be-
comes strong enough to full gap out the Fermi surface below
Tins. On the hole doping side, the metallic IVCW phase has
a single hole pocket with twofold spin degeneracy. The tran-
sition temperatures Tc and TIVCW are correlated since they
arise from the same interaction gRPA.

As we fix the couplings at gI = 0.8 and g� = 0.4 (the
energy unit is set by the band dispersion in H0), assume
that the optimal nesting is around µ = 1 (such that the



Valley Order and Slater Insulator
• If the valley fluctuation condenses → IVC wave order

• Will it open a full gap?

• Consider a commensurate IVC wave order

• Ordering momentum =  
Moire M-point  
(2×2 modulation)

• 2 valley × 4 sublattice = 
8 bands

• Full gap opens at -5/8 filling  
from charge neutrality 
(not at -1/2 filling)

• Conclusion: Valley ordering  
not sufficient to explain Mott

8

nesting momentum is |Q| =
p
3µ ⇡ 1.73), and take the

anisotropy parameter to be ↵ = 1/3, we can obtain a
mean-field phase diagram as shown in Fig. 6 (by solving
the free energy saddle point equations). The fermilogy
at di↵erent representative points in the phase diagram
are shown in Fig. 6. In the metallic phase, the Fermi sur-
face consists of electron pockets around K and K

0 valleys
(drawn together). In the TSC phase, the Fermi surface is
gapped by the inter-valley pairing with the pairing form
factor shown in color (following Fig. 5(b)). The pairing
can be either chiral or helical within the mean-field the-
ory. In the IVCW phase, the K

0 pocket (in light red)
is shifted away from the K pocket (in light blue) by the
three nesting vectors Q1,2,3. Deep in the IVCW phase,
the Fermi surface can be fully gapped. In between TIVCW

and Tins, small (reconstructed) hole or electron pockets
remain on the Fermi level. However, using the single-
orbital model Eq. (3) as the starting point, we have lost
track of the notion of the Moiré Brillouin zone (MBZ)
and we can not tell if the nesting vector Q is commensu-
rate with the Moiré lattice or not.

To further investigate the commensurability of the
nesting vector and the corresponding filling of IVCW
state, we have to fall back on the continuum model
Eq. (1), in which the MBZ can be referred. We would like
to explore if the IVCW order can fully gap out the Fermi
surface and lead to an insulator. We will first focus on
the commensurate IVCW order. From the shape of the
Fermi surfaces in Fig. 2(a), the nesting vectors are most
likely to be commensurate if they connect the �M point
to the MM points in the MBZ. With this, we consider
the IVCW order where the valley fluctuations simulta-
neously develops at the three MM points in the MBZ
(corresponding to the nesting vector Q1 = q2�q1/2 and
its C3 related partners Q2,3).

The commensurate IVCW order breaks both the
U(1)v ⇥ SO(4) symmetry and the translation symmetry.
It leads to a 2 ⇥ 2 modulation on the Moiré lattice as
demonstrated in Fig. 7(a). As the unit-cell is enlarges to
four Moiré sites, the Brillouin zone will be reduced to
1/4 of the MBZ, as illustrated in Fig. 7(b). The lower
branch of the band (from charge neutrality to the band
bottom) will be folded to eight bands in the reduced Bril-
louin zone (rBZ), which consist of four folded bands for
each valley. As we turn on the IVCW order to mix the
K and K

0 valleys together, a full gap opens between the
third and the fourth bands (counting from bottom) as
shown in Fig. 7(c,d). Counting from the charge neutral-
ity, this corresponds to the filling f = �5/8, but not the
filling f = �1/2 as one may expect. In fact, the �1/2
level lies in the continuum above the IVCW gap, as in-
dicated in Fig. 7(c,d). At the filling �5/8, the system
becomes an IVCW ordered band insulator, which may
be called a Slater insulator (to be distinguished from the
Mott insulator). There is a simple geometric picture to
explain the seemly strange �5/8 filling. In the ideal case,
if we consider the K and K

0 pockets to be straight trian-
gles connecting the MM points, illustrated as the dashed

(a)

Γr Mr

Kr

MB
ZrBZ

(b)

Γr Mr Kr Γr

-0.4

-0.3

-0.2

-0.1

0.0
E

(c)

DOS

-5/8

-1/2
(d)

FIG. 7. (a) A 2 ⇥ 2 pattern on the Moiré lattice (little
hexagons represent the AA stacking regions). The enlarged
unit-cell is highlighted. (b) The reduced Brillouin zone (rBZ)
compared to the Moiré Brillouin zone (MBZ). (c) The band
structure of the IVCW state below neutrality. (d) The cor-
responding density of state (DOS) shows a full gap at filling
�5/8.

lines in Fig. 7(b), the nesting will be perfect at the desired
MM momentum and the corresponding filling is indeed
�5/8 by counting the areas of the triangles. Therefore,
although the commensurate IVCW order can lead to a
fully gapped insulator, but the filling of the insulator has
a 1/8 deficit from the �1/2 filling. We also checked that
if the ordering momentum is changed to the �M or KM

point momentum, no gap opening is observed with weak
to medium IVCW order.

However, if we go beyond the commensurate nesting
and relax the nesting vector from the MM momentum,
it is possible to obtain an incommensurate IVCW insu-
lator for a range of fillings around �5/8, including the
�1/2 filling typically, as long as the nesting condition
is good. Another possibility is that the band structure
may receive self-energy corrections from the interaction
in such a way that the �1/2 filling Fermi surface turns
out to admit good commensurate nesting. But in ei-
ther picture, the �1/2 filling is not special compared to
other fillings in terms of forming a Slater insulator, which
still does not provide a natural explanation for the spe-
cific filling of the Mott insulator. This suggests that the
Mott insulator in the tBLG might be a strongly corre-
lated phase beyond the weak coupling picture like Fermi
surface nesting. In this case, a strong coupling approach
is required to understand the observed Mott insulator
at precisely �1/2 filling. Below we discuss a scenario of
Mott insulator that naturally arise from quantum dis-
ordering the adjacent superconducting phase by double-
vortex condensation.[46–50]
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We study electronic ordering instabilities of twisted bilayer graphene with n = 2 electrons per
supercell, where correlated insulator state and superconductivity are recently observed. Motivated
by the Fermi surface nesting and the proximity to Van Hove singularity, we introduce a hot-spot
model to study the e↵ect of various electron interactions systematically. Using renormalization
group method, we find d/p-wave superconductivity and charge/spin density wave emerge as the two
types of leading instabilities driven by Coulomb repulsion. The density wave state has a gapped
energy spectrum at n = 2 and yields a single doubly-degenerate pocket upon doping to n > 2. The
intertwinement of density wave and superconductivity and the quasiparticle spectrum in the density
wave state are consistent with experimental observations.

I. INTRODUCTION

Recently superconductivity was discovered near a cor-
related insulator state in bilayer graphene with a small
twist angle ✓ ⇡ 1.1� [1, 2], where the moiré pattern cre-
ates a superlattice with a periodicity of about 13 nm. A
correlated insulating state is found at the filling of n = 2
electrons per supercell (n = 0 is the charge neutrality
point). Electron or hole doping away from n = 2 by elec-
trostatic gating leads to a superconducting dome, similar
to cuprates. Insulating states are also found in trilayer
graphene with moiré superlattice [3]. The nature of su-
perconducting and insulating states in graphene super-
lattices are now under intensive theoretical study [4–13].

For ✓ ⇡ 1.1�, the low-energy mini-band of twisted bi-
layer graphene has a narrow bandwidth of 10meV scale
[14–26]. However, this energy scale is still much larger
than the energy gaps of the superconducting and insulat-
ing states, which are on the order of 1K. Moreover, resis-
tivity shows metallic behavior above 4K. This is rather
di↵erent from the case of a Mott insulator in the strong
coupling limit, which would become insulating at much
higher temperature. Based on these considerations, in
this work, we take a weak coupling approach to study
ordered states driven by electron correlation in twisted
bilayer graphene.

While details of the band structure remain to be fully
sorted out, a number of prominent features of the nor-
mal state fermiology are robust and noteworthy. First, at
small twist angle, the two valleys of graphene have negli-
gibly small single-particle hybridization and give rise to
two separate Fermi surfaces that intersect each other in
the mini Brillouin zone [26–28]. Second, as the carrier
density increases, Fermi pockets associated with a given
valley first appear around the Dirac points at K and K

0

in the mini Brillouin zone, then these K and K
0 pockets

merge at a saddle point on the �–M line to become a
single pocket centered at �. The saddle point associated
with this Lifshitz transition has a Van Hove singular-
ity (VHS) with a logarithmic divergence of the density of
states (DOS). Third, realistic band structure calculations
[28] show that near the Van Hove energy the Fermi sur-
faces of di↵erent valleys contain nearly parallel segments

Г
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K’
Г

K

M

K’

Q-

Q+

Q’

3

2

1

3

2

1

(a) (b)
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FIG. 1: (a), (b) Two Fermi surfaces at the Van Hove energy
from di↵erent valleys shown in red and blue, reproduced from
Moon and Koshino’s band structure calculation for twisted
bilayer graphene with ✓ = 2� [28]. Shaded areas are filled and
VHS appear at the points, where two Fermi surfaces encir-
cling K and K0 touch. Each Fermi surface has C3 symme-
try about �, K, and K0. The Fermi surfaces in (a) and (b)
are related by C2 rotation with respect to an in-plane axis
along �–K. (c) Two Fermi surfaces slightly away from the
Van Hove energy. DOS is larger near the VHS points (hot
spots), where electron interaction predominates. We assign
patches (circles with dashed lines) centered at hot spots. (d)
Three inequivalent wave vectors (Q+, Q�, andQ0), along with
symmetry-related ones (not shown), connect various pairs of
hot spots.

and hence are nearly nested, see Fig. 1. Such Fermi sur-
face nesting strongly enhances density wave fluctuations.
When the Fermi energy crosses the Van Hove energy, a

conversion between electron and hole carriers is expected
and indeed observed from the sign change of Hall resis-
tance as a function of doping for ✓ = 2� [28] and ✓ = 1.8�

[27]. Remarkably, this sign change occurs at the filling
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Unconventional Superconductivity and Density Waves in Twisted Bilayer Graphene

Hiroki Isobe, Noah F. Q. Yuan, and Liang Fu
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

We study electronic ordering instabilities of twisted bilayer graphene with n = 2 electrons per
supercell, where correlated insulator state and superconductivity are recently observed. Motivated
by the Fermi surface nesting and the proximity to Van Hove singularity, we introduce a hot-spot
model to study the e↵ect of various electron interactions systematically. Using renormalization
group method, we find d/p-wave superconductivity and charge/spin density wave emerge as the two
types of leading instabilities driven by Coulomb repulsion. The density wave state has a gapped
energy spectrum at n = 2 and yields a single doubly-degenerate pocket upon doping to n > 2. The
intertwinement of density wave and superconductivity and the quasiparticle spectrum in the density
wave state are consistent with experimental observations.

I. INTRODUCTION

Recently superconductivity was discovered near a cor-
related insulator state in bilayer graphene with a small
twist angle ✓ ⇡ 1.1� [1, 2], where the moiré pattern cre-
ates a superlattice with a periodicity of about 13 nm. A
correlated insulating state is found at the filling of n = 2
electrons per supercell (n = 0 is the charge neutrality
point). Electron or hole doping away from n = 2 by elec-
trostatic gating leads to a superconducting dome, similar
to cuprates. Insulating states are also found in trilayer
graphene with moiré superlattice [3]. The nature of su-
perconducting and insulating states in graphene super-
lattices are now under intensive theoretical study [4–13].

For ✓ ⇡ 1.1�, the low-energy mini-band of twisted bi-
layer graphene has a narrow bandwidth of 10meV scale
[14–26]. However, this energy scale is still much larger
than the energy gaps of the superconducting and insulat-
ing states, which are on the order of 1K. Moreover, resis-
tivity shows metallic behavior above 4K. This is rather
di↵erent from the case of a Mott insulator in the strong
coupling limit, which would become insulating at much
higher temperature. Based on these considerations, in
this work, we take a weak coupling approach to study
ordered states driven by electron correlation in twisted
bilayer graphene.

While details of the band structure remain to be fully
sorted out, a number of prominent features of the nor-
mal state fermiology are robust and noteworthy. First, at
small twist angle, the two valleys of graphene have negli-
gibly small single-particle hybridization and give rise to
two separate Fermi surfaces that intersect each other in
the mini Brillouin zone [26–28]. Second, as the carrier
density increases, Fermi pockets associated with a given
valley first appear around the Dirac points at K and K

0

in the mini Brillouin zone, then these K and K
0 pockets

merge at a saddle point on the �–M line to become a
single pocket centered at �. The saddle point associated
with this Lifshitz transition has a Van Hove singular-
ity (VHS) with a logarithmic divergence of the density of
states (DOS). Third, realistic band structure calculations
[28] show that near the Van Hove energy the Fermi sur-
faces of di↵erent valleys contain nearly parallel segments

Г

K

M

K’
Г

K

M

K’

Q-

Q+

Q’

3

2

1

3

2

1

(a) (b)

(c) (d)

FIG. 1: (a), (b) Two Fermi surfaces at the Van Hove energy
from di↵erent valleys shown in red and blue, reproduced from
Moon and Koshino’s band structure calculation for twisted
bilayer graphene with ✓ = 2� [28]. Shaded areas are filled and
VHS appear at the points, where two Fermi surfaces encir-
cling K and K0 touch. Each Fermi surface has C3 symme-
try about �, K, and K0. The Fermi surfaces in (a) and (b)
are related by C2 rotation with respect to an in-plane axis
along �–K. (c) Two Fermi surfaces slightly away from the
Van Hove energy. DOS is larger near the VHS points (hot
spots), where electron interaction predominates. We assign
patches (circles with dashed lines) centered at hot spots. (d)
Three inequivalent wave vectors (Q+, Q�, andQ0), along with
symmetry-related ones (not shown), connect various pairs of
hot spots.

and hence are nearly nested, see Fig. 1. Such Fermi sur-
face nesting strongly enhances density wave fluctuations.
When the Fermi energy crosses the Van Hove energy, a

conversion between electron and hole carriers is expected
and indeed observed from the sign change of Hall resis-
tance as a function of doping for ✓ = 2� [28] and ✓ = 1.8�

[27]. Remarkably, this sign change occurs at the filling
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FIG. 4: Instabilities in the two-parameter model with g41
and g42. (a) Instabilities by changing the coupling constants
at the cuto↵ (g41, g42) = g0(sin ✓, cos ✓) and the parameter
for nesting d2�. There is no instability observed in the nor-
mal region. (b) Intertwined ordering susceptibilities. We set
✓ = �0.19⇡ (g41 = �0.56g0, g42 = 0.82g0) and d2� = 0.5,
which lead to the spin-singlet SC instability near the CDW0

instability. We observe that the spin-singlet SC susceptibility
diverges at g0y ⇡ 1.38. Importantly, the CDW0 susceptibility,
which is initially smaller than the spin-singlet SC susceptibil-
ity, surpasses the latter in the intermediate region.

four possible instabilities are found in the phase diagram,
characterized by a divergent susceptibility. We confirm
that divergences of susceptibilities occur while the cou-
pling constants remain small, which justifies the one-loop
RG analysis [38].

The phase diagram shows that singlet SC is adjacent
to CDW0, while triplet SC is adjacent to SDW0. For
parameters near the phase boundary between singlet SC
and CDW0 instability, Fig. 4(b) shows a nontrivial evolu-
tion of susceptibilities with the RG scale, or equivalently
decreasing temperature. Since the particle-hole channel
has a weaker nesting than the BCS channel, the CDW0

susceptibility is initially smaller than the SC susceptibil-
ities at y = 0. As the RG scale y increases, the CDW0

susceptibility grows steadily, and in an intermediate re-
gion, exceeds SC susceptibility. However, at a later stage,
the SC susceptibility overtakes CDW and diverges first.

This intertwined behavior of singlet SC and CDW0 in-
stabilities can be understood from the RG flow of the
corresponding interaction strength [Eq. (8)]: 2g41 + 2g42
for the spin-singlet SC and 2g41 � g42 for CDW0 respec-
tively. Both share g41, and hence a negative g41 amplifies
the two fluctuations simultaneously, leading to the inter-
twinement rather than competition. On the other hand,
the two interactions di↵er in the sign of g42. A positive
g42 favors CDW0 instead of SC, hence makes CDW0 the
leading instability at an intermediate RG scale Fig. 4(b).
Nonetheless, the RG flow in Fig. 3 reveals that g42 even-
tually flows from being positive to negative, making SC
susceptibility to diverge first.

This intertwined behavior between spin-singlet SC and
CDW0 is made possible by repulsive g42 and attrac-
tive g41. The repulsive interaction g42 naturally arises
from the Coulomb interaction between electrons, while

the attractive interaction g41 can arise from the in-
tervalley electron-phonon coupling. Note that typical
phonon energy in graphene is much higher than the
mini-band width, hence it is reasonable to integrate out
the phonons and work directly with phonon-mediated
electron-electron interaction [10].

With the simplification of g31 = g32 = 0, di↵erent
patches related by three-fold rotations are decoupled.
This leads to a degeneracy between s- and d-wave pair-
ings, and between p- and f -wave. RG analysis with
four coupling constants g31, g32, g41, and g42 can be
found in SM [38]. Moreover, depending on Fermi sur-
face shape, the other two nesting parameters d1� and
d3� can become important in determining possible insta-
bilities. With three nesting parameters da�, we also find
that interaction can drive instabilities associated with in-
tervalley CDW and SDW at wave vector Q

� and PDW
at wave vector Q+ [38].

We now compare our main result—the intertwinement
of superconductivity and density-wave instabilities—
with the experiment of twisted bilayer graphene [1]. Near
n = 2 filling, resistivity measurement at zero magnetic
field observes a metallic behavior at high temperatures,
then an upturn of resistivity in an intermediate tempera-
ture region, before superconductivity appears at the low-
est temperature. Furthermore, the in-plane upper critical
field of the superconducting state is found to be compa-
rable to the Pauli limit, indicating spin-singlet pairing.
The change from insulating to superconducting behaviors
is consistent with the intertwined CDW and spin-singlet
SC instabilities, shown by the evolution of susceptibility
with decreasing energy scale in Fig. 4(b). Finally, when
superconductivity is destroyed by the magnetic field, re-
sistivity becomes insulating at the lowest temperature.
We interpret this T = 0 insulating state as a CDW state
where three ordering wave vectors Q0 related by C3 sym-
metry are simultaneously present. At strong coupling,
such three-Q0 CDW order is expected to gap the original
Fermi surface completely, leading to an insulating state.
We leave a further analysis of CDW states in twisted
bilayer graphene for the future.
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susceptibilities for possible orders. We show the results for two cases with di↵erent strength of nesting: (c), (e) d1� = 0.4 and
(d), (f) d1� = d3� = 0.25. The vertical dashed lines indicate the positions where instabilities occur.

particle-hole channel (d1� > 0) increases g22 under RG.
Therefore, in the presence of Fermi surface nesting, only
g22 grows without suppression from the BCS process and
thus strongly enhances the Q

� density wave fluctuation,
making it dominate over the Q

0 density wave.
Although g32 and g42 both decrease under RG, the for-

mer decreases slower because BCS process and density
wave nesting at wave vector Q� tend to renormalize g32

in the opposite way; see Eq. (11). Therefore, a negative
g42 � g32 < 0 is generated and its magnitude grows un-
der RG. As shown in Eqs. (17) and (18), this attraction
provides pairing interaction for both d-SC and p-SC and
thus enhances these superconducting susceptibilities, see
Fig. 4(f). The attractive pairing interaction should be

stronger than that for the Q
� density wave. Fermi sur-

face nesting in the particle-particle channel (d3� > 0) as-
sists superconductivity in that it suppresses the increase
of g22. Finite nesting in the particle-particle channel
yields nonzero PDW susceptibility, but the interaction
is repulsive for the PDW+ fluctuation; see Eq. (23).

We conclude that in the presence of repulsive interval-
ley density interactions, the two leading instabilities are
charge/spin density wave at wave vector Q

� and p/d-
wave superconductivity. When the Fermi surface nesting
in the particle-hole channel is strong (weak), the density
wave state (superconductivity) is favored.
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FIG. 6: (a) Reduced Brillouin zone in a triple-Q density-wave
state. We assume the three ordering vectors Qj (j = 1, 2, 3),
which are parallel to the �–M lines and satisfy |Qj | = Q� =
G/4. (b) Energy spectrum in the CDW� or collinear SDW�

state with order parameter � = 0.16D. D is the original
conduction bandwidth. There are 32 bands in the reduced
Brillouin zone and the 17th band from the bottom is colored
in red. Filling of 16 bands corresponds to the filling n = 2.

vectors related by the C3 rotational symmetry:

Q1 = Q
�n0, Q2 = Q

�n2⇡/3, Q3 = Q
�n�2⇡/3.

(25)

with n� = (cos�, sin�). Below we shall consider a triple-
Q CDW state, where the above three wave vectors form
the new reciprocal vectors, and hence define the reduced
Brillouin zone. Compared to a single-Q state, the triple-
Q state is expected to be energetically favorable as it
gaps more parts of the Fermi surface especially around
the hot spots with large DOS.

In the CDW� state, intervalley order parameter
h †

k+Qi,⌧�
 k⌧̄�i (⌧̄ = �⌧) becomes nonzero. The mean-

field Hamiltonian in the CDW� state thus includes the
CDW potential in addition to the original electron dis-
persion:

HCDW =
X

k⌧


✏
⌧
k 

†
k⌧ k⌧ +�

3X

j=1

( †
k+Qj ,⌧

 k⌧̄ +H.c.)

�
.

(26)

Since the spin structure is irrelevant, we have dropped
the spin index �. Here we assume that the CDW order
parameters atQ1, Q2, Q3 are equal, so that the resulting
state is invariant under the three-fold rotation.

For the original Fermi surface shown in Fig. 1, the
CDW� wave vector connecting a pair of hot spots is close
to the commensurate vector Q� ' |�M|/2 = G/4, where
G is the length of the original reciprocal lattice vectors
of twisted bilayer graphene. (The analytic expression of
the energy dispersion in the normal state ✏⌧k is given in
Appendix E.) With this choice of CDW wave vector Q�,
the reduced Brillouin zone is 4⇥ 4 smaller than the orig-
inal Brillouin zone and can be constructed as shown in
Fig. 6(a). Since there are two conduction bands (one per
valley) in the original Brillouin zone, there are 32 bands
in the reduced Brillouin zone. A complete filling of 16

bands corresponds to the filling of n = 2, where corre-
lated insulating behavior was experimentally observed.
When the CDW� order parameter is small, the Fermi

surface at the filling n = 2 is not fully gapped due to
imperfect nesting. A full gap appears for � & �c. For
a realistic Fermi surface with good nesting condition, we
find the critical value of the order parameter�c = 0.15D,
where D is the bandwidth of the original conduction
band. The fact �c ⌧ D justifies our weak coupling ap-
proach.
The gapped energy spectrum in the CDW� state with

� = 0.16D is presented in Fig. 6(b). Importantly, we
note that the direct gap in the CDW state is located at
� in the reduced Brillouin zone. A single electron pocket
(with two-fold spin degeneracy) is present above the gap,
while two nearly degenerate hole pockets are present be-
low the gap. The hole pockets have much heavier mass
than the electron. These features are consistent with
quantum oscillation measurements at densities slightly
away from n = 2, as we shall discuss in the next section.
For the commensurate CDW state with Q

� = G/4
considered here, the scattering process labeled by g43 car-
ries momentum 2Q0 = 4Q� = G, and thus it is allowed.
This process corresponds to the intervalley exchange in-
teraction and it is presumably smaller than intravalley
and intervalley density interactions. We confirm that in-
clusion of small g43 does not alter the RG flow much, and
we obtain qualitatively the same result [42].

VI. DISCUSSIONS

In this section, we compare our results with the exper-
iments on twisted bilayer graphene [1]. We have found
from RG analysis the intertwining of unconventional su-
perconductivity and density-wave instabilities. We have
obtained from band structure calculations the gapped
spectrum of density-wave states at the filling n = 2.

On the experiment side, the resistivity measurement at
zero magnetic field near n = 2 observes a metallic behav-
ior at high temperatures, then an upturn of resistivity in
an intermediate temperature region, before superconduc-
tivity appears at the lowest temperature. Furthermore,
the in-plane upper critical field of the superconducting
state is found to be comparable to the Pauli limit, indi-
cating spin-singlet pairing. The change from insulating
to superconducting behaviors is consistent with the inter-
twined density wave and SC instabilities, shown by the
evolution of susceptibility with decreasing energy scale
in Figs. 4(e), (f) and also Figs. 5(e)–(f). Finally, when
superconductivity is destroyed by the magnetic field, re-
sistivity becomes insulating at the lowest temperature.

We interpret this T = 0 insulating state as a
CDW/SDW state at wave vector Q�. We have analyzed
a triple-Q� CDW/collinear SDW phase with 4 ⇥ 4 pe-
riodicity and have shown that a moderate density-wave
order parameter fully gaps the energy spectrum at the
filling n = 2, consistent with the insulating behavior of
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approaches zero23. Instead, we interpret the dependence of Tc on the 
in-plane magnetic field B! as a result of paramagnetic pair-breaking 
owing to the Zeeman energy. The zero-temperature in-plane critical 
field is extrapolated to be around 1.1 T, which is higher than but close 
to the value in the Pauli limit of Bp ≈ 1.85 T K−1 × Tc ≈ 0.93 T, estimated 
on the basis of the Bardeen–Cooper–Schrieffer (BCS) gap formula 
∆ ≈ 1.76kBTc, where kB is the Boltzmann constant.

We note that the superconductor–metal transition in magic-angle 
TBG is not sharp, so extracting both Bc and Tc has some uncertainty. 
Qualitatively, the dependence of the in-plane critical field on tempera-
ture is Bc! ∝ (1 − T/Tc)1/2 near Tc (ref. 27). The results described above 
are consistent with the existence of two-dimensional superconductivity 
confined in an atomically thin space. As we show in the following, 
the coherence length ξ is comparable to the inter-particle spacing and 
might suggest that the system is driven close to a crossover between 
a BCS-like state and a Bose–Einstein condensate (the BCS–BEC 
crossover).

Phase diagram of magic-angle TBG
The phase diagram of magic-angle TBG consists of correlated insu-
lator phases and superconducting phases, which can be realized via 
continuous tuning of temperature, magnetic field and carrier density. 
Similarly to the superconducting domes discussed above, the correlated 
Mott-like insulator phase at half-filling also assumes a dome shape, 
with a transition to a metallic phase at about 4–6 K and centred around 
half-filling density. It has been shown18 that the Mott-like insulator 
phase crosses over to a metallic phase upon application of a strong mag-
netic field of around 6 T either perpendicular or parallel to the devices. 
A plausible explanation for this crossover is that the many-body charge 
gap is closed by the Zeeman energy.

In Fig. 4a–c we show the resistance versus temperature data meas-
ured in device M1 at zero magnetic field, B⊥ = 0.4 T and B⊥ = 8 T, 
respectively. At zero field, we observe the transition from a metal at high 
temperatures (above 5 K) to a superconductor. Close to half-filling there 

is an intermediate region in which insulating temperature dependence 
is observed from about 1 K to 4 K (above Tc); we identify this region 
as corresponding to the Mott-like insulating phase at half-filling. In a 
small magnetic field B⊥ = 0.4 T, which is above the critical magnetic 
field, the system remains an insulator down to zero temperature near 
half-filling and a metal away from half-filling. Finally, in a strong mag-
netic field B⊥ = 8 T, the correlated insulator phase is fully suppressed 
by the Zeeman effect and the system is metallic everywhere between 
n = −ns and the charge neutrality point. Our data highlight the rich 
phase space of metal–insulator–superconducting physics in magic- 
angle TBG28. A schematic of the evolution of the phase diagram as the 
magnetic field increases is shown in Fig. 4d–f.

Quantum oscillations in the normal state
We studied quantum oscillations in the entire accessible density range, 
including in the vicinity of the correlated insulating state at which 
superconductivity occurs. In Fig. 5a, b we show the Shubnikov–de 
Haas oscillations in longitudinal resistance Rxx as a function of carrier 
density for the hole-doped region (EF < 0) for device M2. The Landau 
levels in a TBG superlattice typically follow n/ns = Nφ/φ0 + s, where 
φ = B⊥A is the magnetic flux that penetrates each unit cell, φ0 = h/e 
is the (non-superconducting) flux quantum, N = ±1, ±2, ±3, … is 
the Landau-level index, s = 0 denotes the Landau fan that emanates 
from the Dirac point, and s = ±1 denote the Landau fans that result 
from electron-like or hole-like quasiparticles near the band edges of 
the single-particle superlattice bands in the mini Brillouin zone, which 
emanate from ±ns. The Landau levels also exhibit a four-fold degen-
eracy due to spins and valleys, and so the filling-factor sequence is 
±4, ±8, ±12, …

Unexpectedly, in addition to these expected Landau fans, we also 
observe a Landau fan that emanates from the correlated insulating 
state at −ns/2. This Landau fan has N = −1/2, −1, −3/2, −2, … (that 
is, filling factors of −2, −4, −6, −8, …) and s = −1/2. The supercon-
ducting dome is distinguishable in Fig. 5a directly beneath this Landau 
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Figure 4 | Temperature–density phase diagrams of magic-angle TBG 
at different magnetic fields. a–c, Rxx–T curves for device M1 at different 
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B⊥ = 8 T (c). The magnetic field induces a superconductor–insulator–

metal transition at the lowest temperatures. d–f, Schematic phase diagrams 
for the magnetic fields in a–c. The horizontal axis shows the relative filling 
n/ns. Short coloured lines at the top and bottom of the plots denote the 
densities plotted in a–c.
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VII. MOTT INSULATOR AND TOPOLOGICAL
ORDER

One approach towards a strong-coupling Mott state
is to start from the adjacent superconducting state and
then suppress the U(1)c charge fluctuation by prolifer-
ating double vortices of the superconductivity (SC) or-
der parameter (or equivalently 2⇡ fluxes seen by the
electron).[46–50] Single vortices of the SC order param-
eter become anyonic excitations in the resulting Mott
state, such that the Mott phase acquires intrinsic topo-
logical order.[51, 52] In this approach, the nature of the
topological order in the Mott phase will be closely related
to the nature of the SC order in the adjacent SC phase.

On the field theory level, this amounts to first frac-
tionalizing the electron cv� into a bosonic parton b and
a fermionic parton fv� as cv� = bfv� following a slave-
boson approach[53–56], where v = K,K

0 labels the valley
and � =", # labels the spin. Both bosonic and fermionic
partons couple to the emergent gauge field. We assign
the U(1)c symmetry charge to the bosonic parton and
the U(1)v ⇥ SO(4) symmetry charge to the fermionic
parton, in close analogy to the spin-charge separation
in cuprates[57–59]. The fermionic parton is assumed to
be in one of the SC state, such that once the bosonic par-
ton condenses, the electronic SC state will be recovered.
As we go from the (electronic) SC phase to the Mott
phase, the bosonic parton is expected to acquire a gap
across the transition, such that the charge fluctuations
will be gapped and the U(1)c symmetry will be restored
in the Mott phase. Then the fermionic parton SC state
essentially becomes a (generalized version of) quantum
spin liquid with intrinsic topological order and symmetry
fractionalization[60–64] of valley and spin quantum num-
bers. Hence such a Mott state may be called a valley-spin
liquid (VSL). Di↵erent types of SC states correspond to
di↵erent types of Mott states, as summarized in Tab. II.

TABLE II. Possible Mott states originated from adjacent SC
states.

SC phase Mott phase

type pairing state symmetry

chiral
d+ id SO(8)1 VSL U(1)c ⇥U(1)v
p� ip SO(4)�1 VSL ⇥SO(3)

helical
d± id Z2 VSL + BSPT U(1)c ⇥U(1)v
p⌥ ip Z2 VSL (SET) ⇥U(1)s ⇥ ZT

2

nematic d or p
gapless Z2 VSL U(1)c ⇥U(1)v
+ nematic order ⇥SO(3)⇥ ZT

2 , C3

The chiral VSL sate can be viewed as the d + id (or
p�ip) chiral TSC state of the fermionic parton, which en-
joys the SO(8)1 (or SO(4)�1) topological order.[65] They
admit Abelian Chern-Simon theory[66–70] descriptions

LCS = 1
4⇡KIJa

I
^ daJ with the K matrices given by

KSO(4)�1
=

"
�2 0

0 �2

#
,KSO(8)1 =

 2 �1 �1 �1
�1 2 0 0
�1 0 2 0
�1 0 0 2

�
. (13)

Both topological orders have four anyon sectors, labeled
by 1, e, m and ". In the SO(4)�1 topological order state,
e and m anyons are semions: one carries spin-1/2 (the
projective representation of SO(3)) and no valley charge
(the U(1)v charge), the other carries valley charge ±1
and spin-0. They fuse to the fermionic spinon " that
carries both spin-1/2 and valley charge. This symme-
try fractionalization pattern can be infer from the fact
that the ⇡-flux core in the p � ip TSC traps 4 Majo-
rana zero modes �1,2,3,4, which splits into two sectors
(di↵ered by fermion parity) under the four-fermion inter-
action H = V �1�2�3�4, and the U(1)v and SO(3) acts
separately in either one of the sectors.[71] After gaug-
ing the fermion parity, the two sectors are promoted to
e and m anyons respectively. In the SO(8)1 topologi-
cal order state, e, m, " are all fermions. m carries no
symmetry charge (because now the ⇡-flux core traps 8
Majorana zero modes, which can be trivialized by the
interaction in the even fermion parity sector), but e car-
ries the same symmetry charges as the fermionic spinon
". The chiral VSL states are characterized by their non-
trivial chiral central charges: c = �2 for SO(4)�1 and
c = 4 for SO(8)1. In the ideal case, the chiral central
charge can be detected from the thermal Hall conduc-
tance as H = c⇡k
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T/(6~).[72–74]

Now we turn to the helical VSL states, correspond-
ing to the helical TSC states of fermionic partons. Both
the d-wave and the p-wave parton TSC states lead to
the Z2 topological order (described by the K matrix
KZ2 = [ 0 2

2 0 ]).[75] Their di↵erence lies in a topological
response of the U(1)v ⇥ U(1)s symmetry, which might
be called the valley-spin Hall conductance �vsH, defined
as the coe�cient in the following the e↵ective response
theory[76–78]

L[Av, As] =
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2⇡
Av ^ dAs, (14)

where Av and As are the background fields that probe
the U(1)v ⇥ U(1)s symmetry. The Z2 topological order
have four anyon sectors: 1, e, m and ", where e and
m are bosons with mutual-semionic statistics, and they
fuse to the fermionic parton ". For the p-wave helical
VSL, e and m must separately carry either the U(1)v or
the U(1)s symmetry charge, and " carries both charges.
The mutual-semionic statistics between e and m implies
that the p-wave helical VSL state will have a fraction-
alized valley-spin Hall conductance �vsH = �1/2. More-
over, because the fermionic spinon " is a Kramers doublet
(T 2 = �1) under the time-reversal symmetry,[79] it must
be the case that one of e or m is a Kramers doublet and
the other one is a Kramers singlet (T 2 = +1), such that
the time-reversal anomaly vanishes[80, 81]. So the p-wave
helical VSL state is a U(1)v ⇥U(1)s ⇥ ZT

2 symmetry[82]
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One approach towards a strong-coupling Mott state
is to start from the adjacent superconducting state and
then suppress the U(1)c charge fluctuation by prolifer-
ating double vortices of the superconductivity (SC) or-
der parameter (or equivalently 2⇡ fluxes seen by the
electron).[46–50] Single vortices of the SC order param-
eter become anyonic excitations in the resulting Mott
state, such that the Mott phase acquires intrinsic topo-
logical order.[51, 52] In this approach, the nature of the
topological order in the Mott phase will be closely related
to the nature of the SC order in the adjacent SC phase.

On the field theory level, this amounts to first frac-
tionalizing the electron cv� into a bosonic parton b and
a fermionic parton fv� as cv� = bfv� following a slave-
boson approach[53–56], where v = K,K

0 labels the valley
and � =", # labels the spin. Both bosonic and fermionic
partons couple to the emergent gauge field. We assign
the U(1)c symmetry charge to the bosonic parton and
the U(1)v ⇥ SO(4) symmetry charge to the fermionic
parton, in close analogy to the spin-charge separation
in cuprates[57–59]. The fermionic parton is assumed to
be in one of the SC state, such that once the bosonic par-
ton condenses, the electronic SC state will be recovered.
As we go from the (electronic) SC phase to the Mott
phase, the bosonic parton is expected to acquire a gap
across the transition, such that the charge fluctuations
will be gapped and the U(1)c symmetry will be restored
in the Mott phase. Then the fermionic parton SC state
essentially becomes a (generalized version of) quantum
spin liquid with intrinsic topological order and symmetry
fractionalization[60–64] of valley and spin quantum num-
bers. Hence such a Mott state may be called a valley-spin
liquid (VSL). Di↵erent types of SC states correspond to
di↵erent types of Mott states, as summarized in Tab. II.
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2

nematic d or p
gapless Z2 VSL U(1)c ⇥U(1)v
+ nematic order ⇥SO(3)⇥ ZT

2 , C3

The chiral VSL sate can be viewed as the d + id (or
p�ip) chiral TSC state of the fermionic parton, which en-
joys the SO(8)1 (or SO(4)�1) topological order.[65] They
admit Abelian Chern-Simon theory[66–70] descriptions

LCS = 1
4⇡KIJa

I
^ daJ with the K matrices given by

KSO(4)�1
=

"
�2 0
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#
,KSO(8)1 =
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�
. (13)
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have four anyon sectors: 1, e, m and ", where e and
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fuse to the fermionic parton ". For the p-wave helical
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the U(1)s symmetry charge, and " carries both charges.
The mutual-semionic statistics between e and m implies
that the p-wave helical VSL state will have a fraction-
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over, because the fermionic spinon " is a Kramers doublet
(T 2 = �1) under the time-reversal symmetry,[79] it must
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Topological Order and Mott Insulator
• These topological order all have four anyon sectors, labeled 

by {1, e, m, f}

• Chiral Valley-Spin Liquid (VSL)
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• e and m are semions: one carries spin-1/2, the other 
carries valley charge.

• They fuse to fermion f, that carries both spin and valley 
quantum numbers.
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• e, m, f are fermions: m carries no symmetry charge; e 
and f carries both spin and valley.

• Chiral central charge → thermal Hall conductance

9

VII. MOTT INSULATOR AND TOPOLOGICAL
ORDER

One approach towards a strong-coupling Mott state
is to start from the adjacent superconducting state and
then suppress the U(1)c charge fluctuation by prolifer-
ating double vortices of the superconductivity (SC) or-
der parameter (or equivalently 2⇡ fluxes seen by the
electron).[46–50] Single vortices of the SC order param-
eter become anyonic excitations in the resulting Mott
state, such that the Mott phase acquires intrinsic topo-
logical order.[51, 52] In this approach, the nature of the
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boson approach[53–56], where v = K,K
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partons couple to the emergent gauge field. We assign
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the U(1)v ⇥ SO(4) symmetry charge to the fermionic
parton, in close analogy to the spin-charge separation
in cuprates[57–59]. The fermionic parton is assumed to
be in one of the SC state, such that once the bosonic par-
ton condenses, the electronic SC state will be recovered.
As we go from the (electronic) SC phase to the Mott
phase, the bosonic parton is expected to acquire a gap
across the transition, such that the charge fluctuations
will be gapped and the U(1)c symmetry will be restored
in the Mott phase. Then the fermionic parton SC state
essentially becomes a (generalized version of) quantum
spin liquid with intrinsic topological order and symmetry
fractionalization[60–64] of valley and spin quantum num-
bers. Hence such a Mott state may be called a valley-spin
liquid (VSL). Di↵erent types of SC states correspond to
di↵erent types of Mott states, as summarized in Tab. II.
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p�ip) chiral TSC state of the fermionic parton, which en-
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Both topological orders have four anyon sectors, labeled
by 1, e, m and ". In the SO(4)�1 topological order state,
e and m anyons are semions: one carries spin-1/2 (the
projective representation of SO(3)) and no valley charge
(the U(1)v charge), the other carries valley charge ±1
and spin-0. They fuse to the fermionic spinon " that
carries both spin-1/2 and valley charge. This symme-
try fractionalization pattern can be infer from the fact
that the ⇡-flux core in the p � ip TSC traps 4 Majo-
rana zero modes �1,2,3,4, which splits into two sectors
(di↵ered by fermion parity) under the four-fermion inter-
action H = V �1�2�3�4, and the U(1)v and SO(3) acts
separately in either one of the sectors.[71] After gaug-
ing the fermion parity, the two sectors are promoted to
e and m anyons respectively. In the SO(8)1 topologi-
cal order state, e, m, " are all fermions. m carries no
symmetry charge (because now the ⇡-flux core traps 8
Majorana zero modes, which can be trivialized by the
interaction in the even fermion parity sector), but e car-
ries the same symmetry charges as the fermionic spinon
". The chiral VSL states are characterized by their non-
trivial chiral central charges: c = �2 for SO(4)�1 and
c = 4 for SO(8)1. In the ideal case, the chiral central
charge can be detected from the thermal Hall conduc-
tance as H = c⇡k
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T/(6~).[72–74]

Now we turn to the helical VSL states, correspond-
ing to the helical TSC states of fermionic partons. Both
the d-wave and the p-wave parton TSC states lead to
the Z2 topological order (described by the K matrix
KZ2 = [ 0 2

2 0 ]).[75] Their di↵erence lies in a topological
response of the U(1)v ⇥ U(1)s symmetry, which might
be called the valley-spin Hall conductance �vsH, defined
as the coe�cient in the following the e↵ective response
theory[76–78]

L[Av, As] =
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Av ^ dAs, (14)

where Av and As are the background fields that probe
the U(1)v ⇥ U(1)s symmetry. The Z2 topological order
have four anyon sectors: 1, e, m and ", where e and
m are bosons with mutual-semionic statistics, and they
fuse to the fermionic parton ". For the p-wave helical
VSL, e and m must separately carry either the U(1)v or
the U(1)s symmetry charge, and " carries both charges.
The mutual-semionic statistics between e and m implies
that the p-wave helical VSL state will have a fraction-
alized valley-spin Hall conductance �vsH = �1/2. More-
over, because the fermionic spinon " is a Kramers doublet
(T 2 = �1) under the time-reversal symmetry,[79] it must
be the case that one of e or m is a Kramers doublet and
the other one is a Kramers singlet (T 2 = +1), such that
the time-reversal anomaly vanishes[80, 81]. So the p-wave
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the U(1)v ⇥ SO(4) symmetry charge to the fermionic
parton, in close analogy to the spin-charge separation
in cuprates[57–59]. The fermionic parton is assumed to
be in one of the SC state, such that once the bosonic par-
ton condenses, the electronic SC state will be recovered.
As we go from the (electronic) SC phase to the Mott
phase, the bosonic parton is expected to acquire a gap
across the transition, such that the charge fluctuations
will be gapped and the U(1)c symmetry will be restored
in the Mott phase. Then the fermionic parton SC state
essentially becomes a (generalized version of) quantum
spin liquid with intrinsic topological order and symmetry
fractionalization[60–64] of valley and spin quantum num-
bers. Hence such a Mott state may be called a valley-spin
liquid (VSL). Di↵erent types of SC states correspond to
di↵erent types of Mott states, as summarized in Tab. II.
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by 1, e, m and ". In the SO(4)�1 topological order state,
e and m anyons are semions: one carries spin-1/2 (the
projective representation of SO(3)) and no valley charge
(the U(1)v charge), the other carries valley charge ±1
and spin-0. They fuse to the fermionic spinon " that
carries both spin-1/2 and valley charge. This symme-
try fractionalization pattern can be infer from the fact
that the ⇡-flux core in the p � ip TSC traps 4 Majo-
rana zero modes �1,2,3,4, which splits into two sectors
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action H = V �1�2�3�4, and the U(1)v and SO(3) acts
separately in either one of the sectors.[71] After gaug-
ing the fermion parity, the two sectors are promoted to
e and m anyons respectively. In the SO(8)1 topologi-
cal order state, e, m, " are all fermions. m carries no
symmetry charge (because now the ⇡-flux core traps 8
Majorana zero modes, which can be trivialized by the
interaction in the even fermion parity sector), but e car-
ries the same symmetry charges as the fermionic spinon
". The chiral VSL states are characterized by their non-
trivial chiral central charges: c = �2 for SO(4)�1 and
c = 4 for SO(8)1. In the ideal case, the chiral central
charge can be detected from the thermal Hall conduc-
tance as H = c⇡k
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Now we turn to the helical VSL states, correspond-
ing to the helical TSC states of fermionic partons. Both
the d-wave and the p-wave parton TSC states lead to
the Z2 topological order (described by the K matrix
KZ2 = [ 0 2

2 0 ]).[75] Their di↵erence lies in a topological
response of the U(1)v ⇥ U(1)s symmetry, which might
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as the coe�cient in the following the e↵ective response
theory[76–78]
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fuse to the fermionic parton ". For the p-wave helical
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that the p-wave helical VSL state will have a fraction-
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over, because the fermionic spinon " is a Kramers doublet
(T 2 = �1) under the time-reversal symmetry,[79] it must
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over, because the fermionic spinon " is a Kramers doublet
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be the case that one of e or m is a Kramers doublet and
the other one is a Kramers singlet (T 2 = +1), such that
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then suppress the U(1)c charge fluctuation by prolifer-
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der parameter (or equivalently 2⇡ fluxes seen by the
electron).[46–50] Single vortices of the SC order param-
eter become anyonic excitations in the resulting Mott
state, such that the Mott phase acquires intrinsic topo-
logical order.[51, 52] In this approach, the nature of the
topological order in the Mott phase will be closely related
to the nature of the SC order in the adjacent SC phase.

On the field theory level, this amounts to first frac-
tionalizing the electron cv� into a bosonic parton b and
a fermionic parton fv� as cv� = bfv� following a slave-
boson approach[53–56], where v = K,K

0 labels the valley
and � =", # labels the spin. Both bosonic and fermionic
partons couple to the emergent gauge field. We assign
the U(1)c symmetry charge to the bosonic parton and
the U(1)v ⇥ SO(4) symmetry charge to the fermionic
parton, in close analogy to the spin-charge separation
in cuprates[57–59]. The fermionic parton is assumed to
be in one of the SC state, such that once the bosonic par-
ton condenses, the electronic SC state will be recovered.
As we go from the (electronic) SC phase to the Mott
phase, the bosonic parton is expected to acquire a gap
across the transition, such that the charge fluctuations
will be gapped and the U(1)c symmetry will be restored
in the Mott phase. Then the fermionic parton SC state
essentially becomes a (generalized version of) quantum
spin liquid with intrinsic topological order and symmetry
fractionalization[60–64] of valley and spin quantum num-
bers. Hence such a Mott state may be called a valley-spin
liquid (VSL). Di↵erent types of SC states correspond to
di↵erent types of Mott states, as summarized in Tab. II.
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The chiral VSL sate can be viewed as the d + id (or
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joys the SO(8)1 (or SO(4)�1) topological order.[65] They
admit Abelian Chern-Simon theory[66–70] descriptions

LCS = 1
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I
^ daJ with the K matrices given by
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=

"
�2 0
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#
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�
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2
B
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in cuprates[57–59]. The fermionic parton is assumed to
be in one of the SC state, such that once the bosonic par-
ton condenses, the electronic SC state will be recovered.
As we go from the (electronic) SC phase to the Mott
phase, the bosonic parton is expected to acquire a gap
across the transition, such that the charge fluctuations
will be gapped and the U(1)c symmetry will be restored
in the Mott phase. Then the fermionic parton SC state
essentially becomes a (generalized version of) quantum
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the d-wave and the p-wave parton TSC states lead to
the Z2 topological order (described by the K matrix
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TABLE II. Possible Mott states originated from adjacent SC
states.

SC phase Mott phase

type pairing state symmetry

chiral
d+ id SO(8)1 VSL U(1)c ⇥U(1)v
p� ip SO(4)�1 VSL ⇥SO(3)

helical
d± id Z2 VSL + BSPT U(1)c ⇥U(1)v
p⌥ ip Z2 VSL (SET) ⇥U(1)s ⇥ ZT

2

nematic d or p
gapless Z2 VSL U(1)c ⇥U(1)v
+ nematic order ⇥SO(3)⇥ ZT

2 , C3

The chiral VSL sate can be viewed as the d + id (or
p�ip) chiral TSC state of the fermionic parton, which en-
joys the SO(8)1 (or SO(4)�1) topological order.[65] They
admit Abelian Chern-Simon theory[66–70] descriptions

LCS = 1
4⇡KIJa

I
^ daJ with the K matrices given by

KSO(4)�1
=

"
�2 0

0 �2

#
,KSO(8)1 =

 2 �1 �1 �1
�1 2 0 0
�1 0 2 0
�1 0 0 2

�
. (13)

Both topological orders have four anyon sectors, labeled
by 1, e, m and ". In the SO(4)�1 topological order state,
e and m anyons are semions: one carries spin-1/2 (the
projective representation of SO(3)) and no valley charge
(the U(1)v charge), the other carries valley charge ±1
and spin-0. They fuse to the fermionic spinon " that
carries both spin-1/2 and valley charge. This symme-
try fractionalization pattern can be infer from the fact
that the ⇡-flux core in the p � ip TSC traps 4 Majo-
rana zero modes �1,2,3,4, which splits into two sectors
(di↵ered by fermion parity) under the four-fermion inter-
action H = V �1�2�3�4, and the U(1)v and SO(3) acts
separately in either one of the sectors.[71] After gaug-
ing the fermion parity, the two sectors are promoted to
e and m anyons respectively. In the SO(8)1 topologi-
cal order state, e, m, " are all fermions. m carries no
symmetry charge (because now the ⇡-flux core traps 8
Majorana zero modes, which can be trivialized by the
interaction in the even fermion parity sector), but e car-
ries the same symmetry charges as the fermionic spinon
". The chiral VSL states are characterized by their non-
trivial chiral central charges: c = �2 for SO(4)�1 and
c = 4 for SO(8)1. In the ideal case, the chiral central
charge can be detected from the thermal Hall conduc-
tance as H = c⇡k

2
B
T/(6~).[72–74]

Now we turn to the helical VSL states, correspond-
ing to the helical TSC states of fermionic partons. Both
the d-wave and the p-wave parton TSC states lead to
the Z2 topological order (described by the K matrix
KZ2 = [ 0 2

2 0 ]).[75] Their di↵erence lies in a topological
response of the U(1)v ⇥ U(1)s symmetry, which might
be called the valley-spin Hall conductance �vsH, defined
as the coe�cient in the following the e↵ective response
theory[76–78]

L[Av, As] =
�vsH

2⇡
Av ^ dAs, (14)

where Av and As are the background fields that probe
the U(1)v ⇥ U(1)s symmetry. The Z2 topological order
have four anyon sectors: 1, e, m and ", where e and
m are bosons with mutual-semionic statistics, and they
fuse to the fermionic parton ". For the p-wave helical
VSL, e and m must separately carry either the U(1)v or
the U(1)s symmetry charge, and " carries both charges.
The mutual-semionic statistics between e and m implies
that the p-wave helical VSL state will have a fraction-
alized valley-spin Hall conductance �vsH = �1/2. More-
over, because the fermionic spinon " is a Kramers doublet
(T 2 = �1) under the time-reversal symmetry,[79] it must
be the case that one of e or m is a Kramers doublet and
the other one is a Kramers singlet (T 2 = +1), such that
the time-reversal anomaly vanishes[80, 81]. So the p-wave
helical VSL state is a U(1)v ⇥U(1)s ⇥ ZT

2 symmetry[82]

10

enriched topological (SET) state[83–85]. For the d-wave
helical VSL, m can be charge neutral and Kramers sin-
glet, whereas e and " both carry the U(1)v⇥U(1)s charge
and are Kramers doublet. This can be viewed as a trivial
Z2 topological order on top of a U(1)v ⇥ U(1)s bosonic
symmetry protected topological (BSPT) state.[69, 86–91]
The Z2 topological order can be removed by condensing
the charge neutral boson m. Then the Mott insulator
simply realizes a U(1)v ⇥ U(1)s BSPT state with quan-
tized valley-spin Hall conductance �vsH = 1.

Finally, if we start with the nematic superconductor,
the corresponding Mott state will be a gapless Z2 VSL
with nodal fermionic partons and gapped visons.[44] The
symmetry of this VSL state is U(1)c ⇥ U(1)v ⇥ SO(3)⇥
ZT
2 . Like the nematic superconductor, the C3 rotation

symmetry is still broken in the VSL state, so there will
be a coexisting nematic order in this Mott insulator.

In all cases, the emergent SO(4) symmetry is broken
in the Mott phase. But the remaining symmetry is still
su�cient to protect a two-fold degeneracy of the electron.
For the chiral VSL, the electron transforms (projectively)
as spin-1/2 (spinor representation) of the SO(3) symme-
try. For the helical VSL, the electron forms Kramers
doublet under the time-reversal symmetry. For the ne-
matic VSL, both SO(3) and time-reversal protections are
present. The symmetry protected two-fold degeneracy in
the valley-spin space is consistent with the experimen-
tally observed Landau fan[14] near the Mott phase with
the filling-factor sequence 2, 4, 6, · · · . Consider for exam-
ple, the spin singlet VSL phase, which is connected to the
spin singlet chiral superconductor. Here, spin degeneracy
is present, and although valley remains a good quantum
number, since the phase itself breaks time reversal sym-
metry, the degeneracy between opposite valleys is lost.
Although it is hard to estimate the strength of this ef-
fect, the symmetry dictated degeneracy is just twofold.

VIII. BREAKING SO(4) SYMMETRY

Both the IVCW and the TSC phases break the emer-
gent SO(4) symmetry, as their order parameters I

µ and
�µ are SO(4) vectors. The four (complex) components of
the order parameters correspond to the orderings in the
spin-singlet and the spin-triplet channels, which are de-
generated in the presence of the SO(4) symmetry. How-
ever, the SO(4) symmetry is never exact in reality. The
explicit SO(4) symmetry breaking can split the degener-
acy. We will analyze the e↵ects of the SO(4) symmetry
breaking in the following.

We first consider the Heisenberg spin-spin interaction
between valleys,

HJ =
X

q

J(q)SKq · SK0�q, (15)

where Svq =
P

k c
†
vk+q�cvk (for v = K,K

0) is the spin
operator. The J(q) < 0 (or J(q) > 0) case corresponds

to the Hunds (or anti-Hunds) interaction. It belongs to
the (1, 1) representation (the symmetric rank-2 tensor)
of the SO(4) ' SU(2)K ⇥ SU(2)K0 group, which locks
the two SU(2) subgroups together and breaks the SO(4)
symmetry down to SO(3). The interaction HJ admits
decompositions in the IVC and the pairing channel as

HJ '
1

8

X

k,q

J(q)(�3�0†
k+q�

0
k +�†

k+q ·�k) + · · · ,

'
1

8

X

q0,q

J(q0)(�3I0†q I
0
q + I†

q · Iq) + · · · ,

(16)

where �0 and I
0 are the spin-singlet orderings (as SO(3)

scalar), and � and I are the spin-triplet orderings (as
SO(3) vector). One can see the anti-Hunds interac-
tion (i.e. J(q) > 0) provides attractive interactions for
both the IVC and the pairing in the spin-singlet channel.
The anti-Hunds interaction could arise from the renor-
malized Hubbard interaction by integrating out high en-
ergy electrons.[21, 92] As we performed the RPA analy-
sis in the spin channel, we found J(q) is strongly peaked
around q = 0. Therefore, the singlet pairing can always
gain energy from the anti-Hunds interaction, regardless
of whether the pairing form factor changes sign along the
Fermi surface or not. In conclusion, the anti-Hunds in-
teraction breaks the emergent SO(4) symmetry in favor
of the spin-singlet ordering for both the IVCW and the
TSC phases, as summarized in Tab. III. Note that the
spin-singlet TSC can only be a chiral TSC as discussed
in Sec.V previously.

TABLE III. Orders favored by di↵erent interactions (marked
by X). IVCW: inter-valley coherence wave, TSC: (inter-
valley) topological superconductivity (d+ id/p� ip-wave), s-
SC: (inter-valley) s-wave superconductivity. I0 and �0 are
in the spin-singlet channel, I and � are in the spin-triplet
channel.

IVCW TSC s-SC

interaction I0 I �0 � �0 �

SO(4) symmetric X X X X
+SK · SK0 X X

�I0†I0
weak X X
strong X X

However, if the SO(4) symmetry breaking is imple-
mented in the IVC channel, the result can be very dif-
ferent. Suppose we consider the following enhanced at-
traction (i.e. g(q) < 0) in the I

0 channel, so as to single
out the spin-singlet IVCW order. The same interaction

p⌥ ip

d± id



Explicit SO(4) Symmetry Breaking
• SO(4) is not exact. There are always small SO(4) breaking 

terms.

• Inter-valley AFM spin-spin interaction (anti-Hund’s) 
 

• Spin locking

• Favors both spin-singlet IVC wave and spin-singlet pairing, 
which is consistent with the fact that Zeeman field kills both 
Mott and SC gaps.

• But the microscopic origin (and the generality) of anti-
Hund’s is not clear yet … 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enriched topological (SET) state[83–85]. For the d-wave
helical VSL, m can be charge neutral and Kramers sin-
glet, whereas e and " both carry the U(1)v⇥U(1)s charge
and are Kramers doublet. This can be viewed as a trivial
Z2 topological order on top of a U(1)v ⇥ U(1)s bosonic
symmetry protected topological (BSPT) state.[69, 86–91]
The Z2 topological order can be removed by condensing
the charge neutral boson m. Then the Mott insulator
simply realizes a U(1)v ⇥ U(1)s BSPT state with quan-
tized valley-spin Hall conductance �vsH = 1.

Finally, if we start with the nematic superconductor,
the corresponding Mott state will be a gapless Z2 VSL
with nodal fermionic partons and gapped visons.[44] The
symmetry of this VSL state is U(1)c ⇥ U(1)v ⇥ SO(3)⇥
ZT
2 . Like the nematic superconductor, the C3 rotation

symmetry is still broken in the VSL state, so there will
be a coexisting nematic order in this Mott insulator.

In all cases, the emergent SO(4) symmetry is broken
in the Mott phase. But the remaining symmetry is still
su�cient to protect a two-fold degeneracy of the electron.
For the chiral VSL, the electron transforms (projectively)
as spin-1/2 (spinor representation) of the SO(3) symme-
try. For the helical VSL, the electron forms Kramers
doublet under the time-reversal symmetry. For the ne-
matic VSL, both SO(3) and time-reversal protections are
present. The symmetry protected two-fold degeneracy in
the valley-spin space is consistent with the experimen-
tally observed Landau fan[14] near the Mott phase with
the filling-factor sequence 2, 4, 6, · · · . Consider for exam-
ple, the spin singlet VSL phase, which is connected to the
spin singlet chiral superconductor. Here, spin degeneracy
is present, and although valley remains a good quantum
number, since the phase itself breaks time reversal sym-
metry, the degeneracy between opposite valleys is lost.
Although it is hard to estimate the strength of this ef-
fect, the symmetry dictated degeneracy is just twofold.

VIII. BREAKING SO(4) SYMMETRY

Both the IVCW and the TSC phases break the emer-
gent SO(4) symmetry, as their order parameters I

µ and
�µ are SO(4) vectors. The four (complex) components of
the order parameters correspond to the orderings in the
spin-singlet and the spin-triplet channels, which are de-
generated in the presence of the SO(4) symmetry. How-
ever, the SO(4) symmetry is never exact in reality. The
explicit SO(4) symmetry breaking can split the degener-
acy. We will analyze the e↵ects of the SO(4) symmetry
breaking in the following.

We first consider the Heisenberg spin-spin interaction
between valleys,

HJ =
X

q

J(q)SKq · SK0�q, (15)

where Svq =
P

k c
†
vk+q�cvk (for v = K,K

0) is the spin
operator. The J(q) < 0 (or J(q) > 0) case corresponds

to the Hunds (or anti-Hunds) interaction. It belongs to
the (1, 1) representation (the symmetric rank-2 tensor)
of the SO(4) ' SU(2)K ⇥ SU(2)K0 group, which locks
the two SU(2) subgroups together and breaks the SO(4)
symmetry down to SO(3). The interaction HJ admits
decompositions in the IVC and the pairing channel as

HJ '
1

8

X

k,q

J(q)(�3�0†
k+q�

0
k +�†

k+q ·�k) + · · · ,

'
1

8

X

q0,q

J(q0)(�3I0†q I
0
q + I†

q · Iq) + · · · ,

(16)

where �0 and I
0 are the spin-singlet orderings (as SO(3)

scalar), and � and I are the spin-triplet orderings (as
SO(3) vector). One can see the anti-Hunds interac-
tion (i.e. J(q) > 0) provides attractive interactions for
both the IVC and the pairing in the spin-singlet channel.
The anti-Hunds interaction could arise from the renor-
malized Hubbard interaction by integrating out high en-
ergy electrons.[21, 92] As we performed the RPA analy-
sis in the spin channel, we found J(q) is strongly peaked
around q = 0. Therefore, the singlet pairing can always
gain energy from the anti-Hunds interaction, regardless
of whether the pairing form factor changes sign along the
Fermi surface or not. In conclusion, the anti-Hunds in-
teraction breaks the emergent SO(4) symmetry in favor
of the spin-singlet ordering for both the IVCW and the
TSC phases, as summarized in Tab. III. Note that the
spin-singlet TSC can only be a chiral TSC as discussed
in Sec.V previously.

TABLE III. Orders favored by di↵erent interactions (marked
by X). IVCW: inter-valley coherence wave, TSC: (inter-
valley) topological superconductivity (d+ id/p� ip-wave), s-
SC: (inter-valley) s-wave superconductivity. I0 and �0 are
in the spin-singlet channel, I and � are in the spin-triplet
channel.

IVCW TSC s-SC

interaction I0 I �0 � �0 �

SO(4) symmetric X X X X
+SK · SK0 X X

�I0†I0
weak X X
strong X X

However, if the SO(4) symmetry breaking is imple-
mented in the IVC channel, the result can be very dif-
ferent. Suppose we consider the following enhanced at-
traction (i.e. g(q) < 0) in the I

0 channel, so as to single
out the spin-singlet IVCW order. The same interaction

SO(4) ⇠ SU(2)K ⇥ SU(2)K0 ! SO(3)

Dodaro, Kivelson et.al. 1804.03163



Summary
• Pocket model with SO(4) symmetry is analyzed by weak 

coupling approach

• Inter-valley coherence wave (IVCW)

• Valley fluctuation driven topological SC

• In our model,

• d+id always mixed with p-ip due to triangular distortion

• Nesting typically do not happen at half-filling

• Small Fermi surface may appear on both sides of doping

• Proliferating double-vortex from topological SC leads to 
exotic Mott phase with topological order (SET/SPT)

• Anti-Hund’s coupling is needed to break SO(4) and to 
select spin-singlet IVCW and SC.
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