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Fermion Bilinear Mass
e Relativistic fermion in d-dimensional spacetime

S| = /dd:v (i 0y — m)i

b = 9"" for Dirac fermions (or 7" for Majorana fermions
in real representation)

e Fermion bilinear mass term my
® |t creates an energy gap in the fermion excitation spectrum

(as seen from the equation of motion) R4
(ify'ua,u — m)w =0 gap\:a:/—lc

:>]~Cuk’u —mf=0<¢e= ::\/k2 + m? /,”—//_/ <\\\
® Fermion correlation: short-ranged (exponential decay)

D0V () ~ e TI/E (€ ~mTY

Finite correlation length



Definition of Fermion Mass

e How to define fermion mass beyond the free-fermion limit?

e Can not easily solve the equation of motion in the
presence of fermion interaction ...

® The notion of quasi-particle may not even be well-defined
under interaction.

e However, the fermion (two-point) correlation function is still
well-defined by the path integra

(Y(0)y(x)) = %/D:@b]@p(o)w(w)eis[w]

® Fermion mass = inverse correlation length (~ the fermionic
excitation gap in the many-body spectrum)

|22 = m=0

wowen~{ W T



Fermion Mass Generation

® Fermion mass generation: How to create an excitation gap
for gapless fermions?

® Higgs mechanism: condense a fermion bilinear mass
® |nvolves spontaneous symmetry breaking or gauge
Higgsing
e Examples:
e BCS superconductor U(1) — Zs
e Electroweak Higgs SU(2) x U(1)y — U(1)gm
e This may not be the full story of fermion mass generation.
e Can fermions acquire a mass/gap without SSB?
e Mott insulator: gap opening by charge repulsion
e Kondo insulator: gap opening by Kondo (spin) interaction



Fermion Mass Generation
e Symmetry group GG and the representation rg of fermion field
Fermion Mass Generation
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Fidkowski-Kitaev Model: SMG in (0+1)D

e The first and simplest example of SMG was discovered by
Fidkowski and Kitaev in 2009 Fidkowski, Kitaev 0904.2197, 1008.4138

e A collection of Majorana fermions in (0+1)D spacetime
e \ajorana fermion operator Xa, satistying Clifford algebra

(Xas Xp} = 200y (a,b=1,2,---)

- They are Hermitian operators X = Xa

- They can be viewed as “real/imaginary parts” of fermion
creation/annihilation operators, e.qg.
c1 = 2(x1 + ix2) c] = =(x1 — ix2)

- Fermion number operator

ny = 61{61 = 2(1+ix1x2)




Fidkowski-Kitaev Model: SMG in (0+1)D
® A collection of Majorana fermions in (0+1)D spacetime
® Majorana fermion operator Xa
® Subject to a time-reversal symmetry (anti-unitary)
7L Xa = Xa,1 — —i
and the fermion parity symmetry (unitary)
75 : Xa = —Xa

e What could be the Hamiltonian operator H for this
quantum system, preserving the Z2 x Z; symmetry?

e Z3 :terms in H must only contain an even number of
Majorana fermion operators, like

H = iugpXaXp + UabedXaXoXeXd + -+ (u... € R)



Fidkowski-Kitaev Model: SMG in (0+1)D

® A collection of Majorana fermions in (0+1)D spacetime
® Majorana fermion operator Xa
® Subject to a time-reversal (anti-unitary) symmetry

7L Xa = Xa,1 — —i
and the fermion parity (unitary) symmetry
Zg ' Xa —7 —Xa
e What could be the Hamiltonian operator H for this
quantum system, preserving the Z2 x Z; symmetry?

e 75 : any terms with imaginary coefficients are forbidden

H = uabx@Xo + UabedXaXbXcXd T+ (u... € R)
e Without fermion interaction (at bilinear level): H = 0.



Fidkowski-Kitaev Model: SMG in (0+1)D
e Without fermion interaction (at bilinear level): H = 0.

e All states in the many-body Hilbert space are degenerate
— fermion “excitations” are gapless (there is no energy
separation between odd and even fermion parity states)

e How many states are there?

e Every pair of Majorana modes = a complex fermion
mode — 2-fold degeneracy

n1 = cje1 = 3(1+ixixe) € {0,1}
ng = cye2 = 5(1+ixsxa) € {0,1}

® 2n Majorana modes — 2"-dim Hilbert space

e Without interaction, this degeneracy can not be lifted — looks
like a Z-classified anomaly (but actually not)



Fidkowski-Kitaev Model: SMG in (0+1)D

e \What can we do with fermion interaction?

e Consider eight Majorana modes, grouped into four
complex fermion modes

Ca = %(XQa—l T iXZa) (CL = 1,2, 374)

® Then it is possible to turn on an interaction

H = cicac3eq + chgcgcJ{

that hybridizes |0000) and |1111) states (in the Fock state
basis |n1m21314) labeled by fermion occupation numbers)
® The ground state is

=5 (|0000) — [1111))

with energy -1 (the other states have energy +1 or 0).




Fidkowski-Kitaev Model: SMG in (0+1)D

e \What can we do with fermion interaction?
® The ground state is

75 (10000) — [1111))

e Unique (non-degenerated)

® Gapped (order-one energy gap from all the remaining
15 states in the Hilbert space)

e No fermion bilinear expectation value
\V/CL, b : <iXaXb> =0
e Symmetric: preserving the Z2 x Z% symmetry
® This example shows that it is possible to open an energy gap

in fermion systems without any bilinear condensation —
Symmetric mass generation (SMGQG)



Fidkowski-Kitaev Model: SMG in (0+1)D

e \What is special about the number eight?
® This is required by the anomaly cancellation.

e (0+1)D fermions with Z; x Z; symmetry (or the Pin~

spacetime-internal symmetry, or the BDI symmetry class),
has a non-perturbative global anomaly

v € TPy (Pin™) = Zg

® The anomaly index v = the number of Majorana modes.

e With eight Majorana modes, anomaly vanishes — the
system can be trivially gapped without breaking symmetry.

e However, the Z; symmetry is still restrictive enough to forbid

any bilinear masses — interaction is the only solution, and
we have already seen one example of such interaction



Fidkowski-Kitaev Model: SMG in (0+1)D

e Conclusion: SMG can happen in (0+1)D
e when there are eight Majorana fermion modes,
e when appropriate interaction is applied.
e The SMG interaction is not unigue, but also not arbitrary
e Charge-4e interaction ( SU(4) symmetric)
H = cieaczeq + hie. — —5(/0000) — [1111))
e Heisenberg interaction ( Spin(4) xz, SU(2) symmetric)

1
H = SI . SH ? \/§(|1001> — |0110>)

® They all stabilize a unique ground state with a gap to all
excitations, without breaking the Z3 x Zi symmetry,

without any fermion bilinear expectation i.e. (ix,xs») = 0



Fidkowski-Kitaev Model: SMG in (0+1)D
e Conclusion: SMG can happen in (0+1)D
e when there are eight Majorana fermion modes,
e when appropriate interaction is applied.
e The SMG interaction is not unigue, but also not arbitrary
® However, the following interaction will not work

H = x1x2Xx3X4 + X5X6X7Xs —|0000)
Preserves all required 1100) But ground states
symmetries ()()11> are still

1111) degenerated

e How do we know if an interaction works or not? What is the
gapping criterion for a proposed interaction?



3-4-5-0 Model: SMG in (1+1)D
e What is the designing principle of the SMG interaction?

e Kinematics - anomaly cancellation:
the fermion system must be free from any anomaly

® Dynamics - gapping condition:
there exist interactions to drive the system to a new RG
fixed point with all low-energy freedoms trivially gapped

e In (1+1)D, these two conditions are equivalent to each other

anomally
cancellation

QQTKQ,B:O

gapping
condition

LK =0
J Wang, 2207.14813



3-4-5-0 Model: SMG in (1+1)D
® 3-4-5-0 chiral fermions in (1+1)D

4
L = Z wll(at — Uaﬁw)wa + Eint
a=1
e Four chiral fermion fields with a U(1) x U(1)’ symmetry

U(l) S U(l), : wa’ N el(qa9+q;6/)wa
fermion ¢, chirality v, charge (qq,q.)

o +1 (left) (4,5)
(R —1 (right) (5,4)
Y4 —1 (right) (0, 3)
e

ii 5. 4 .




3-4-5-0 Model: SMG in (1+1)D
® 3-4-5-0 chiral fermions in (1+1)D

4
L = Z wll(at — Uaﬁw)wa + »Cint
a=1

e Four chiral fermion fields with a U(1) x U(1)’ symmetry

’701 (37 O)
4 5 e——————————
0 (5 ) -

® The system can be viewed as a (one-sided) boundary of a
multi-layer (2+1)D quantum Hall insulator, each layer
contributes to Hall conductances by (assuming e*/h = 1)

OH.a = Vaq. Ji{’a = v.q7  (a=1,2,3,4)



3-4-5-0 Model: SMG in (1+1)D
e Why the weird 3-4-5-0 charge assignment? - They are
designed to enable SMG
e U(1) x U(1)" must be anomaly free (no obstruction towards
gapping), at least bulk Hall conductances must vanish
o = 3% +4* -5 —0* =0
ol =0 +52—4° -3 =0
More generally, anomaly cancellation requires both self-
anomaly and mixed-anomaly free

9} Kqgs =0 (a,08=1,2)

quzq: q2::q/:

| OO
|

| 1
SO W
| I

| 1
W OO
| I

|
| 1
e Nela)
OOoO—O
- | OO




3-4-5-0 Model: SMG in (1+1)D
e Why the weird 3-4-5-0 charge assignment? - They are
designed to enable SMG
e U(1) x U(1)" must be anomaly free (no obstruction towards
gapping)
e However, U(1) x U(1)’ forbid any backscattering on the
free-fermion level (no trivial mass)

wl 37 0 -
'702 47 O <
'703 57 4 -

Both Dirac masses ¥,.%» and Majorana masses %', are
all charged under U(1) x U(1)’

— gapping is only possible by interaction effects
e \What should be the correct interaction to drive SMG?



3-4-5-0 Model: SMG in (1+1)D

® The correct SMG interaction was proposed by Wang and
Wen back in 2013 (and was recently verified by numerics)

Ling = g1 (019050,0031031040,104 + h.c.) J Wang, XG Wen,
1307.7480,

t+ g2 (V105 12} 0pphtathy + huc.) 18091117

consider g1 = g2 = g, the phase diagram looks like this:

chiral fermion SMG phase
(massless) (massive)
o > (
Je
~= 0.050¢ K
\O_/ 0.020 0.010
— Y [ Zeng, Zhu,
= 0010 0.001 ~ e /8 Wangg, You,
& 0.005 107 . 220212355
S 0.002| 105 AR
~ 1 2 5 10 20 O 5 10 15 20

r (log scale) r (linear scale)



3-4-5-0 Model: SMG in (1+1)D

® The significance of this result is that it demonstrates a new
possibility to regularize chiral fermions on the lattice (at least
in (1+1)D, hopefully, generalizable to (3+1)D)

S & S
> O
&ég \ 0 &(%}6\ \%
$ 3 S 3
& ~§7 S & 5
% =~ S

~_Add interaction _#

® This is known as the mirror/domain wall fermion approach
(which dates back to Eichten-Preskill 1986), but the correct
gapping interaction was not known until Wang-Wen.



3-4-5-0 Model: SMG in (1+1)D

e Why the SMG interaction is so complicated? - In fact, Wang-
Wen is already the most relevant interaction allowed by the
gapping condition (i.e. anything simpler will not work)

e By bosonization 1, ~ €'¥* (a = 1,2, 3, 4), the fermion system
can be equivalently described by a Littinger liquid theory

1
L =4—(8t¢TK(9x¢ — 00TV Orp)
-
+ ) gacos(ITp)
_ a=1,2
with o o
10 O O 1 2
K=13021 0 h=|7] k=]
00 0 —1 ] L 2 1

e (Gapping condition: interaction operators must “braid” trivially

TK 'g=0 (a,8=1,2)



3-4-5-0 Model: SMG in (1+1)D
e [ntuition: view the chiral fermions as the (1+1)D boundary of
a (2+1)D U(1) x U(1)" gauge theory (enforcing symmetry on
the boundary by gauging symmetry in bulk)

e Afully gapped boundary can only be consistently achieved
by condensing the maximal set of bulk excitations O, ~ e''=?

that are self-boson and mutual-boson:
TK '3 =0 (o,B=12)

e Condensed operators O, ~ e''=¥ must be neutral under the
U(1) x U(1)" transformation (such that the interaction does
not break the symmetry explicitly)

Z&QQ =0 (Oz,ﬁ — 1,2)



3-4-5-0 Model: SMG in (1+1)D
e Up to the freedom of basis choice, the solution is given as
la — KQoz

under which the anomaly cancellation, the symmetry
requirement, and the gapping condition are all consistent
with each other

¢} Kqs =11qs =1JK 'l =0

e Symmetry assignments dictate SMG interactions

3 0 3 0

_ 4 5 loz — Kga > | — 4 D
1= |5 4 100 017  |—-b —4
0 3| K=1006 0 0 -3
- - 00 0 —1_ - -
Charge Condensible

assignments operator basis



3-4-5-0 Model: SMG in (1+1)D
® The lattice of condensible operators (condensible algebra)
{O; ~ €' ?|l € span(ly, 1) N ZH

[3747_570]T

e Operator scaling dimension A, = 2I7i (at the free-fermion
fixed point) = shorter [ vector = more relevant O; operator

Op1,—2.1,2]7 = Y1 ;351:1@;%03104(%1#4
Ofa.1,—2.1r = 10501208 Dpbitzeh,y



3-4-5-0 Model: SMG in (1+1)D
e The SMG interaction is designed to drive the condensation of
these (maximally) condensible operators

»Cint — glOll -+ 92012 -+ h.c.

e Even though O;_have been chosen to be the most relevant

operators in the condensible algebra, their scaling dimension
at the free-fermion fixed point is still pretty high

Aint — %lgéla — 5 > 2
® High-energy physics: adding these irrelevant operators

makes the field theory unrenormalizable ...

e Condensed matter physics: adding these irrelevant
operators opens up new opportunities toward adjacent
phases of matters!



3-4-5-0 Model: SMG in (1+1)D
e |f the interaction is turned on perturbatively, it will flow to O.

e But there can be non-perturbative effects when the coupling
IS strong enough

500 ® o ¢ ¢

a0} o HH“

S
Aq 3.0¢ J
2.0 b m oo }q{l _____
gc=5.7%x0.2
10 b L |
0o 1 2 3 4 5 6 7
g (at UV)

® The interaction renormalizes the Luttinger parameter(s),
which in turn reduces its own scaling dimension



3-4-5-0 Model: SMG in (1+1)D
e |f the interaction is turned on perturbatively, it will flow to O.

e But there can be non-perturbative effects when the coupling
IS strong enough

500 ® o ¢ ¢

a0} o HH“

S
Aq 3.0¢ J
2.0 b m oo }q{l _____
gc=5.7%x0.2
10 b L |
0o 1 2 3 4 5 6 7
g (at UV)

e [ransition happens when A;,; = 2 (where the interaction
becomes marginal) = leading to a BKT transition



3-4-5-0 Model: SMG in (1+1)D
e |f the interaction is turned on perturbatively, it will flow to O.

e But there can be non-perturbative effects when the coupling
IS strong enough

e Beyond this point (when g > g.), the interaction is relevant
and flows strong under RG — driving all condensible
operators to condense

® The remaining operators that braid non-trivially with the
condensed operators will all be gapped, e.g. the fermion
operator & mass (gap) generation for fermions



3-4-5-0 Model: SMG in (1+1)D

e At the SMG critical point, the fermion operator must have a
higher scaling dimension, as the fermion correlation is
decaying faster in the SMG phase compared to the chiral
fermion phase.

“Experimental” group
(mirror sector) }

1.0
0.8
& SR——— qu}
83

Control group (chiral sector

0 1 2 3 4 5 6 7

® The increasing fermion scaling dimension is a precursor of
fractionalization (which can happen in higher dimensions).



Time to Break.



Bilayer Honeycomb Model: SMG in (2+1)D

® How can we extend our understanding of SMG to higher
dimensions?

® (0+1)D: interacting fermions are exact solvable

e (1+1)D: interacting fermions can be bosonized

e (2+1)D and above: the above techniques falil ...
e New idea: Fermion fractionalization

e A unified framework to understand the SMG critical point in
higher dimensions

® Hypothesis: physical fermions fractionalizes into
deconfined partons at and only at the SMG critical point —

a fermionic version of the deconfined quantum critical point
(fDQCP)

YZ You, YC He, C Xu, A Vishwanath,
1705.09313; 1711.00863



Bilayer Honeycomb Model: SMG in (2+1)D
e Bilayer honeycomb model K sSiagle, YZ You, C Xu, 1409.7401

H = —t Z (CLO_C]'[O- + h.c.) + JZ Si1 - Si2,

e Everysite:l =1,2;0 =1,

- Cilo. electron operator

1 .
- Sy = Lclacq: spin operator

e \Weak coupling: Dirac semi-metal

of

—_—
0 Je/t J/t
SM

I K M K I M transition



Bilayer Honeycomb Model: SMG in (2+1)D
e Bilayer honeycomb model K sSiagle, YZ You, C Xu, 1409.7401

H = —t Z (CLO_C]'[O- + h.c.) + JZ Si1 - Si2,

e Everysite:l =1,2;0 =1,

- Cilo. electron operator
1.1

- 81 = 5¢;,0¢i; spin operator

e Strong coupling: SMG insulator
Ground state = product of inter-
layer spin singlets

Q sl tba) =1t T

SM
with a gap to all excitations. transition




Bilayer Honeycomb Model: SMG in (2+1)D
e Bilayer honeycomb model K sSiagle, YZ You, C Xu, 1409.7401

H=—t Z zlaC]lU + hC) =+ JZ Si1 - Si27

e The model has (at least) an U(1); x U(1)2 x SU(2) x Z3
internal symmetry and the honeycomb lattice symmetry
e U(1); x U(1),: charge conservation in separate layers
U(1); : ¢y — ¢,
e SU(2): spin conservation (across layers)
SU(2) : ¢y — e29 9,
e Z3: sublattice charge conjugation symmetry (anti-unitary)
7S : ciy — (—1)° ;rl,i% —1i

e | attice symmetry: translations, rotations, reflections ...




Bilayer Honeycomb Model: SMG in (2+1)D
e Bilayer honeycomb model K sSiagle, YZ You, C Xu, 1409.7401

H = —t Z (CLO_C]'[O- + h.c.) + JZ Si1 - Si2,

e The model has (at least) an U(1); x U(1)2 x SU(2) x Z3
internal symmetry and the honeycomb lattice symmetry

e With these symmetries, it is impossible to gap out the Dirac
fermions by any fermion bilinear terms.

e For example, one may attempt to create a bilinear mass gap
by introducing a staggered interlayer hopping term

H—H+H,, H,, = Z miczlcig + h.c. (Attempt Only')

t |
m; = (—1)'m =+m fori € A/B




Bilayer Honeycomb Model: SMG in (2+1)D
e Bilayer honeycomb model K sSiagle, YZ You, C Xu, 1409.7401

H=—t Z zlaCJlU + hC) =+ JZ Si1 - Sz'27

e The model has (at least) an U(1); x U(1)2 x SU(2) x Z3
internal symmetry and the honeycomb lattice symmetry

® One attempt to open a bilinear gap:
= Z mz'C:;flCiz + h.c. (Attempt only!)

e However, this will break the inter-layer U(1)_ and the Z$
symmetries, since

U(l)_ ¢ — &%= i1, ci0 — € Cio, M; — e“V—m;




Bilayer Honeycomb Model: SMG in (2+1)D

e What we learn from condensed matter physics: if you can not
open a gap for physical fermions, you can try it on fermionic
partons (gauged fermions)!

e Example: quantum spin liquid - fail to open a
superconducting gap in Mott insulators, open it for
fermionic spinons by spin fractionalization.

® Analogy: SMG - fail to open a fermion bilinear gap in SMG
insulators, open it for fermionic partons by fermion
fractionalization.

e Consider writing the electron operator c¢;; as the product of a
boson operator b;; and a fermion operator fi; on every site

and layer (electron spin will be assigned to fi)

Ccir St
P — b, — b f
1l _Ciu_ 1l _fz'li_ zlle




Bilayer Honeycomb Model: SMG in (2+1)D

e As if the electron c;; were not a fundamental particle but a
composite particle Ci = byt [

made of a bosonic parton b;; and a fermionic parton fi.

e This rewriting is called fermion fractionalization.

e |t comes with a price (or a gift?): the emergent gauge
structure - as the partons are now redundant descriptions
of the original physical electron that the following
transformation is unphysical (i.e. no physical effect)

by — e ¥itby
fir = €% fi
e The emergent gauge group is U(1); x U(1), (add a tilde to
avoid confusion with the U(1); x U(1), symmetry)



Bilayer Honeycomb Model: SMG in (2+1)D
e Charge assignments (on every site)

~ ~

U, U()z | UA): U)2 SU(2)
Ci1 0 0 1 0 2
Ci2 0 0 0 1 2
bi1 —1 0 1 0 1
b;o 0 —1 0 1 1
Ji1 1 0 0 0 2
fio | 0 1 0 0 2
M; 1 —1 0 0 1

e Now the fermionic parton bilinear mass can be condensed
without breaking symmetry, but only to drive gauge Higgsing

HM — Z Miff;rlfiZ + h.c.



Bilayer Honeycomb Model: SMG in (2+1)D
e Effective field theory description

£=3" (10 =i(A = a))bul + rlbuf + ulby’

[=1,2
—|—fl’}/° (a—ial)fl)

e ;. single-component (per layer) scalar field

e /i: four-component (per layer) spinor field (Dirac fermion)
fi=fikr fixy fikr fiky]' (2 valleys x 2 spins)
e a;: dynamical U(1); 1-form gauge field
e A;: background U(1); 1-form gauge field, serving as
symmetry probe field
e The SMG tuning parameter is the bosonic parton mass r



Bilayer Honeycomb Model: SMG in (2+1)D
e Effective field theory description

£=3" (10 =i(A = a))bul + rlbuf + ulby’

[=1,2
—|—le’Y° (a—ial)fl)

e The SMG tuning parameter is the bosonic parton mass r

e < 0: bosonic partons b; condense, pinning gauge fields a;
to background fields A; through the Higgs mechanism,
such that fermionic partons f; regain the U(1); x U(1)s

symmetry and become physical fermions
— Dirac semi-metal phase

L = Z Cl lAl

[=1,2



Bilayer Honeycomb Model: SMG in (2+1)D
e Effective field theory description

£=3" (10 =i(A = a))bul + rlbuf + ulby’

=12
+ﬁ7°(3—iaz)fz)

e The SMG tuning parameter is the bosonic parton mass r

e > 0: bosonic partons b; gapped and decoupled, fermionic
partons f; spontaneous develop parton-Higgs mass f1.f
acquiring the gap while Higgsing gauge fields a; to the
diagonal U(1)4 which confines automatically by monopole

proliferation (Polyakov)
— SMG insulator phase



Bilayer Honeycomb Model: SMG in (2+1)D
e Effective field theory description

£=3" (10 =i(A = a))bul + rlbuf + ulby’

[=1,2
—|—le’Y° (0—ial)fl)

e The SMG tuning parameter is the bosonic parton mass r
® The SMG transition happens at r = 0.

e This is a deconfined quantum critical point (DQCP)
because away from the transition (either r > 0 or r < 0),
gauge fields are Higgsed / confined. Partons are
deconfined at and only at the SMG critical point.

e This is a fermionic DQCP in the sense that fermions (other
than bosonic order parameters) are fractionalizing here.



Bilayer Honeycomb Model: SMG in (2+1)D
e At the SMG critical point

L= Z (0 —i(A1 — a)bu|* + ulbe|* + fiy - (0 — i) f,

1=1,2

e Two layers are decoupled. Each layer: a QED3 theory with
Ny = 1 bosons (scalars) and N, = 4 fermions (spinors).

e Prediction: Large-NN;,, N+ estimation of the scaling
dimension for physical fermions ¢; = b, f; gives

A.~13>1 R Kaul, S Sachdev, 0801.0723

l.e. electron two-point correlation should decay faster at
the SMG critical point with a larger power compared to the
free Dirac fermion. (This has not been tested by numerics

yet ...)



Bilayer Honeycomb Model: SMG in (2+1)D

® Deep in the SMG phase, the gauge confinement is so strong
that it essentially enforces gauge projection on each site —
this provides a local picture for SMG

e Starting from the parton-Higgs mass

Hy =Y Mffi fio +hec.

® Sites are decoupled. Each site has the ground state

H \f( ilo M, ‘fZQJ)‘VaC>

o=1,4
o t

X (|M|f tfay | \M\f f@'“)‘m

(fileiTu — f;uf;m) vac)




Bilayer Honeycomb Model: SMG in (2+1)D
e Because the parton-Higgs mass M, is not gauge-neutral

~

U(1)_ : M; — &2 M,

terms that depend on the phase of M; can not survive the
gauge projection

;) o< — (|M|f fq;Tul ‘M‘f fj%)‘VELC}

(fq;mf;u — f;uf;%) vac)

P|V;) = %(fjmf;u — fiTuf;QT)‘Va@
LU = [4)

® Reproducing the exact ground state in the J — oo limit.

Confinement



Fermion Green’s Function Zero

e \What did we learn from the above calculation?
“Symmetric” mass (in SMQG) ~ parton bilinear mass ~
physical bilinear mass disordered by fluctuations

e This has an important implication for the fermion Green’s
function (two-point correlation)

G(x) := (( /p lS[w]
e For free-fermions,
S[y] = / A iy 0, — m)o)
the answer is (in momentum space)

Yk, +m
ktky, — |m|?

G(k) =



Fermion Green’s Function Zero
e This Green’s function has the following features:

G(k) = 1k +m Poles along k*k, — |m|* =0
k:“’k,u - ‘m|2 Dispersion: €x = \/k2 n ‘m‘g

® Rest mass: the energy gap to fermion excitations

Myest — mkin €L — |m‘

® |nertial mass: the inverse curvature of fermion dispersion

Miner = ’iim (Orer) = |m]

—0

® Bilinear mass condensation

(Pah) ~mf(Im]) # 0

e However, different “masses” may not always be equivalent.



Fermion Green’s Function Zero

e SMG = Disordering the bilinear mass without tuning off its
amplitude

Pl +m m =0 Kk
Glh)y =T T, Gk =
ktEy —|m) 'm|2 £ 0 Kbk, — |m|
-ree-massive fermion SMG fermion

wtg>y wtgﬂ)//

. ¢
—pole « —poleT—, -
4

fn - T s
—+ ., —+
w @ ) @
A A
- S

pole © pole \%@%
detG > 0 Y detg >0 @\

k k

0> 5130p
0> 5P
<




Fermion Green’s Function Zero
e Fermion Green’s function (deep) in the SMG phase

HE

- krky, — m?

e Poles along K"k, — |m|* = 0 = quasi-particle excitations

are still well-defined above the gap with finite rest mass
and inertial mass
TMyest = Miner — |m‘

e Zeros along k"k,, = 0 — no bilinear mass condensation
o) = [ kG = 0
as G(k)is odd in k, (as required by symmetry)

e det G(w = 0) = 0 is a non-perturbative robust feature of SMG!



Fermion Green’s Function Zero
e To see that det G = 0 must happen in the SMG phase:

>

=] O &

@
: Z o
— . . o 1 . .
+ [ trivial SME o~ fermionic
- phase > SPT phase
s trans. -
2 n=~0 N n=3a, 10, ...
- 5
3 Q.

o Bl
= cof o

e Consider gapless fermions on the boundary between trivial
and topological insulators

e Apply SMG interaction on the boundary with a gradient in
the vertical direction (along the boundary)

® The gapless fermions will end at the SMG transition.

YZ You, Z Wang, J Oon, C Xu, 1403.4938



Fermion Green’s Function Zero
e To see that det G = 0 must happen in the SMG phase:

>

=] O &

@
: Z o
— . . o [ c .
+ [ trivial SME o~ fermionic
- phase > SPT phase
s trans. -
% ’]’L:O o g n:8,16,...
- 5
3 Q.

o Bl
= cof o

e Now we compute the (free-fermion) topological index on
both sides in the bulk (where the bulk is non-interacting)

n = /ddkTrB(g—lag)(g—lag)...

This is a quantized topological invariant of ¢ that can not

change smoothly.
YZ You, Z Wang, J Oon, C Xu, 1403.4938



Fermion Green’s Function Zero
e To see that det G = 0 must happen in the SMG phase:

>

=] O &

@
: Z o
— . . o [ c .
+ [ trivial SME o~ fermionic
- phase > SPT phase
s trans. -
% ’]’L:O o g n:8,16,...
- 5
3 Q.

o Bl
= cof o

n = /ddk Tr B(G10G)(G~1OG) - - -

® The index n must change abruptly across the boundary
e This can only happen if the integrand becomes singular,
€. det(G) =0 or det(G™) =0

YZ You, Z Wang, J Oon, C Xu, 1403.4938



Summary

e Symmetric Mass Generation:
a novel mechanism to give fermion a mass without any

bilinear condensation, allowing gapping out fermions without
breaking symmetry.

e Conditions:

e Kinematics: anomaly cancellation

e Dynamics: gapping condition (less well understood)
e Features:

® Fermionic deconfined quantum criticality (at the SMG
transition): a non-trivial CFT with enlarged fermion scaling
dimension

e Fermion Green’s function zero (in the SMG phase)



Summary

e Symmetric Mass Generation:
a novel mechanism to give fermion a mass without any
bilinear condensation, allowing gapping out fermions without
breaking symmetry.

e Applications:

e | attice regularization of anomaly-free chiral fermions/
gauge theories (e.g. Standard Model or Grand Unified
Theories) XG wen, C Xu, YZ You, BT Yoni, D Tong ...

e New candidate non-SUSY dualities A Karasik, K Onder, D Tong
e (Potentially) New perspectives on strong CP problem J wang
e Classification/construction of interacting SPT states

o (Potentially) New insights into pseudo-gap physics in high-
Tc superconductors



Symmetry Extension

o Key idea: lift the symmetry obstruction by extending the
symmetry group G to a larger group G, defined by the short

exact sequence .
1l - K —-G—-=-G—=1

such that there exists a subgroup G’ C G that
1. is isomorphicto G' = G
2. admits the branching rule

rg X A rg 1<
under G — G’ breaking (still preserving the symmetry
group isomorphically).



