

Valley Fluctuations and $SO(4)$ Symmetry in Twisted Bilayer Graphene

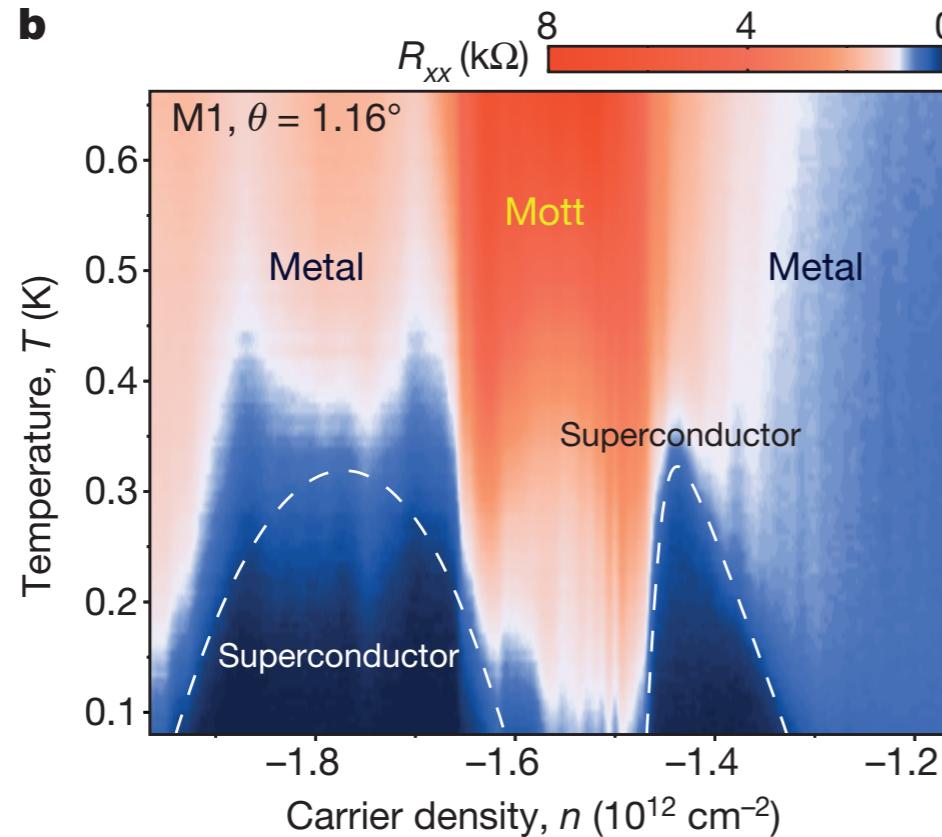
Yi-Zhuang You
(Harvard \rightarrow UC San Diego)

Y.-Z. You, A. Vishwanath, arXiv:1805.06867

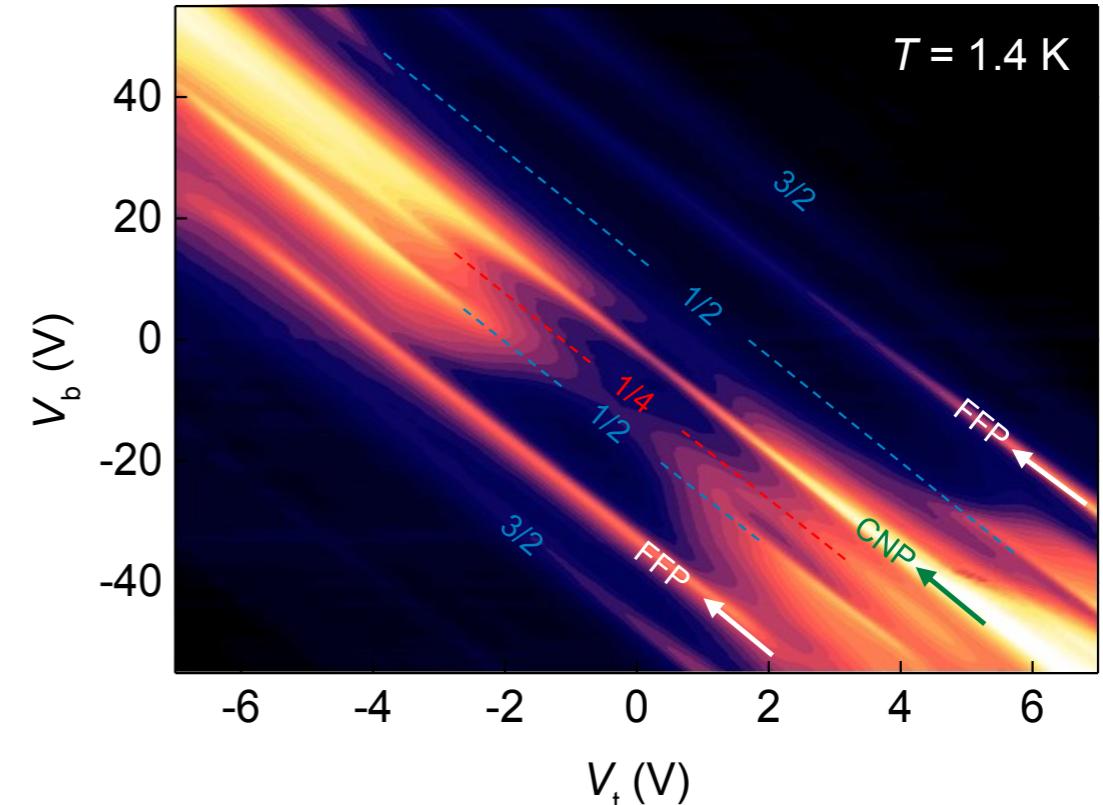
KITS, July 2018

Background

- Mott insulator and superconductivity on Moire superlattice



Cao, Fatemi et.al. Nature 2018

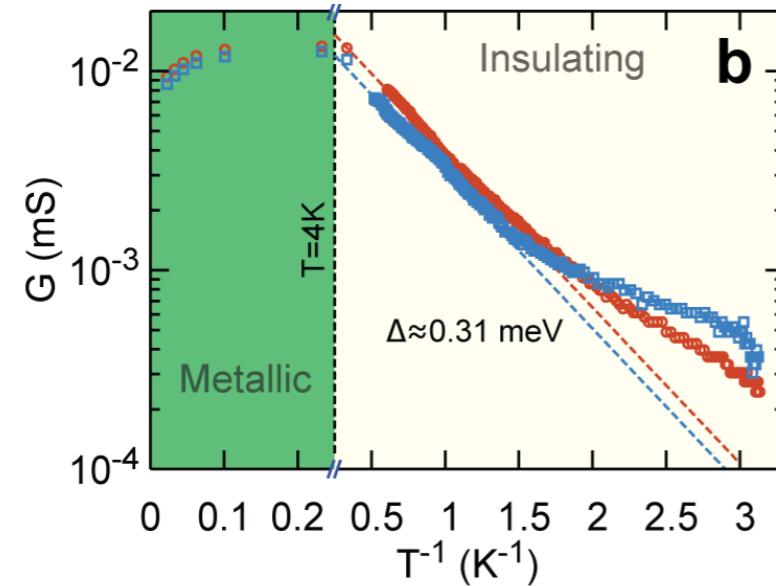
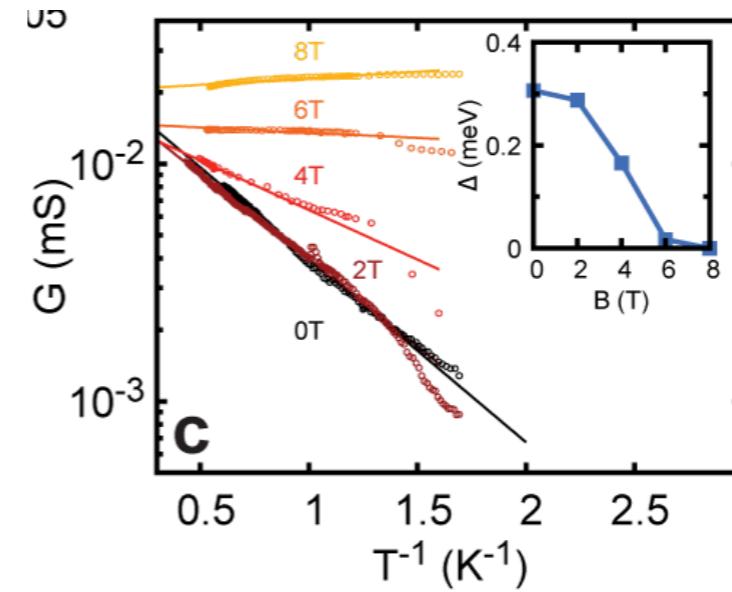


Chen et.al. 1803.01985

- Band width \sim interaction strength: correlated system
- Theoretical approaches
 - Strong coupling: starting from Mott limit
 - Weak coupling: starting from band limit

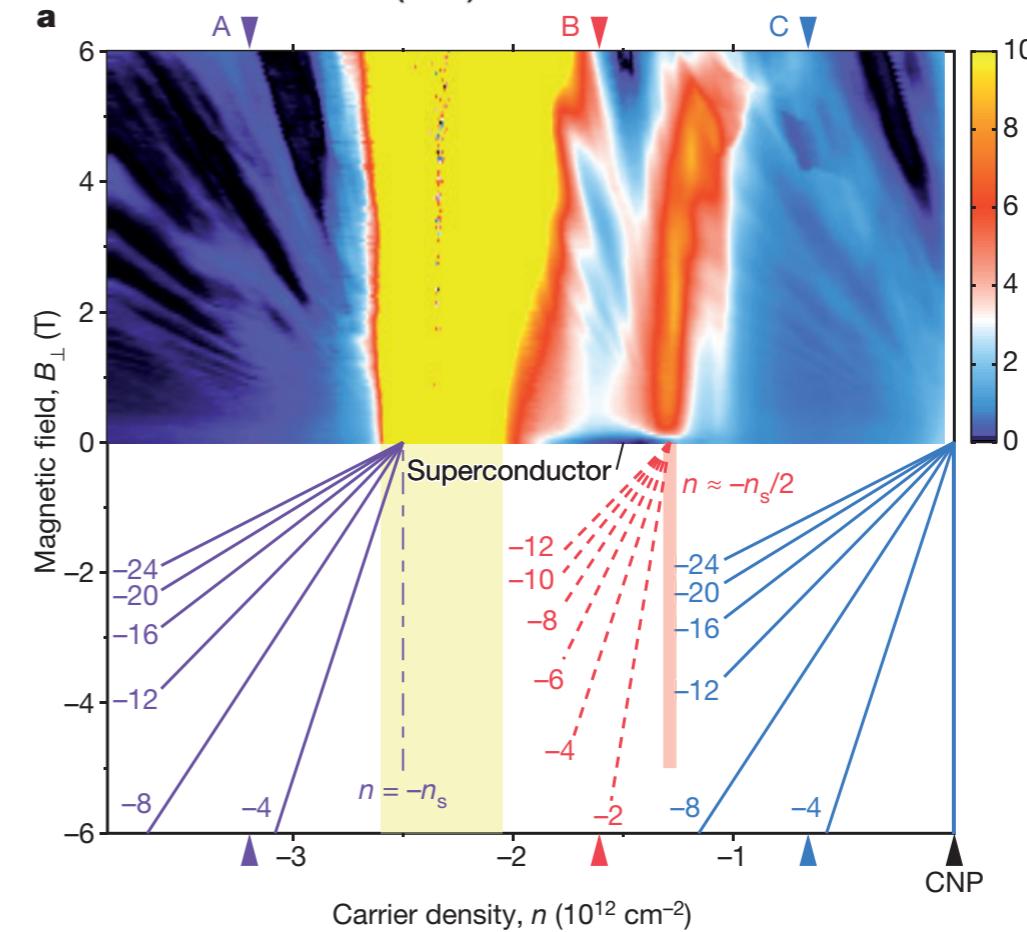
Background

- Small Mott gap ~ 0.4 meV compared to band width ~ 10 meV



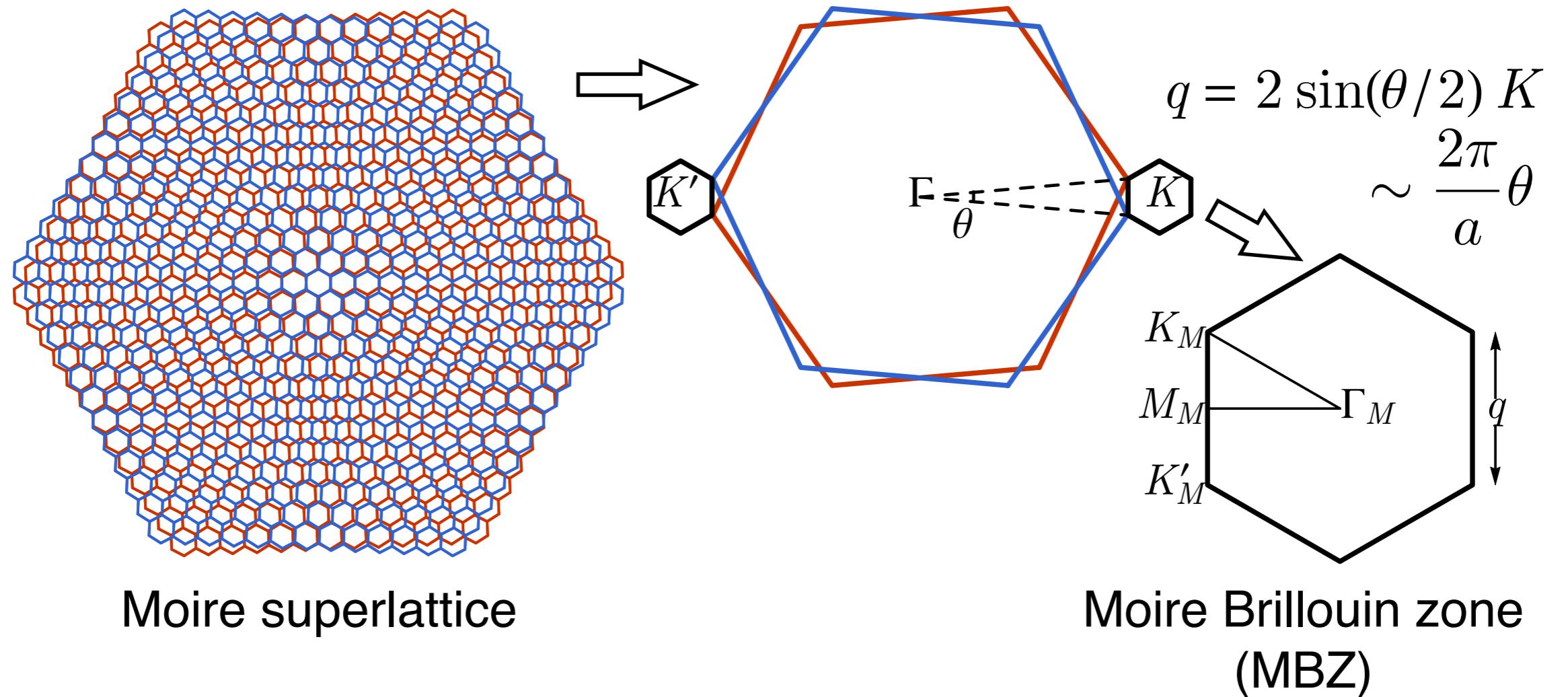
Cao, Fatemi et.al.
Nature 2018

- Different filling-factor sequences of Landau fans around the Mott insulator
 - 2, 4, 6, 8 ...
 - 4, 8, 12, 16...



Band Structure

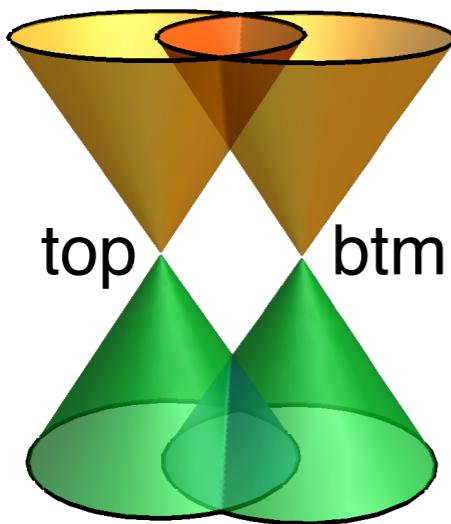
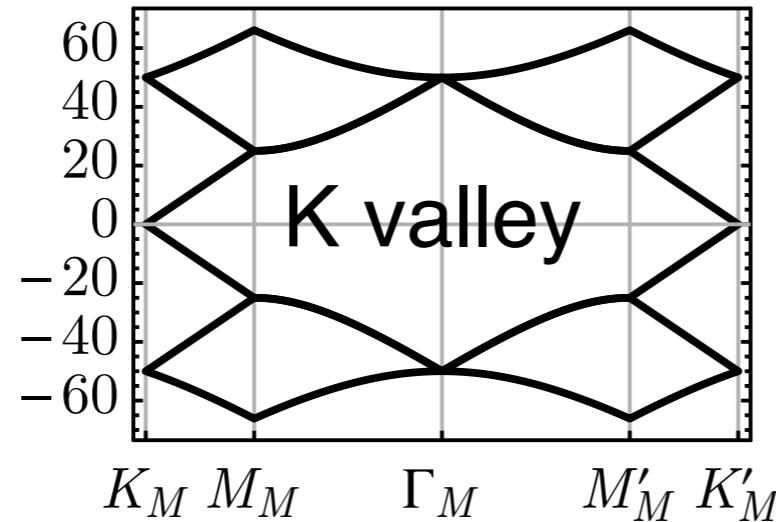
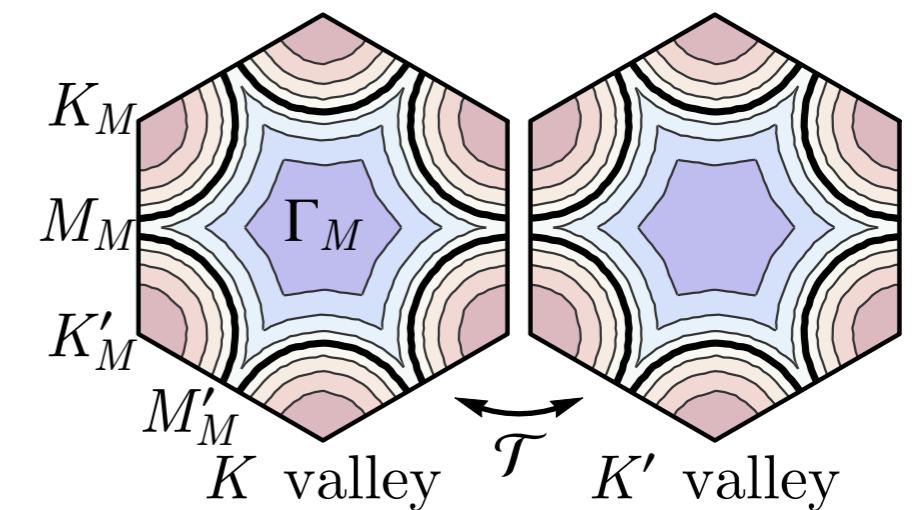
- We start with the weak coupling approach
- Twisted bilayer graphene



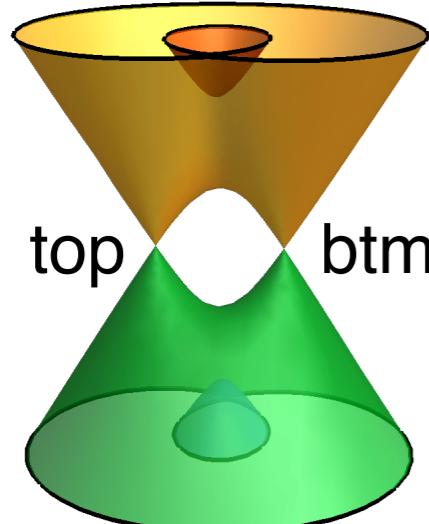
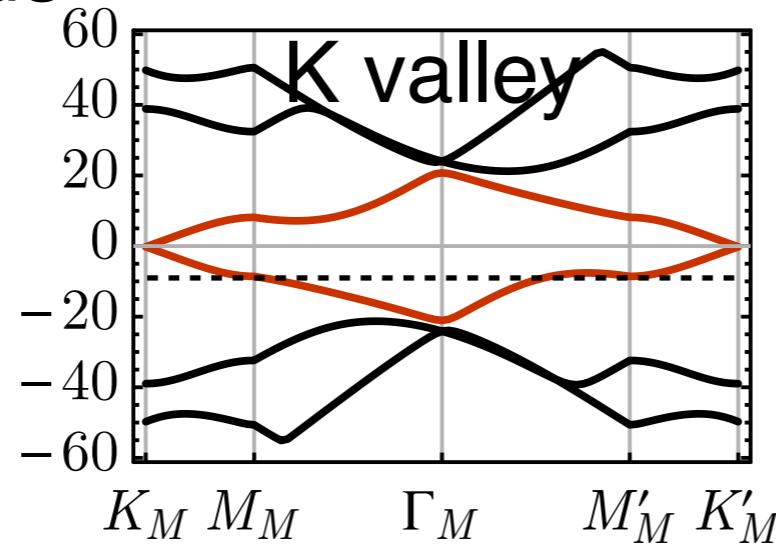
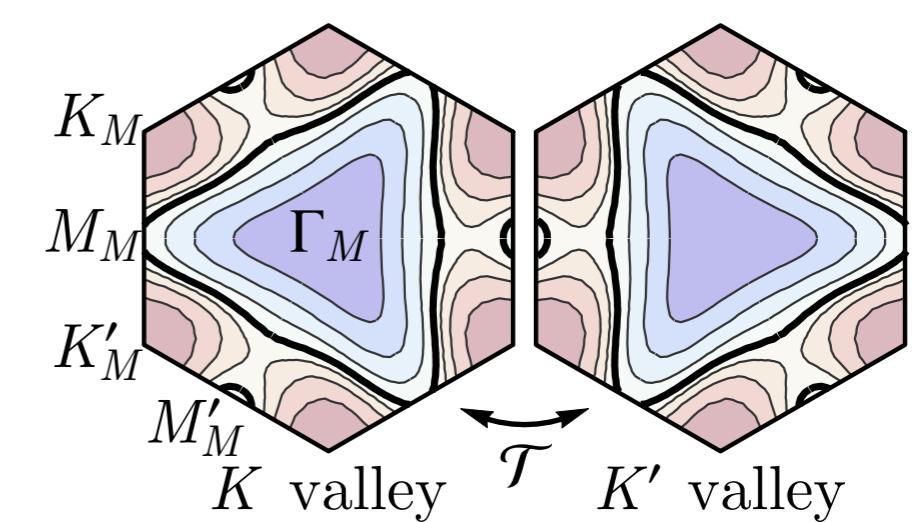
- Each super cell: 2 orbital (AB/BA) \times 2 valley \times 2 spin

Band Structure

- Without interlayer coupling, Dirac cones from top and bottom layers locate at corners of the MBZ

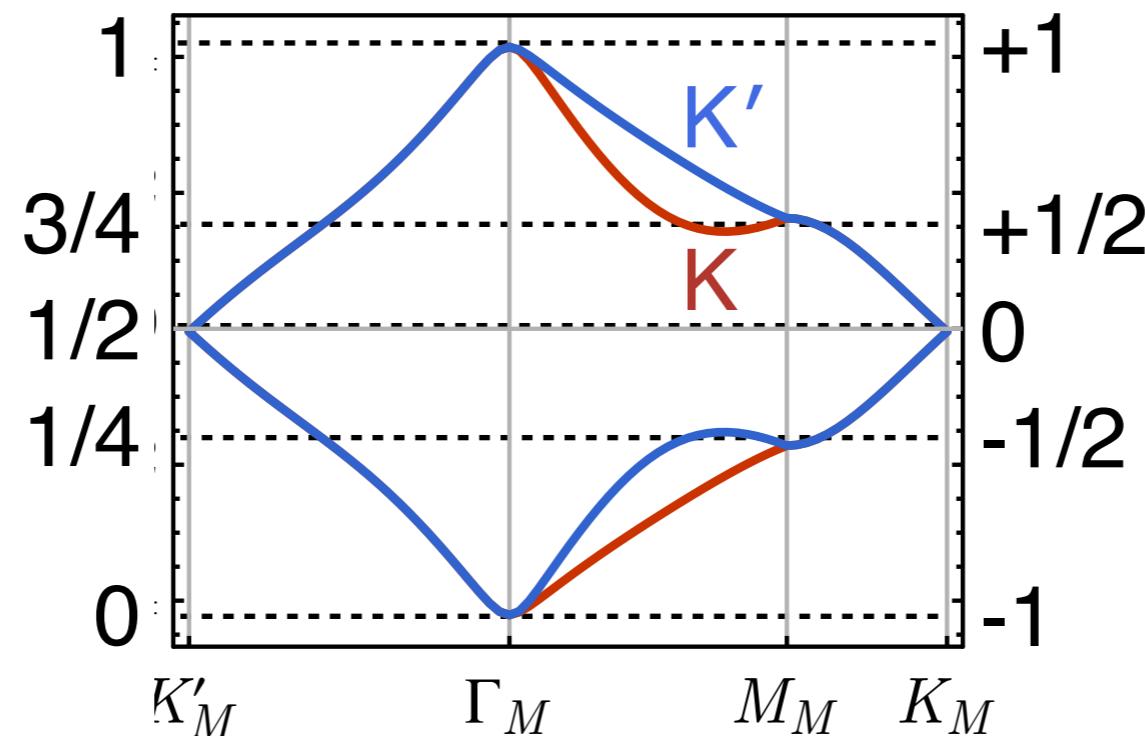


- With interlayer coupling, Dirac cones hybridize, leading to nearly flat bands



Band Structure

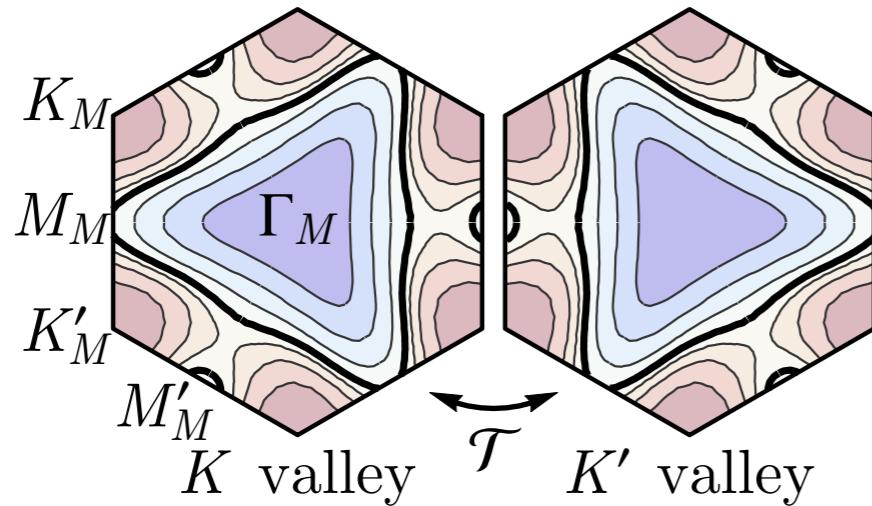
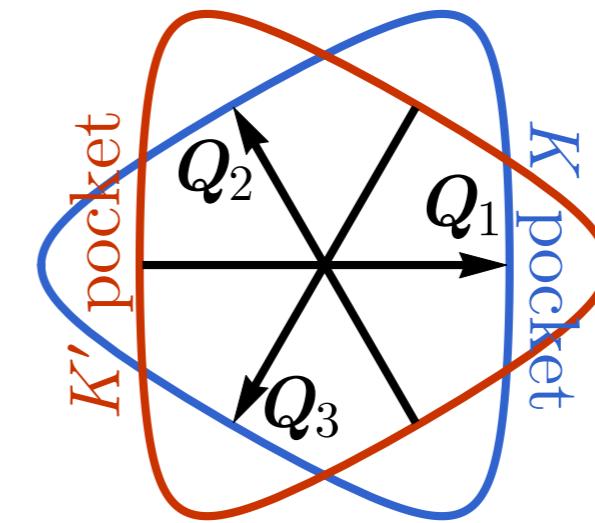
- Very close to the magic-angle, band structure is highly sensitive to parameters / lattice relaxation, hard to make universal statements.
- Stay away from magic (nominally $\theta \sim 2^\circ$)



- Mott phases (and superconducting phases) found around $\pm 1/2$ filling.

Band Structure

- The triangular shape of Fermi surface is generic on symmetry ground (valley-preserving symmetries: C_6T , M_y)



- Low-energy effective band theory: pocket model

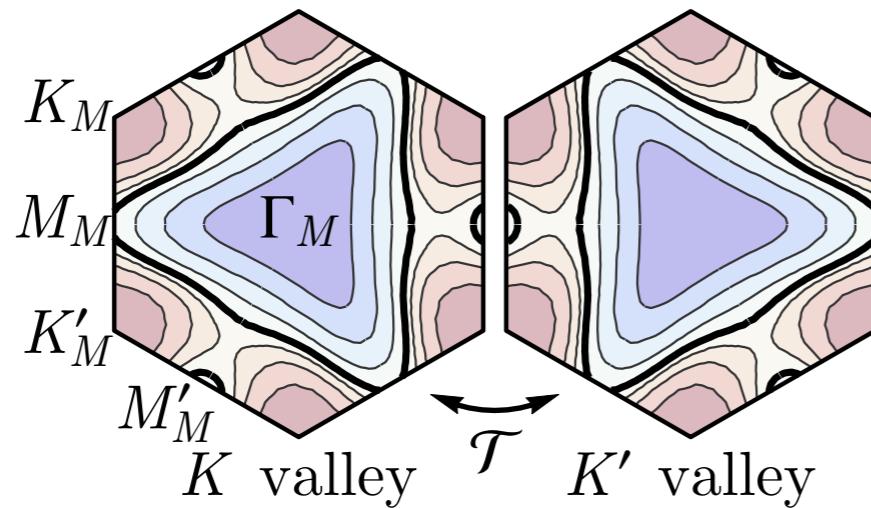
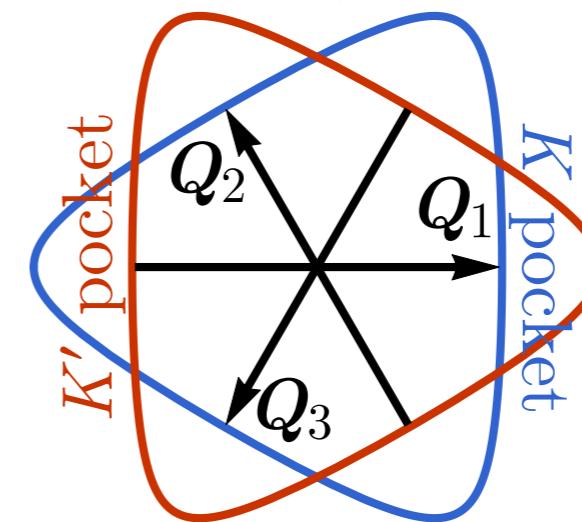
$$H_0 = \sum_{\mathbf{k}} c_{K\mathbf{k}}^\dagger \epsilon_{\mathbf{k}} c_{K\mathbf{k}} + c_{K'\mathbf{k}}^\dagger \epsilon_{-\mathbf{k}} c_{K'\mathbf{k}},$$

$$\epsilon_{\mathbf{k}} = \mathbf{k}^2 - \mu + \alpha \operatorname{Re} k_+^3, \quad k_{\pm} \equiv k_x \pm i k_y$$

- At each momentum: 2 valley \times 2 spin (orbital frozen if we choose to focus on the lower branch)

Band Structure

- Working with pocket model in the momentum space circumvents the Wannier obstruction to construct valley-symmetric tight binding models. Po, Zou, Vishwanath, Senthil 1803.09742
- Parallel edges of the triangular Fermi surfaces are approximately nested



(at half-filling of the lower branch, or 1/4 filling of full band)

- Nesting vector close to M_M point momentum, but not exactly at that.

Zhu, Xiang, Zhang 1804.00302; Liu, Zhang, Chen, Yang 1804.10009

SO(4) Symmetry and Interaction

- $2 \text{ valley} \times 2 \text{ spin} = 4 \text{ electron modes}$
 $(c_{K\uparrow}, c_{K\downarrow}, c_{K'\uparrow}, c_{K'\downarrow})$
- Emergent (approximate) $U(4)$ symmetry?
- Band structure breaks $U(4)$ to $U(1)_c \times U(1)_v \times SO(4)$ where $SO(4) \sim SU(2)_K \times SU(2)_{K'}$ are two independent spin rotations in both valleys (approximate symmetry).
- Fermion bilinears can be classified by symmetry

	$U(1)_c$		$q_c = 0$		$q_c = 2$	
	$SU(4)$		1	15	$6 \oplus 6'$	
\simeq $U(4)$	$U(1)_v$	$q_v = 0$		$q_v = 2$	$q_v = 0$	$q_v = 2$
	$SO(4)$	1	$1'$	6	$4 \oplus 4'$	$4 \oplus 4'$
		n_c	n_v	S_v	I^μ	Δ^μ
						Δ_v

- Their instabilities can be analyzed one by one

SO(4) Symmetry and Interaction

- SO(4) is not exact, but without further knowledge of how it is broken, we first ignore SO(4) breaking terms
- SO(4) Symmetric Interaction (in momentum space)

$$H_{\text{int}} = \sum_{\mathbf{q}} U_0 n_{K-\mathbf{q}} n_{K'\mathbf{q}} + \frac{U_1}{2} (n_{K-\mathbf{q}} n_{K\mathbf{q}} + n_{K'-\mathbf{q}} n_{K'\mathbf{q}})$$

inter-valley	intra-valley
density-density	density-density

where density operator: $n_{v\mathbf{q}} \equiv \sum_{\mathbf{k},\sigma} c_{v\sigma\mathbf{k}+\mathbf{q}}^\dagger c_{v\sigma\mathbf{k}}$

- Full Hamiltonian

$$H = H_0 + H_{\text{int}}$$

$$H_0 = \sum_{\mathbf{k}} c_{K\mathbf{k}}^\dagger \epsilon_{\mathbf{k}} c_{K\mathbf{k}} + c_{K'\mathbf{k}}^\dagger \epsilon_{-\mathbf{k}} c_{K'\mathbf{k}}$$

$$H_{\text{int}} = \sum_{\mathbf{q}} U_0 n_{K-\mathbf{q}} n_{K'\mathbf{q}} + \frac{U_1}{2} (n_{K-\mathbf{q}} n_{K\mathbf{q}} + n_{K'-\mathbf{q}} n_{K'\mathbf{q}})$$

Random Phase Approximation

- Decouple the interaction in fermion bilinear channels

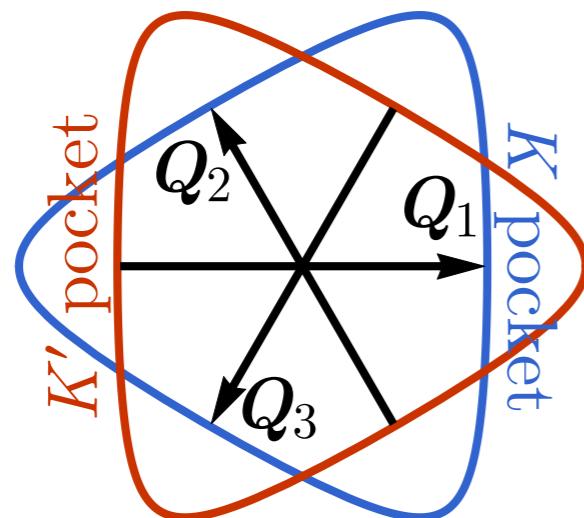
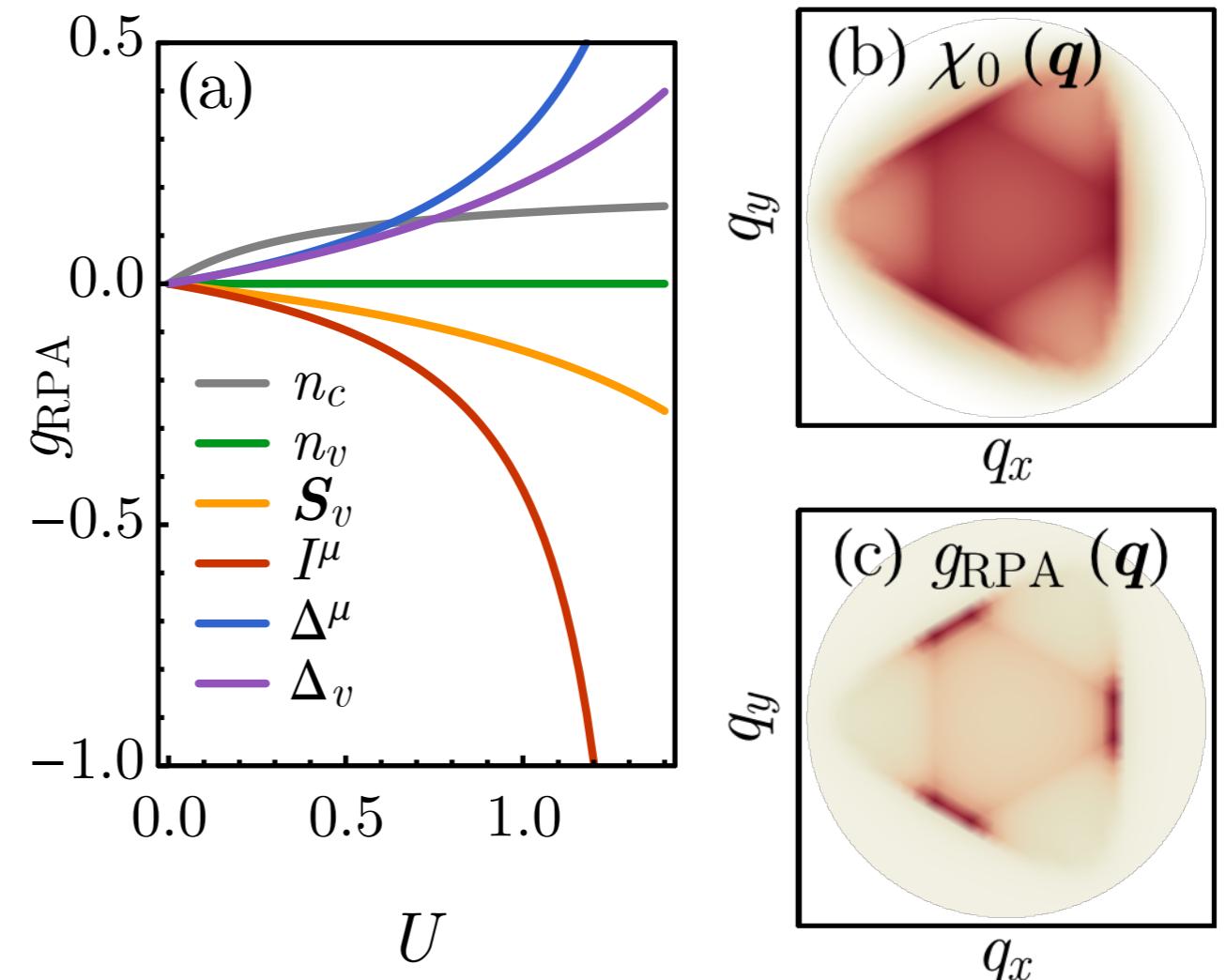
$$H_{\text{int}} = g_0 \sum_{\mathbf{q}} A_{\mathbf{q}}^\dagger A_{\mathbf{q}} + \dots$$

- RPA corrected coupling $g_{\text{RPA}}(\mathbf{q}) = g_0(1 + g_0\chi_0(\mathbf{q}))^{-1}$

- Strongest instability appears in the inter-valley coherence (IVC) channel

$$I_{\mathbf{q}}^\mu = \sum_{\mathbf{k}} c_{K\mathbf{k}+\mathbf{q}}^\dagger \sigma^\mu c_{K'\mathbf{k}}$$

[O(4) vector] $\mu = 0, 1, 2, 3$



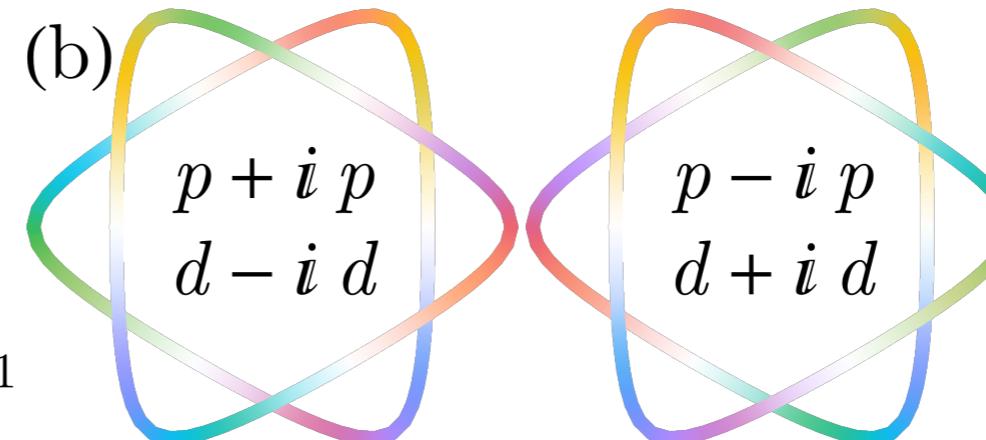
Superconductivity

- If the valley fluctuation does not condense, it could serve as a pairing glue.

$$\sum_{\mathbf{q}, \mu} g_{\text{RPA}}(\mathbf{q}) I_{\mathbf{q}}^{\mu\dagger} I_{\mathbf{q}}^{\mu} \simeq - \sum_{\mathbf{q}, \mathbf{k}, \mu} g_{\text{RPA}}(\mathbf{q}) \Delta_{-\mathbf{k}+\mathbf{q}}^{\mu\dagger} \Delta_{\mathbf{k}}^{\mu} \quad (g_{\text{RPA}} < 0)$$

- Inter-valley pairing $\Delta_{\mathbf{k}}^{\mu} = c_{K\mathbf{k}}^{\top} i\sigma^2 \sigma^{\mu} c_{K'-\mathbf{k}}$ [O(4) vector]
 - Spin-singlet $\Delta_{\mathbf{k}}^0$
 - Spin-triplet $\Delta_{\mathbf{k}} = (\Delta_{\mathbf{k}}^1, \Delta_{\mathbf{k}}^2, \Delta_{\mathbf{k}}^3)$ (Valley sym. will adjust)
- Linearized gap equation $\sum_{\mathbf{k}' \in \text{FS}} v_F^{-1}(\mathbf{k}') g_{\text{RPA}}(\mathbf{k} + \mathbf{k}') \Delta_{\mathbf{k}'}^{\mu} = \lambda \Delta_{\mathbf{k}}^{\mu}$

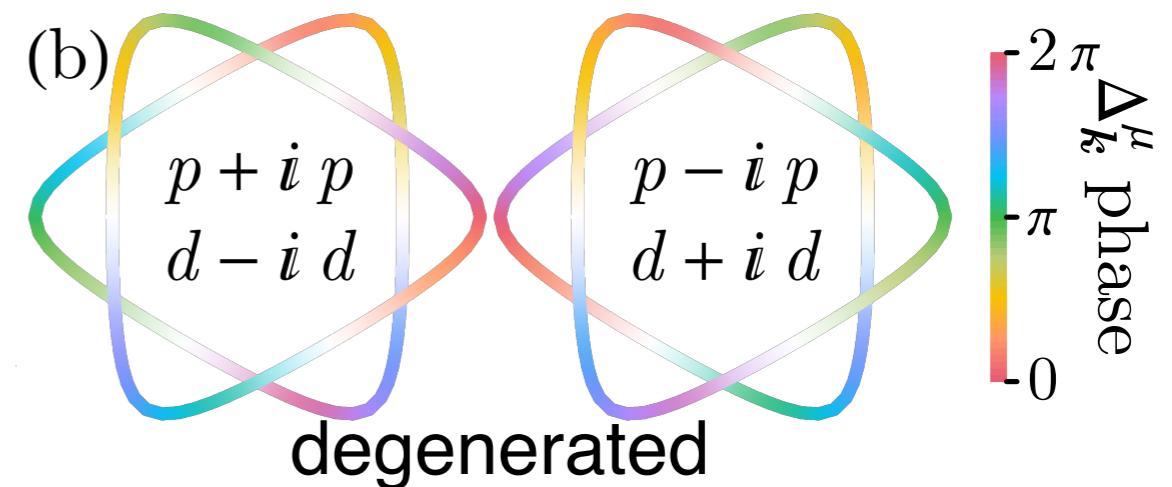
$$\Delta_{\mathbf{k}}^{\mu} = -\Delta_{-\mathbf{k}+\mathbf{Q}_a}^{\mu}$$



Superconductivity

- Leading gap function

$$\begin{aligned}\Delta_{\mathbf{k}}^{\mu} &= u^{\mu} w_{\mathbf{k}} + v^{\mu} w_{\mathbf{k}}^* \\ w_{\mathbf{k}} &= w_d k_+^2 + w_p k_- \\ &\quad (d + id) \quad (p - ip)\end{aligned}$$



- Band structure only C_3 symmetric \rightarrow d+id and p-ip must mix on symmetry ground
- Landau-Ginzburg theory (beyond linearized gap equation)

$$F = \sum_{\mathbf{k}} r \Delta_{\mathbf{k}}^{\mu*} \Delta_{\mathbf{k}}^{\mu} + \kappa (2(\Delta_{\mathbf{k}}^{\mu*} \Delta_{\mathbf{k}}^{\mu})^2 - |\Delta_{\mathbf{k}}^{\mu} \Delta_{\mathbf{k}}^{\mu}|^2) + \dots$$

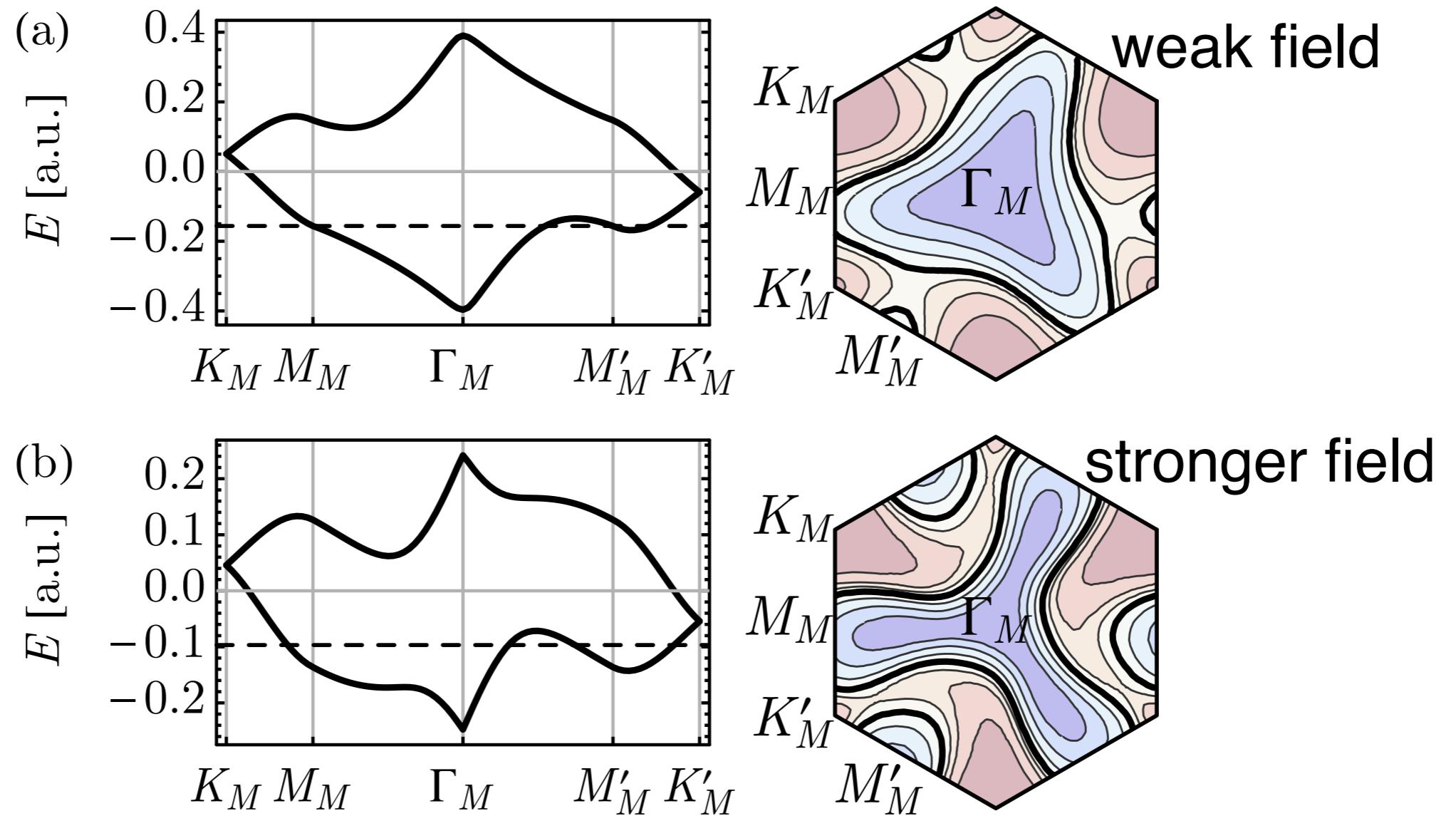
$$\begin{aligned} \text{chiral : } & \begin{cases} u^{\mu} = e^{i\phi} n^{\mu}, \\ v^{\mu} = 0, \end{cases} & \text{helical : } & \begin{cases} u^{\mu} = e^{i\phi_1} (n_1^{\mu} + i n_2^{\mu}), \\ v^{\mu} = e^{i\phi_2} (n_1^{\mu} - i n_2^{\mu}), \end{cases} \\ (\text{Type A}) & & (\text{Type B}) & \end{aligned}$$

Superconductivity

- Topological Superconductor $\Delta_{\mathbf{k}}^{\mu} = c_{K\mathbf{k}}^{\top} i\sigma^2 \sigma^{\mu} c_{K'-\mathbf{k}}$
 - Chiral $\Delta_{\mathbf{k}}^{\mu} = e^{i\phi} n^{\mu} w_{\mathbf{k}}$
 - 4 copies of d+id or p-ip (2 valley \times 2 spin)
 - $U(1)_c \times U(1)_v \times SO(4) \times \mathbb{Z}_2^{\mathcal{T}} \rightarrow \mathbb{Z}_2^F \times U(1)_v \times SO(3)$
 - Helical $\Delta_{\mathbf{k}}^{\mu} = e^{i\phi} (n_1^{\mu} \operatorname{Re} w_{\mathbf{k}} + n_2^{\mu} \operatorname{Im} w_{\mathbf{k}}) \quad n_1^{\mu} n_2^{\mu} = 0$
 - 2 copies of d±id or p±ip (2 "valley")
 - $U(1)_c \times U(1)_v \times SO(4) \times \mathbb{Z}_2^{\mathcal{T}} \rightarrow \mathbb{Z}_2^F \times U(1)_v \times SO(2) \times \mathbb{Z}_2^{\mathcal{T}}$
- Topological transition between d/p-wave: 12 Majorana cones
- Consider SO(4) explicitly broken to SO(3)
 - spin-singlet pairing: can only be chiral
 - spin-triplet pairing: can be both chiral and helical

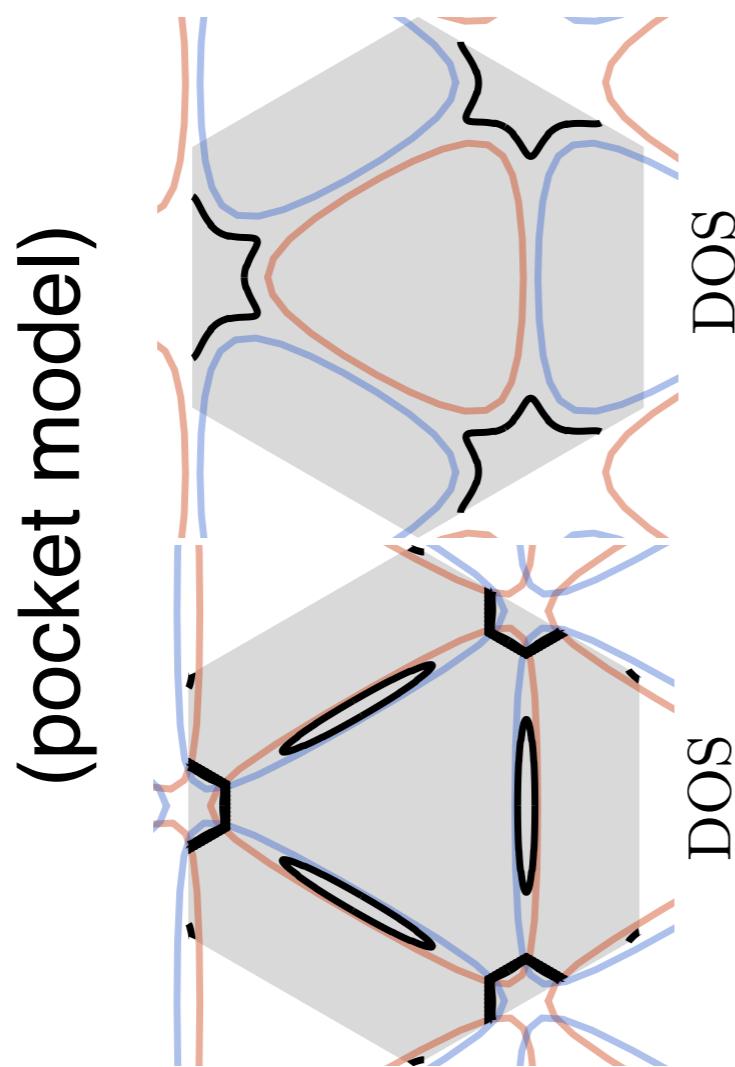
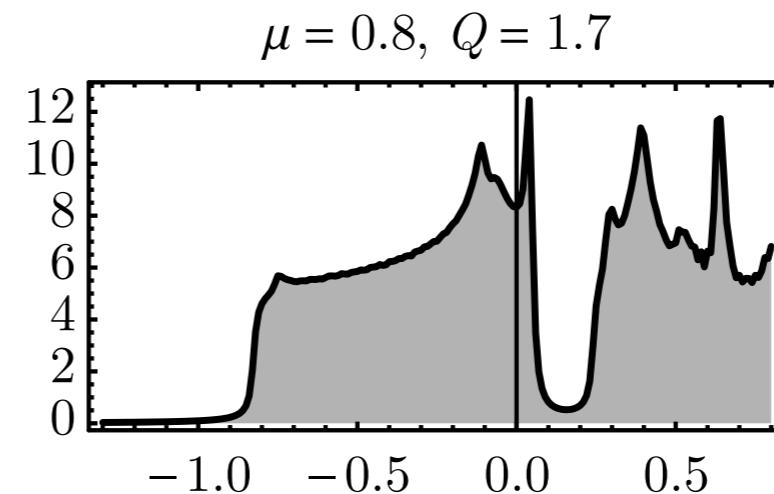
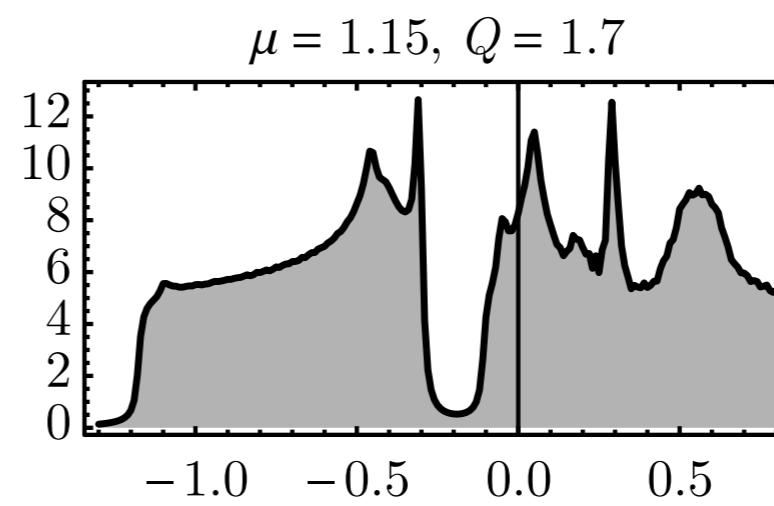
Electric Field Effect

- Applying vertical electric field: destroy nesting \rightarrow suppress valley fluctuations and superconductivity



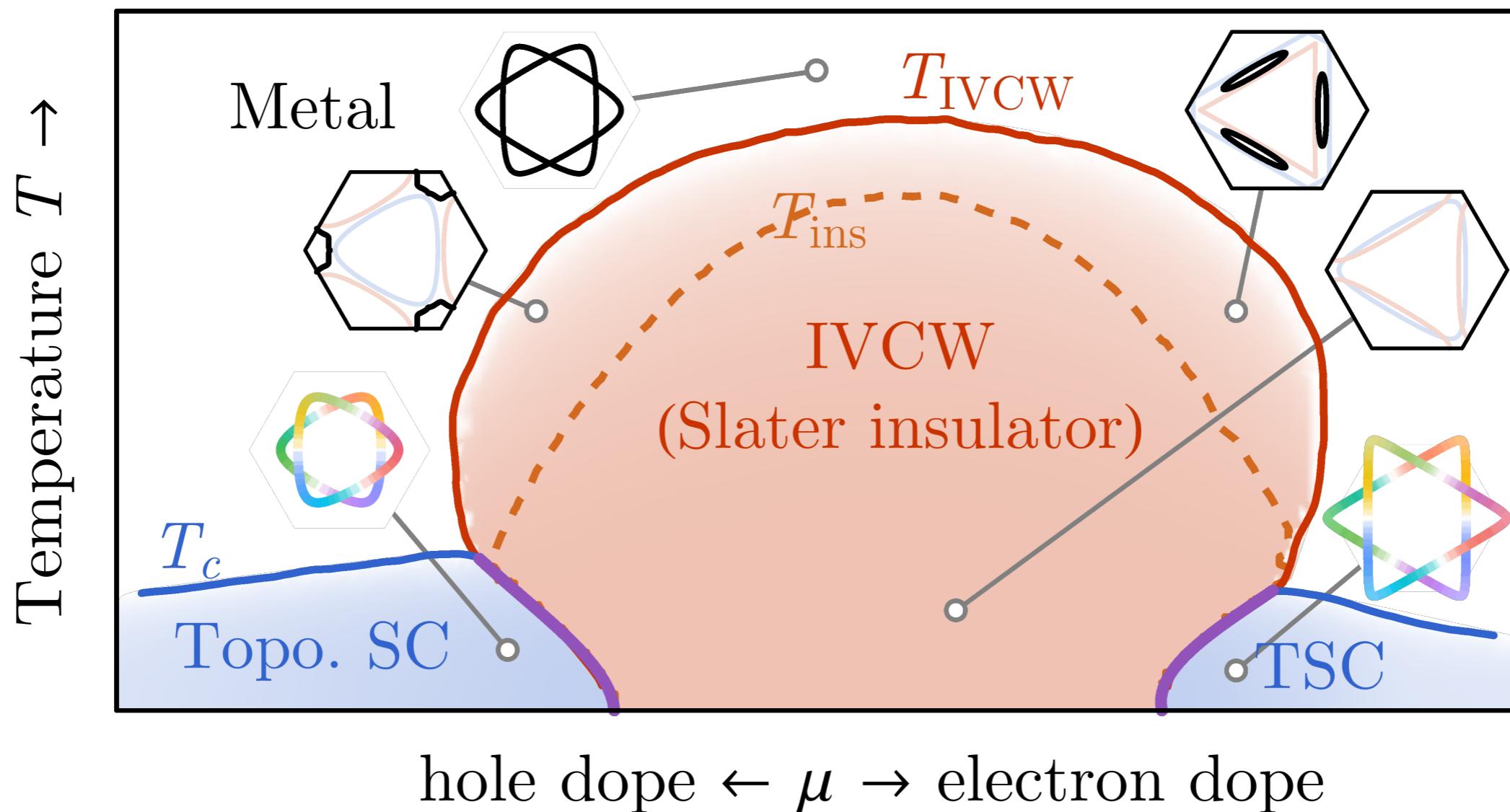
Valley Order and Slater Insulator

- If the valley fluctuation condenses \rightarrow IVC wave order
- Will it open a full gap?
 - Typically not. If away from optimal nesting, small Fermi pockets remains.



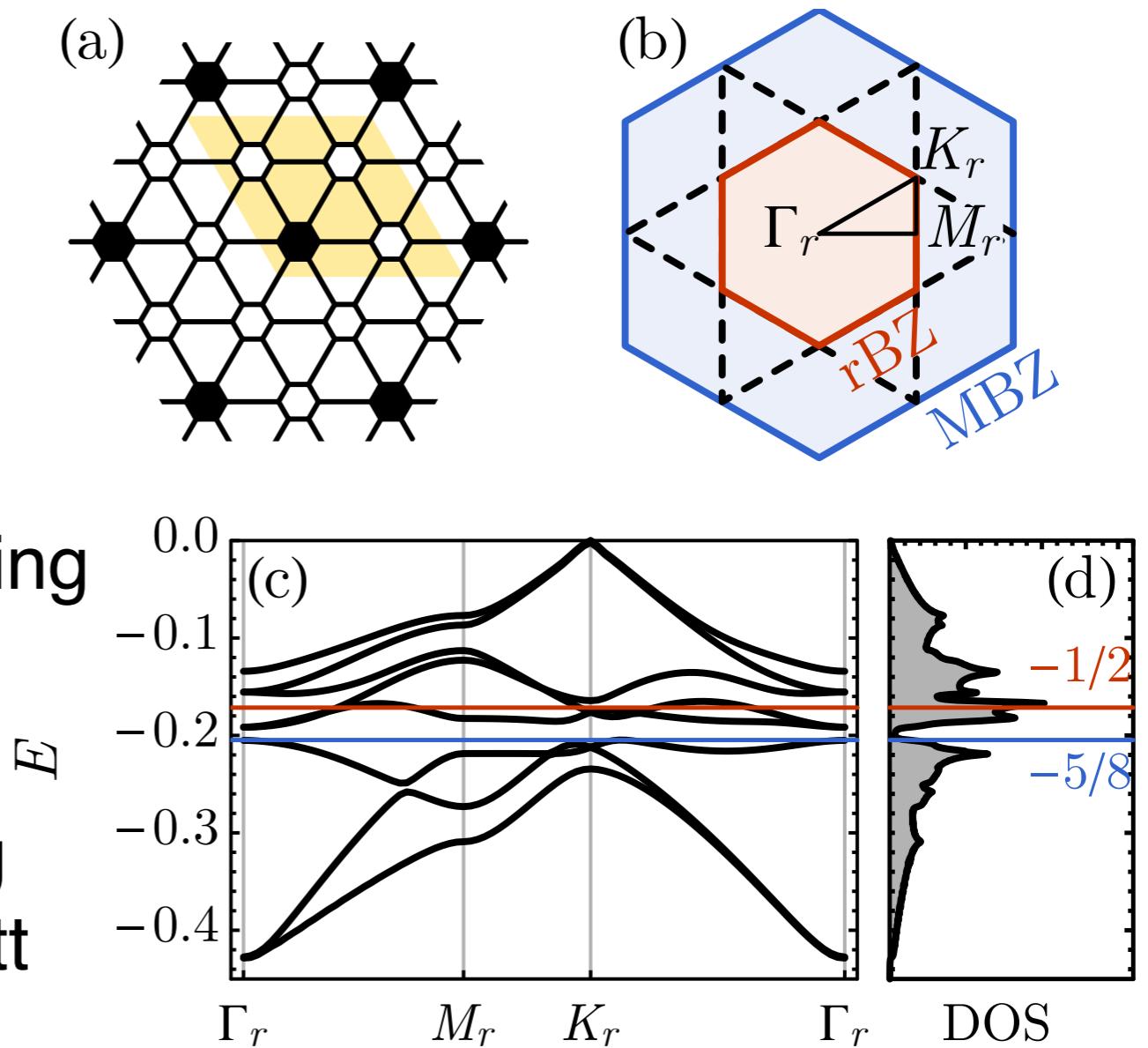
Valley Order and Slater Insulator

- If the valley fluctuation condenses \rightarrow IVC wave order
- Will it open a full gap?
 - Mean field phase diagram (pocket model)



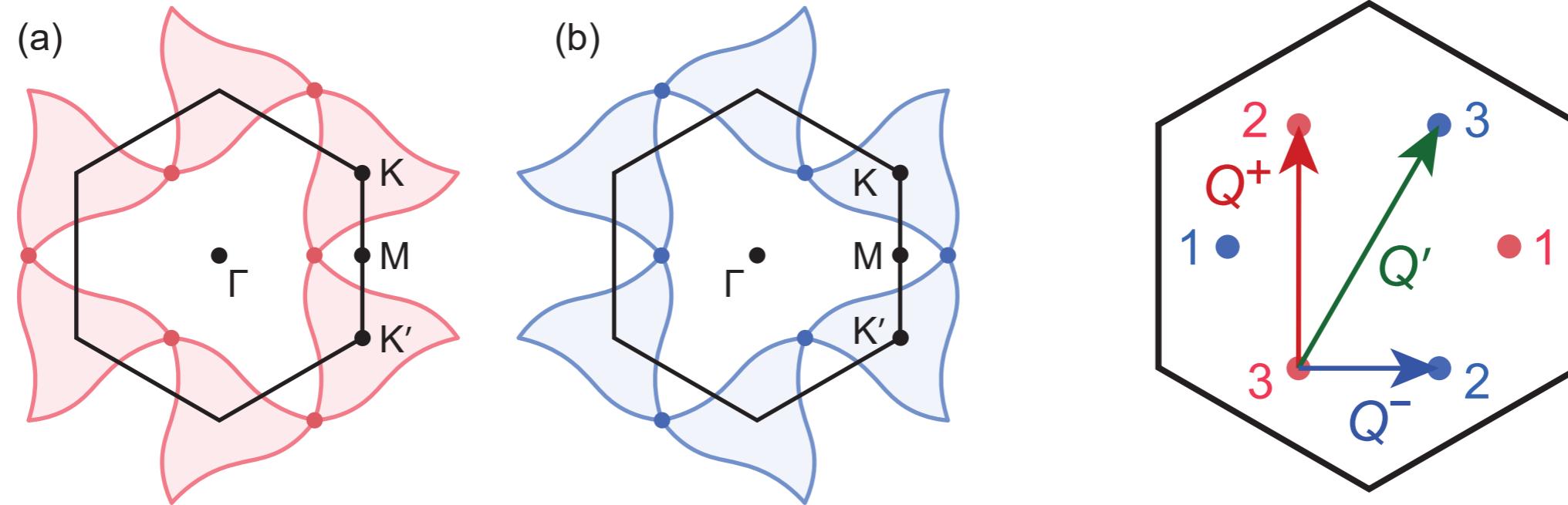
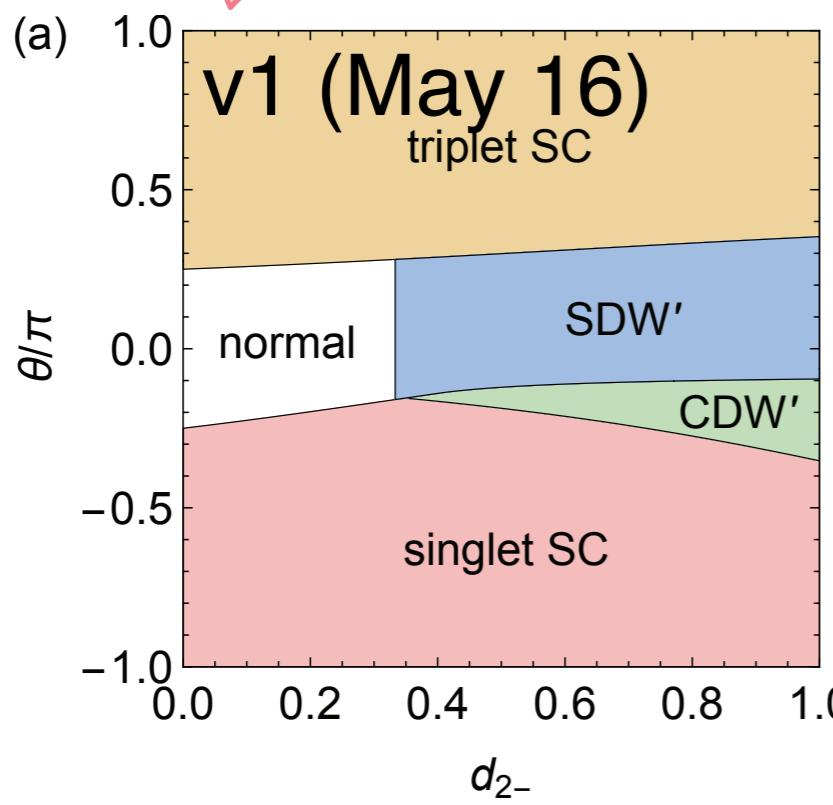
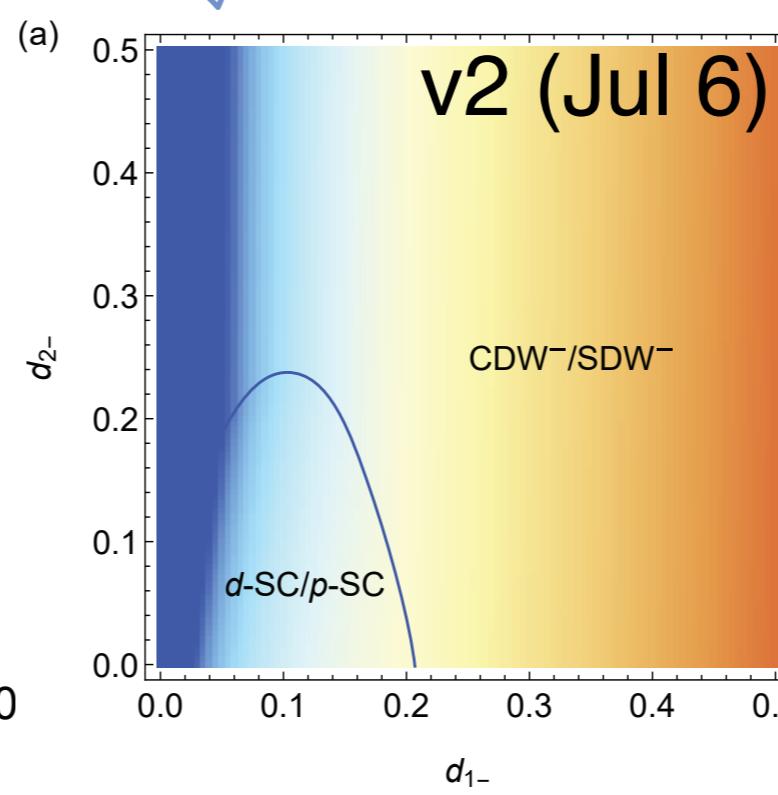
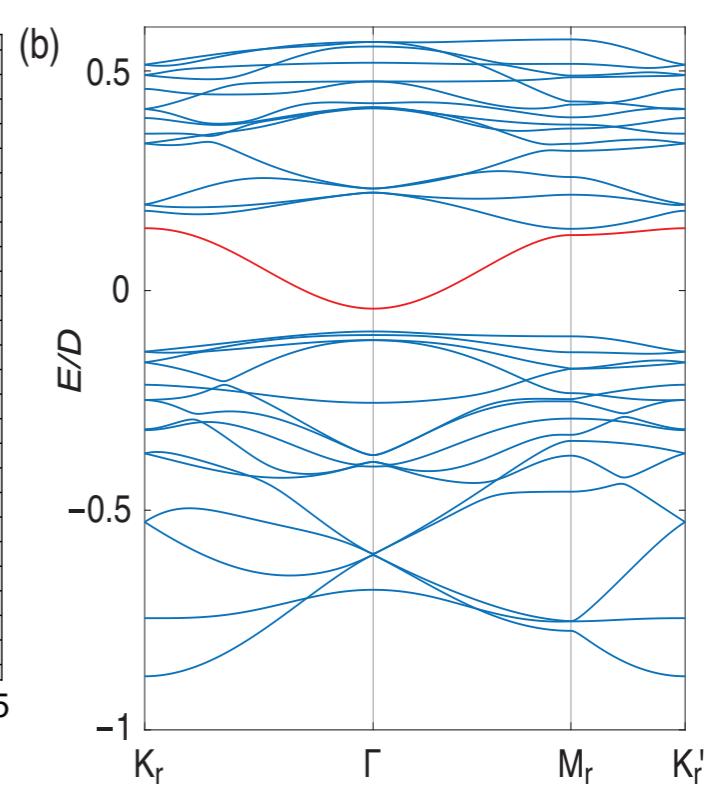
Valley Order and Slater Insulator

- If the valley fluctuation condenses \rightarrow IVC wave order
- Will it open a full gap?
 - Consider a commensurate IVC wave order
 - Ordering momentum = Moire M -point (2 \times 2 modulation)
 - 2 valley \times 4 sublattice = 8 bands
 - Full gap opens at -5/8 filling from charge neutrality (not at -1/2 filling)
- Conclusion: Valley ordering not sufficient to explain Mott



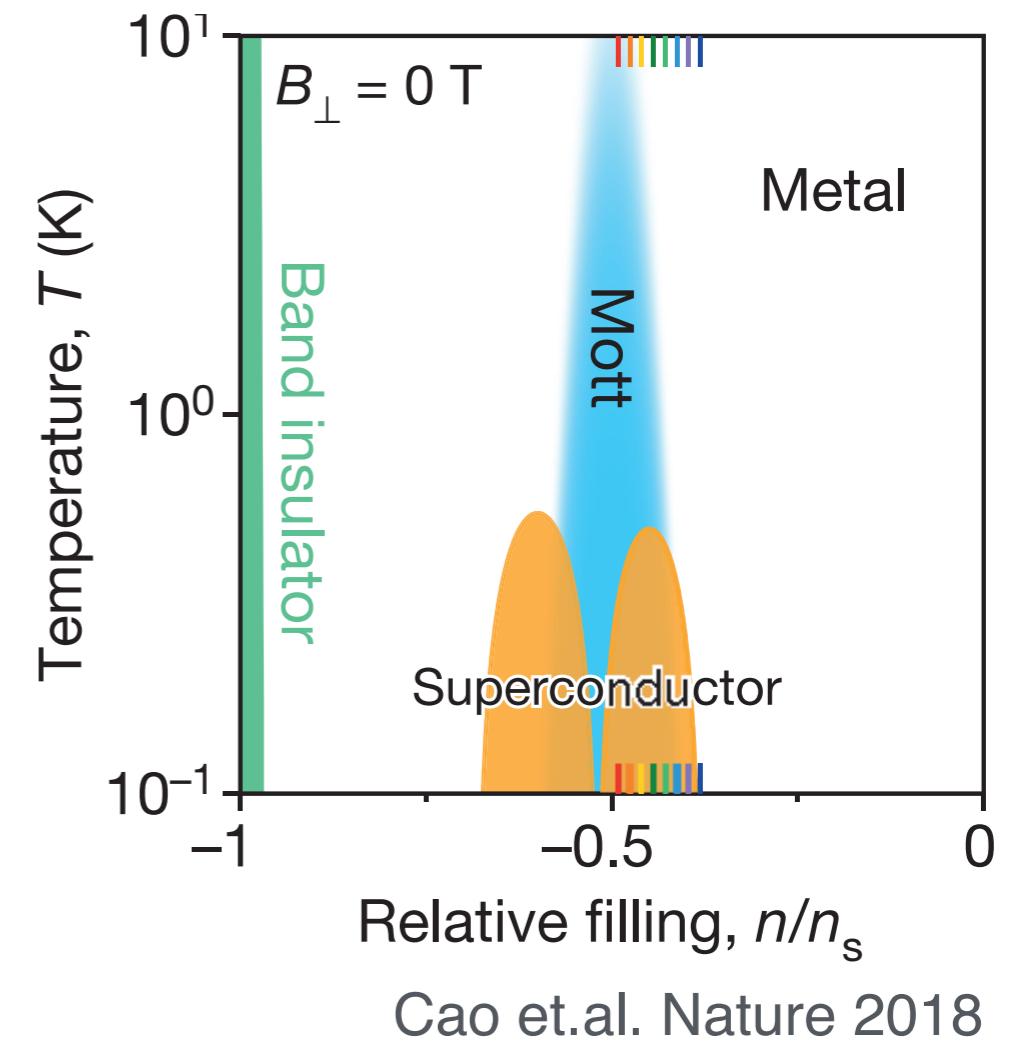
Valley Order and Slater Insulator

- Hot spot RG [Isobe, Yuan, Fu 1805.06449]



Topological Order and Mott Insulator

- Mott phase is adjacent to superconducting phases
- Strong Coupling Approach
 - Starting from the SC phase
 - Suppress charge fluctuations by proliferating double vortices of SC order parameter
 - Single vortex becomes anyonic excitation \rightarrow topological order
 - The topological order will be determined by the type of the superconducting order in the adjacent phase.
- This approach circumvents the explicit lattice realization.



Topological Order and Mott Insulator

- Field theory formulation
 - Fractionalization of electron $c_{v\sigma} = b f_{v\sigma}$
 - Assign $U(1)_c$ quantum number to bosonic parton, and $U(1)_v \times SO(4)$ quantum number to fermionic parton.
 - Place the fermionic parton in the SC mean-field state, gap out bosonic parton \rightarrow valley-spin liquid (VSL)

SC phase		Mott phase	
type	pairing	state	symmetry
chiral	$d + id$	$SO(8)_1$ VSL	$U(1)_c \times U(1)_v$ $\times SO(3)$
	$p - ip$	$SO(4)_{-1}$ VSL	
helical	$d \pm id$	\mathbb{Z}_2 VSL + BSPT	$U(1)_c \times U(1)_v$ $\times U(1)_s \times \mathbb{Z}_2^{\mathcal{T}}$
	$p \mp ip$	\mathbb{Z}_2 VSL (SET)	

Topological Order and Mott Insulator

- These topological order all have four anyon sectors, labeled by $\{1, e, m, f\}$
- Chiral Valley-Spin Liquid (VSL) $U(1)_c \times U(1)_v \times SO(3)$
 - $SO(4)_{-1}$ VSL (from $p - ip$ TSC) $c = -2$
 - e and m are semions: one carries spin-1/2, the other carries valley charge.
 - They fuse to fermion f , that carries both spin and valley quantum numbers.
 - $SO(8)_1$ VSL (from $d + id$ TSC) $c = 4$
 - e, m, f are fermions: m carries no symmetry charge; e and f carries both spin and valley.
- Chiral central charge \rightarrow thermal Hall conductance

$$\kappa_H = c\pi k_B^2 T / (6\hbar)$$

Topological Order and Mott Insulator

- Helical Valley-Spin Liquid $U(1)_c \times U(1)_v \times U(1)_s \times \mathbb{Z}_2^{\mathcal{T}}$
 - \mathbb{Z}_2 topological order (toric code) with $\{1, e, m, f\}$
 - Topological response between valley and spin

$$\mathcal{L}[A_v, A_s] = \frac{\sigma_{\text{vSH}}}{2\pi} A_v \wedge dA_s$$

- Symmetry enriched topological (SET) state (from $p \mp ip$)
 - Symmetry fractionalization: e and m separately carry valley and spin
 - Fractionalized valley-spin Hall $\sigma_{\text{vSH}} = -1/2$
- Symmetry protected topological (SPT) state (from $d \pm id$)
 - m is neutral and Kramers singlet \rightarrow can condense ...
 - Integer valley-spin Hall $\sigma_{\text{vSH}} = 1$

Explicit SO(4) Symmetry Breaking

- SO(4) is not exact. There are always small SO(4) breaking terms.
 - Inter-valley AFM spin-spin interaction (anti-Hund's)

$$H_J = \sum_{\mathbf{q}} J(\mathbf{q}) \mathbf{S}_{K\mathbf{q}} \cdot \mathbf{S}_{K'-\mathbf{q}}$$

- Spin locking $\text{SO}(4) \sim \text{SU}(2)_K \times \text{SU}(2)_{K'} \rightarrow \text{SO}(3)$
- Favors both spin-singlet IVC wave and spin-singlet pairing, which is consistent with the fact that Zeeman field kills both Mott and SC gaps.
- But the microscopic origin (and the generality) of anti-Hund's is not clear yet ...

Dodaro, Kivelson et.al. 1804.03163

Summary

- Pocket model with $SO(4)$ symmetry is analyzed by weak coupling approach
 - Inter-valley coherence wave (IVCW)
 - Valley fluctuation driven topological SC
- In our model,
 - $d+id$ always mixed with $p-ip$ due to triangular distortion
 - Nesting typically do not happen at half-filling
 - Small Fermi surface may appear on both sides of doping
 - Proliferating double-vortex from topological SC leads to exotic Mott phase with topological order (SET/SPT)
 - Anti-Hund's coupling is needed to break $SO(4)$ and to select spin-singlet IVCW and SC.

