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Symmetry and Conservation Law

e Noether theorem is a profound theorem in physics.
e Continuous Symmetry << Conservation Law
® Space/time translation << momentum/energy
e Rotation < angular momentum
e Internal U(1) < charge conservation
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\
conserved current Emmy Noether
e |[f the internal symmetry € Lie groups, say SO(N),
O(N) vector: . = (nl, Nno, N3, - - )

every generator 7,;, — associated conserved current J g‘b
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Symmetry Breaking and Emergence

e Spontaneous Symmetry Breaking (SSB)
® Hamiltonian: symmetric = ground state: symmetry broken

e Each broken symmetry generator
— a Nambu-Goldstone mode (assuming Lorentz invariance)

e Emergent Symmetry

® Hamiltonian: no symmetry = low-energy excitations:
asymptotically acquire symmetry at long distance

,C — »Csymm. -+ gﬁanisotropy
\g — 0 under RG

® Noether theorem: each emergent symmetry generator
— an emergent conserved current (for internal symmetries)

e Can we observe these consequences?



Deconfined Quantum Critical Point (DQCP)

e Exotic quantum critical point between two SSB phases:
Néel and valence bond solid (VBS) in (2+1)D

A e Beyond Landau-
~ . .
o Ginzburg-Wilson
= quantum _
= . (LGW) paradigm.
< crticial _
2 e Deconfinement:
5§ Néel VBS fractionalized spinons

> and emergent gauge

paCP S fluctuations
® Emergent continuous
symmetry:
SO(5), O(4) ...
o = 7 (55 - )

Senthil, Vishwanath, Balents, Sachdev, Fisher (2004)



Easy-Plane J-Q (EPJQ) Model
e Easy-Plane J-Q (EPJQ) Model

Hgpjq =—J Y (Pij + AS;S) = Q Y PyjPuPun

@) [; ﬂ
J(SyS7 + 5757 4+ (1 - A)S;S?) m n

e Square lattice, spin-1/2 S; per site, anisotropy A = 0.5
e Singlet projection operator on bond P;; = + — S; - S,

AFXY DQCP VBS

Qin, He, You, Lu, Sen, Sandvik, Xu, Meng (2017)



O(4) Non-Linear o-Model
e Order parameters n = (n1, ng, N3, Ny)

Ny ~ (_)CEZ‘|‘ysz
N9 ~ (—)xﬁyz S AR = spin B0
Mo~ (—)Ei(L _ S : S
3~ (—) ( } VBS <« lattice Z4
ng ~ (=) (3 — Si* Sity)

_ 1 2 abcd
Lin| = g(@un) | 27?2 Mo Or Ny 0N Oyng

e O term: vortex of (n1,n2) carries Z,4 rep.(ns, n4)
vortex of (ng, ny) carries U(1) rep. (n1, ns)

® \/ortex condensation: destroy one order, establish another



O(4) Non-Linear o-Model
e Order parameters n = (n1, ng, N3, Ny)

Ny ~ (_)Cl?z‘|‘y25x
N9 ~ (—)xﬁy% S AR = spin B0
Mo~ (—)Ei(L _ S : S
3~ (—) ( } VBS «— lattice Z4
ng ~ (=) (3 — Si* Sity)

1
L[n] =—(0,mn)* A U401y, 0y
n] g( L) 27T € Nq 0rnpO0rne0yny
+ Mni +n5 —nz —nj)

AFXY DQCP VBS



O(4) Non-Linear o-Model
e Order parameters n = (n1, ng, N3, Ny)

Ny ~ (_)CEZ‘|‘ysz
ng ~ (=) TSy ARRY = spin B
Na ~ | — T2 — S SZ
3~ (—) ( + } VBS <« lattice Z4
ng ~ (=) (3 — Si* Sity)

_ 1 2 abcd
Lin| = g(@un) | 27?2 Mo Or Ny 0N Oyng

e At DQCP (A = 0), other anisotropies are expected to be
Irrelevant, e.g (n% ng)Q, n3n4(n§ — ni)

e Emergent O(4) symmetry = O(4) conserved currents ...




Spin Excitation Spectrum
e Spin excitation spectrum A% (q,w) ~ 2Im(S*S%)(q,w +i0; )
AFXY DQCP VBS
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Ma, Sun, You, Xu, Vishwanath, Sandvik, Meng, arXiv:1803.01180



Easy-plane J1-J2 (EPJ1J2) Model

e To identify the unique spectral feature of DQCP, we introduce
a “control group” model = Easy-plane J1-J2 (EPJ1J2) Model

Hgpy,g, = J1 Y XXZij+ Jo »  XXZ;
(27) (27)’
e Square lattice, spin-1/2 S, per site + easy-plane anisotropy
® XXZ coupling on bond XXZ;; = Sy S5 + SYSY 4 35757
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Spin Excitation Spectrum
® Spin excitation spectrum for EPJQ model

AFXY a DQCP ) VBS
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Ma, Sun, You, Xu, Vishwanath, Sandvik, Meng, arXiv:1803.01180




Deconfined Quantum Critical Point (DQCP)
e Spectrum: DQCP v.s. 3D XY Néel VBS

EPJQ (DQCP) EPJ1J2 (3DXY)  Nuy Ny, N, Dy, D,
e Spinon continuum
at momentum (7, )
N ~ (=)'S; ~ 2oz
e Spin density
at momentum (0, 0)
N X atN

e XY-VBS current
at momenta
(7,0), (0, )

N(V-D)— (D V)N

| | 17
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Identify Noether Currents

e Emergent O(4) symmetry rotates the O(4) vector
n — (nh na, N3, TL4) — (N:m Ny7 Dac) Dy)
1 10 abcd

Lin] = ;(({%n)Q | 53¢ Nq0rNpO0xncOyng

e Noether theorem
e Each generator 1,: T — e0Tab gy (CL; b=1,2,3, 4)

e Associate with a conserved current J' with 9,,J!, =0
0L
0(0,mn)

e SO(4) has 6 generators, each current has (2+1) space-time
components — altogether 18 components

e Not all of them appear in the spin excitation spectrum ...

J = (iTypm) = ng0pny — np0ung



Conserved Currents as Spin Excitations

® |n the spin excitation (S = 1) spectrum, 5 components of the
Noether current can be observed

Top J, expression spin = Q
T J2, N.o,D, —D,0,N, S° (,0)
Tys Jh N,9,D,— D,d,N, S* (0,7)
To. J2, N,9,D, — D,d,N, SY (r,0)
(0,m)
(0,0)

Tos Ji N,0,D, — D,d,N, SY
T, J% N,9,N,— N,O,N, S*

spin
To verify the emergent ni N, S* (&)
O(4) symmetry, we need n, N, SY (mm)
to test if these currents ns D, B (7, 0)
indeed conserved ’
are in ny D, - (0. 7



Conservation Law from Scaling Dimension
® |n (2+1)D space-time, conserved current must scale as

Ay Jy = Az Jo = J~1/A~1/r?

\ Current-current correlation
must decay with exact power
1
J5 (Sap (1) 55 (0)) ~ —

r4

e Non-conserved current will not follow the precise scaling

1
(J (r)J5 (0)) ~ iy « “anomalous” dimension

e Avanishing 7 indicates the current conservation

® This exponent can be measured from spin-spin correlation,
given their correspondence to the O(4) current



Measurement of Anomalous Dimension

L=48

- 4 & B

L=96

L=32 |

L=64 |

Ma, You, Meng, arXiv:1811.08823

e (General form of current-
current correlation

(T ) ~ a7 (8 — 24

e Fourier transform to
imaginary time domain
0y (1,q) x 3 Fy (7, q)
| n—glF%—l—l(Tv q))

50 (T,q) x qQFﬁ (1,q)

Fo(r ,Q)—I 1Ko (lgr|)

® Determine 7 by fitting
® Finite-size scaling
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Measurement of Anomalous Dimension

e (General form of current-
current correlation
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| n—glF%—l—l(Tv q))
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1/L

Ma, You, Meng, arXiv:1811.08823

0.04 (r,q) = \ 110K, (1qr))

® Determine 7 by fitting
® Finite-size scaling



Conserved Currents as Spin Excitations

XL ZZ

® The channels we have measured are: G oy, G g ()

Top J, expression spin Q
T J2, N.,0,D, —D,0,N, S° (m,0)
Tvs Jb N,0,D, — D,0,N, S° (0,)
2 N,9,D, — D,d,N, SY (m,0)

(0,m)

(0,0)

Tos J& N,0,D,— D,0,N, SV
Tio J% NN, — N,ON, S
® The missing generator is
v T34 - (D,, D,) rotation (S = 0), invisible in spin channel

%[TB»TM] = %[TQS,TM] = 134

SKNXKXK
o
S

e All generators are checked — SO(4) symmetry confirmed
® |mproper Z> symmetry is microscopic = Emergent O(4)



(1+1)D Analog of DQCP
e Arecent proposal: 1D DQCP (Ising-DQCP) Jiang, Motrunich (2019)

H = Z ~JSESE  — J.SESE | + K, SESTE o + K. S7S7 )

e 1D spin chain, on-site symmetry 773 x 7.5
e Fix K, = K, :1/2 Jr =1, tune J,
BS z—FM

@@—@ s

—_——————>
J, =1 J. =1.4645
Majumdar—Gosh’ DQCP

® Direct continuous transition between two Ising ordered
phases — similar to DQCP in 2D.



O(4) Non-Linear o-Model

® QOrder parameters for AFM Heisenberg chain:
r-FM: nqy ~ SY r-AFM: ny ~ (—)*SY
y-AFM: ng ~ (—)"S? y-AFM: ng ~ (—)"S?
z-FM: ng ~ 57 z-AFM: ns ~ (—)7357’;Z

VBS: ng ~ (=)'S; - Six1 VBS: ny ~ (=)'S; - Si11

Affleck, Haldane (1987)



O(4) Non-Linear o-Model
® Order parameters

r-FM: nq ~ S7
y-AFM: ng ~ (—)"S?
z-FM: ng ~ S7
VBS: ny ~ (—)iSi - Sia1
e Field theory: O(4) NLSM with k=1 WZW term + anisotropies

1 ik .
Ln| = %(@Ln)Q + —e€ bed ) O-npOpn.Oyny

—+ )\1%% -+ )\Qng —+ )\3%% —+ )\47@21

e Translation, reflection, spin Z; x Z5 provide 4 independent
Zio symmetries, effectively flipping each component of n



O(4) Non-Linear o-Model
® Order parameters

r-FM: nq ~ S7

y-AFM: ng ~ (—)"S?
z-FM: ng ~ S7

VBS: g ~ (—)ZS ¥ Sz’—l—l

e Field theory: 0(4) NLSM with k=1 WZW term + anisotropies

1kac

Lin] = ( n)? 4+ —ere

2

3

— "N, 0-npO0r N0y y

-
A( —nj) + N(ni — n3)

+p(ni +ny —n3 —nj)+-- (u>0)
A <O A=0 A>0

—_—m

~FM DQCP VBS



O(4) Non-Linear o-Model

® Order parameters
r-FM: nq ~ S7
y-AFM: ng ~ (—)"S?
z-FM: ng ~ S7
VBS: ng ~ (—)iS- - Sia1

e Field theory: 0(4) NLSM with k=1 WZW term + anisotropies
Lin] = ( n)* + lfe“dena(?Tnb(?mncf)und
}(nfi =mp= T = )
+p(ni +ny —n3 —nj)+-- (u>0)

o At the DQCP, emergent O(2)xO(2) symmetry (from Z%)



Identify Noether Currents
® Proposed emergent symmetry: O(2)4 x O(2)g

ny + ing ~ €% : Jg = 10,0 = n10,n2 — N20,,nq

ns + ing ~ e : Jy =10,0 = n30,ng4 — ny0,ns

U3 i i —nip  —N i
ng | —Na2  —Na2 —N2  —N2 T2
ns3 ns —n3 ns —ns3 ns
g | —T4 T4 T4 T4 — Ty




of spin and dimmer operators

Identify Noether Currents
® On the lattice model level, we check the symmetry properties

z-AFM. xy-VBS
Sy~ (=)S;  Tx~(=)(5S];+hec)
T, G g T P
Si | Siza S0 =57 =57 5%,
Syl Siy =S¢ =S =87 S,
S; | Sh. o7 57 =57 5%,
Sy | =557 =57 S =57 5%
.| -1, —1_ | | —1'




Identify Noether Currents
e By comparing symmetry representations,

Jo | —Jg  —Jog Jg —Jy Jy
Sz | -8z -Gz gz gz gG*

we can make the identification:
TS~ T~ 8~ ()18
Jy~Jg ~Tr o~ (=)(SFSY, +hec)



Numerical Result

e By data collapse and fitting
zZ Qz 1 | (_1)T
(57 Sigr) ~ -0.68(3) " 1.2.02(6)
(—1)"
<1;73F’i+""> 7 2.00(5)
', = stgﬂrl (xy-dimer)

e EXxponents are consistent with 2
(within error range)
— conservation of Noether
currents 0, J, = 0,J) =

e Improper Z> subgroups are
microscopic symmetries
— emergent O(2)xO(2) symmetry .

Huang, Lu, You, Meng, Xiang (arXiv:1904.00021); Roberts, Jiang, Motrunich (arXiv:1904.00010)




Potential Realization of DQCP in SrCu2(B0Os)-

e | ayered quantum magnet
_ _ _ Kageyama et.al. d o
® Cu site carries spin-1/2 PRL 82, 3168 (1999)

® Heisenberg by superexchange
— Shastry-Sutherland model

H=J1 » 8-S;j+J2 » 8;i-8;

1jEN.N, ij€Edimer




Potential Realization of DQCP in SrCu2(B0Os)-

e | ayered quantum magnet
Kageyama et.al.

® Cu site carries spin-1/2 PRL 82, 3168 (1999)

® Heisenberg by superexchange
— Shastry-Sutherland model

17 €En.n. 17 Edimer
dVBS oiicr pVBS DQCP Neel
0.675 0.77 J1 / Jo

Lee, You, Sachdev, Vishwanath (arXiv:1904.07266)



Potential Realization of DQCP in SrCu2(B0Os)-
e Apply uniaxial strain effectively tunes J1/J2 ratio

© Sr
10 © Cu
© B
8 © O
& B y
X 6f e
— DQCP? with ©_2~
4 zom- €mergent O(4)
X symmetry . of2
2 E 0
L :0 ()
. DS PS AF
0 1 2 3 4

Pressure (GPa)
Zayed et.al. (2017) Guo et.al. (arXiv:1904.09927)



spectrum with spectra

® The momentum point X is an extinction
point of diffraction from Cu sites (protected

Spectral Signature of O(4) Currents
e Emergent O(4) currents should appear in the spin excitation

3

weight ~ w
i 10
t Néel-VBS 1
curren H
I,’ N V| 10°
_!,' IR
*’! ‘*L 1072
I I

by the glide reflection symmetry)

— No elastic scattering at low-energy
Lee, You, Sachdev, Vishwanath (arXiv:1904.07266)




Summary

Noether theorem: emergent continuous symmetry —
emergent conserved currents, which can be observed in the
low-energy excitation spectrum

Apart from spin/boson systems, fermion systems can also
have “DQCP” (e.g. symmetric mass generation) with
emergent symmetry. Noether current provides a universal
probe for these exotic quantum phase transitions.

QMC + SAC allows us to explore spectral features of DQCP
in both bosonic and (sign-problem-free) fermionic systems.

The spectral features are relatively easy to probe by INS,
RIXS or NMR, and are robust in a range of temperature,
which may guide the search for DQCP in real materials.
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