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Machine Learning and Physics

e Bidirectional objective:
e Can ML technigues help us discover physical laws?
e Can physics ideas help us develop ML algorithms?

e RG-Flow: a hierarchical flow-based generative model
motivated by the renormalization group in physics.

e Application 1: simulating critical systems
[1] H Hu, SH Li, L Wang, YZ You. arXiv: 1903.00804

e Application 2: image / language processing.

[2] H Hu, D Wu, YZ You, B Olshausen, Y Chen.
arXiv: 2010.00029

[3] A Sheshmani, YZ You, W Fu, A Azizi. arXiv: 2203.07975



Generative Modeling

e (Generative modeling (unsupervised learning) is an important
topic in machine learning.

e [t aims to model the probability distribution of samples in the
dataset and create new samples based on the learned
distribution.
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What | cannot create, | do not
understand.
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Generative Model and Quantum Field Thoery

e Quantum field theory = generative model of quantum fields
e Sample: field configuration

e Negative log |Ike|lh00d fleld action (energy)
p(ax) o e @)
® The renormalization group is an important approach to
analyze quantum field theory, which systematically extracts
the effective action at different scales.



Renormalization Group and Deep Learning

e The similarity between the renormalization group (RG) and
deep learning has long been noticed.

e RG transformation (coarse-graining rule)

Renormalization

Fine—grained Coarse—grained
» RG scale

p(a"+V]z")

C Beny, arXiv: 1301.3124. P Mehta, DJ Schwab, arXiv: 1410.3831. HW Lin, M Tegmark, D
Rolnick, arXiv: 1608.08225. EdM Koch, RdM Koch, L Cheng, arXiv: 1906.05212. JH Chung,
YJ Kao, arXiv: 2010.05703 ...



Renormalization Group and Deep Learning

e The RG transformation induces a flow of the underlying
probability model (or the field action)
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What is the Designing Principle of RG?

® The goal of the renormalization group (RG) is to extract
relevant features of field configurations.

e But what should be the relevant feature”? The answer can be
model/dataset dependent ...

® Real-space RG of Ising models
® Ferromagnetic coupling: uniform spin component
e Anti-ferromagnetic coupling: staggered spin component
e Random coupling: ...?

e Momentum-space RG of field theory

® | ow-energy freedoms are relevant (but what is the
notion of “energy” in general?)

® |s there an information-theoretic principle to guide the design
of the optimal RG transformation?



What is the Designing Principle of RG?

e Maximal real-space mutual information (maxRMI) principle

e Relevant features retain maximal mutual information with
neighboring environments.

(A)
max [ (H, £)
a
Coarse-grained

Environment
freedom

M Koch-Janusz, Z Ringel, arXiv: 1704.06279
A Gordon, A Banerjee, M Koch-Jansz, Z Ringel, arXiv: 2012.01447

e The RG transform p(H |V') should optimize this objective.

e \We proposed another equivalent principle based on invertible

RG and holographic mapping. H Hu, S-H Li, L Wang, Y-Z You.

arXiv: 1903.00804



Invertible RG and Holographic Mapping

® The renormalization “group” is not a group!
The conventional formulation of RG is information lossy and
IS therefore irreversible.
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How to invert?

p(a D [20) = p(a ]z +D)?



Invertible RG and Holographic Mapping

e \What have been discarded are the irrelevant features at
each RG step.

Renormalization
Fine—grained Coarse—grained
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decimated features

T 20 = R (x") (Bijective local map)
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Design of Invertible RG Transform

e Requirement for I: bijectivity + locality (+ equivariance)
e Neural ODE realization (ensures bijectivity)

g
O—DE split '+
~af
x (0) := ¥ x (1) -
d z(l)
—a?(t) — ’U(w(t)) L € [0, 1] RTQ Chen et.al. arXiv:1806.07366

dt

Velocity model (neural net):
\ e |mpose locality by CNN
[ o . .

e Equivariance is possible
T v () Gv(x) = v(Gx)

A Sheshmani, YZ You, W Fu, A Azizi. arXiv:2203.07975




Invertible RG and Holographic Mapping

e All the decimated features form a holographic encoding of
the original fine-grained configuration.

5 — (2(0)’2(1)’ ) = R(w(())) e Bijective (no
information loss)
A .
A ZI(:5I) » @ Holographic
(boundary to
= 9z bulk)
% g) /1 [T . XL Qi, arXiv: 1309.6282
2l e 9 26
=2
A
1S ® 2)
=1 | =R - hyperbolic space
~ (bulk)
2D oD
Y base space

20 — o (boundary)



Invertible RG and Holographic Mapping

e Holographic duality (AdS/CFT correpondance): a mapping
between a quantum field theory and a gravity theory in one-
higher dimension.

e Critical systems (CFT) « hypobolic geometry (AdS)

® Power-law correlation of boundary variables

A
(i) ~ T[jm (Massless, critical) g
e Exponential correlation of bulk variables 1 bulk
(2i2;) ~ e~ 225 (Massive) i
® Because the boundary and bulk .,
geodesic distances are related by 7 >
7“2']'

dij ~ Inrs boundary



Invertible RG and Generative Modeling
e (Generation is the inverse of renormalization!

(Generation
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holographic variables z visible variables
e One-step inverse map: ') = R (2™ 2)
e Holographic decoding (bulk to boundary)



Invertible RG and Generative Modeling

e The holographic mapping 1 is deterministic. How can it be
used to model probability distribution?

® Flow-based generative model: deforming a known prior
distribution to the target distribution by bijective maps.

r =R '(2) ‘Dual, z = R(x)
0z ox
px(x) = pz(z)det (8—:13> pz(z) = px(x)det <8—z)
Target  Prior Prior Target

e What to learn?
- The bijective RG transformation R

® How to learn?
- Given prior match target £ = Dxr.(pdat(x)||px (x))
- Or given target match prior £ = Dk, (pan(2)]|pz(2))

L Dinh, J Sohl-Dickstein, S Bengio, arXiv: 1605.08803.



What is the Designing Principle of RG?

e Maximal real-space mutual information (maxRMI) principle:

e Relevant features retain maximal mutual information with
neighboring environments.

¢ Minimal bulk mutual information (minBMI) principle:

e |rrelevant features have minimal mutual information with
each other.

min I(Z@(l), Z](—l,)) “ "

H Hu, S-H Li, L Wang, Y-Z You. arXiv: 1903.00804 2D 2D

® Holographic interpretation: the bulk
freedom should be massive.

® RG flow is the optimal transport of a non-trivial field theory
(boundary) towards a massive Gaussian theory (bulk).

J Cotler, S Rezchikov, arXiv:2202.11737
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What is the Designing Principle of RG?

e Maximal real-space mutual information (maxRMI) principle:

e Relevant features retain maximal mutual information with
neighboring environments.

¢ Minimal bulk mutual information (minBMI) principle:

e |rrelevant features have minimal mutual information with
each other.

(1) Z(l’)) P Jp)
7]

min (2,

e Obijective function ') 2D

L = Dxi(pn(2)|lpz(2)) 2 =z
=,y logpn(2) —logpx(x) — logdet(0,x)

Recall Pz(z) = px(x) det(d,x)



Machine Learning Holographic
Mapping by Neural Network
Renormalization Group

| Hu, S-H Li, L Wang, Y-Z You. arXiv: 1903.00804

Hong-Ye Hu Shuo-HuiLi  Lei Wang
(UCSD — Harvard) (IOP, CAS)



Problem Setup
e (Given a statistical mechanics/field theory model

—logp(x) = S(x)

e Train a bijective RG transformation 2 = R() to minimize
the bulk mutual information (disentangle latent variables z)

L = Dxr(pn(2)|pz(2))
= E.p, logpa(2z) + S(x) — logdet(0,x)
e After training
e Generation task: generate @ from z
px () =pa(2)det(0g2) == (;75) = Egrp T2
® Inference task: infer z from @
Se(2) = S(x) — logdet(0,x) == (2;2;)efr




Complex ¢4 Model in 2D
e | attice field theory on square lattice

S[o] = —t > érd; + Z(uw + Algl*)
(i) '
e Symmetry: internal U(1) ¢; — €'“¢;
o Effectlvely 2D XY model ¢; = /pe'”’

:——ZCOSH —0;) Re ¢ fm ¢

(13)

(@5 D) ~ T3 (Fpj) ~ e Tid /s

T
Luttinger liquid Tkt Disordered (effectively
(CFT) tuned by )




Performance of the Generative Model

® | et us first make sure that the machine learns the correct
physics from the given action.

® Phase diagram (32x32 finite size lattice)
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Probing Holographic Bulk Geometry

e We can further infer the bulk effective action (the holographic
dual theory)

Set(z) = S(x) — logdet(0,x)

and evaluate the bulk correlation (ziz;)efr, which is expected
to tell us about the bulk geometry, as the bulk geodesm

distance can be inferred from S
.« Y, N\
dij = d() — §1n<zizj>eﬂ: . X : [/ v /y.’
R I S S
® Inthe CFT phase, the distance . - "3 S

matches hyperbolic geometry PN . & :
(~ AdS), verifying the AAS/CFT ) 3’7 By
correspondance! s X r*f

QU i W N =



Efficient Sampling from the Bulk
e Sampling: holographic mapping from bulk to boundary
e \assive field in the bulk — Critical field on the boundary
® | ocal update in the bulk = Global update on the boundary
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Efficient Sampling from the Bulk

e Sampling: holographic mapping from bulk to boundary

e \assive field in the bulk — Critical field on the boundary

® | ocal update in the bulk = Global update on the boundary
e Order parameters converges faster using bulk MCMC.

1.4F ' ' Related topics:

1.2} bulk MG e Self-learning MC

10t Huang, Wang, PRB (2017)
~ 0.8 Liu, Qi, Meng, Fu, PRB(2017)
o U

00f (boundary MC) e Super-resolution sampling

0.4t Efthymiou, Beach, Melko (2019)

0.2 ;

OO0b v v v v v v v .

0 100000 200000 300000 400000 500 OOO
Epochs

§ Latent space MCMC § Physical space MCMC



Neural Network
Renormalization Group
Applied to Computer Vision

H Hu, D Wu, Y-Z You, B Olshausen, Y Chen. arXiv: 2010.00029
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Hong-Ye Hu Dian Wu Yubei Chen Bruno Olshausen
(UCSD — Harvard) (EPFL) (UC Berkeley)




Human Face Dataset (CelebA)

Flow:

e Samples generated by RG
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Emergent Hierarchical Representations

e After training, probe how visible variables respond to
perturbations of latent variables.

Emergent features (unsupervised)
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Emergent Hierarchical Representations

e Different latent variables control features at different scales
High-level features

high—level

latent
N

) Rotation

ey
| [ 1 |
low-level 2z Eyebow

| HER |
visible €T

Eye size



Multi-Scale Feature Mixing
e Mixing high-level features of A with low-level features of B

Z(h) o Zz(4h) for h > hc,
sz> for h < h,




Efficient Error Correction
® Error correction: restore locally corrupted images

2E28R8 -

. 2

| &

$
LE Ll RG-Flow (ours)
j 4 high—level
'y Res & )
o real- 2"
?, oy
e Light-cone volume ~ O(log N) ks e
in the hyperbolic space ]
® Only resample ~ O(log N) latent 2

variables for error correction low—vlevel ey

(more efficient than O(N) scaling)

visible €T



Summary

e RG-Flow: a hierarchical flow-based generative model
motivated by the renormalization group in physics.

e ML helps to find optimal RG scheme, holographic latent
variables, and “gravitational-dual” theory ...

® Holographic duality helps boosting sample efficiency, multi-
scale feature tuning/mixing, error correction ...

e Applicable to:
e Quantum field theory/statistical physics.
® |mage processing, language processing.

Thanks for your attention!



