Symmetric Mass Generation

Yi-Zhuang You (尤亦庄) University of California, San Diego

[1] Juven Wang, Yi-Zhuang You, Symmetric Mass Generation. *Symmetry* **2022**, *14*(7), 1475 (arXiv: 2204.14271)

Paths to Quantum Field Theory 2022 August 2022, Durham UK

Fermion Bilinear Mass

• Relativistic fermion in d-dimensional spacetime

$$S[\psi] = \int d^d x \, \bar{\psi} (i\gamma^{\mu} \partial_{\mu} - m) \psi$$

 $\bar{\psi}=\psi^\dagger\gamma^0$ for Dirac fermions (or $\psi^{\rm T}\gamma^0$ for Majorana fermions in real representation)

- ullet Fermion bilinear mass term $mar{\psi}\psi$
 - It creates an energy gap in the fermion excitation spectrum (as seen from the equation of motion)

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$$

$$\Rightarrow k_{\mu}k^{\mu} - m^{2} = 0 \Leftrightarrow \epsilon = \pm\sqrt{k^{2} + m^{2}}$$

• Fermion correlation: short-ranged (exponential decay)

$$\langle \bar{\psi}(0)\psi(x)\rangle \sim e^{-|x|/\xi}$$
 $(\xi \sim m^{-1})$

Finite correlation length

Definition of Fermion Mass

- How to define fermion mass beyond the free-fermion limit?
 - Can not easily solve the equation of motion in the presence of fermion interaction ...
 - The notion of quasi-particle may not even be well-defined under interaction.
- However, the fermion (two-point) correlation function is still well-defined by the path integral

$$\langle \bar{\psi}(0)\psi(x)\rangle = \frac{1}{Z} \int \mathcal{D}[\psi]\bar{\psi}(0)\psi(x)e^{iS[\psi]}$$

 Fermion mass = inverse correlation length (~ the fermionic excitation gap in the many-body spectrum)

$$\langle \bar{\psi}(0)\psi(x)\rangle \sim \left\{ \begin{array}{ll} |x|^{-2\Delta_{\psi}} & \Rightarrow & m=0 \\ \mathrm{e}^{-|x|/\xi} & \Rightarrow & m=1/\xi \end{array} \right.$$

Fermion Mass Generation

- Fermion mass generation: How to create an excitation gap for gapless fermions?
- Higgs mechanism: condense a fermion bilinear mass
 - Involves spontaneous symmetry breaking or gauge Higgsing
 - Examples:
 - BCS superconductor $U(1) \to \mathbb{Z}_2$
 - Electroweak Higgs $SU(2) \times U(1)_Y \rightarrow U(1)_{EM}$
- This may not be the full story of fermion mass generation.
- Can fermions acquire a mass/gap without SSB?
 - Mott insulator: gap opening by charge repulsion
 - Kondo insulator: gap opening by Kondo (spin) interaction

Fermion Mass Generation

 \bullet Symmetry group G and the representation \mathbf{r}_{ψ}^G of fermion field

- The first and simplest example of SMG was discovered by Fidkowski and Kitaev in 2009 Fidkowski, Kitaev 0904.2197, 1008.4138
- A collection of Majorana fermions in (0+1)D spacetime
 - Majorana fermion operator χ_a , satisfying Clifford algebra

$$\{\chi_a, \chi_b\} = 2\delta_{ab} \quad (a, b = 1, 2, \cdots)$$

- They are Hermitian operators $\chi_a^\dagger = \chi_a$
- They can be viewed as "real/imaginary parts" of fermion creation/annihilation operators, e.g.

$$c_1 = \frac{1}{2}(\chi_1 + i\chi_2)$$
 $c_1^{\dagger} = \frac{1}{2}(\chi_1 - i\chi_2)$

- Fermion number operator

$$n_1 = c_1^{\dagger} c_1 = \frac{1}{2} (1 + i\chi_1 \chi_2)$$

- A collection of Majorana fermions in (0+1)D spacetime
 - Majorana fermion operator χ_a
 - Subject to a time-reversal symmetry (anti-unitary)

$$\mathbb{Z}_2^T: \chi_a \to \chi_a, i \to -i$$

and the fermion parity symmetry (unitary)

$$\mathbb{Z}_2^F:\chi_a\to-\chi_a$$

- What could be the Hamiltonian operator H for this quantum system, preserving the $\mathbb{Z}_2^T \times \mathbb{Z}_2^F$ symmetry?
 - \mathbb{Z}_2^F : terms in H must only contain an even number of Majorana fermion operators, like

$$H = iu_{ab}\chi_a\chi_b + u_{abcd}\chi_a\chi_b\chi_c\chi_d + \cdots \quad (u... \in \mathbb{R})$$

- A collection of Majorana fermions in (0+1)D spacetime
 - Majorana fermion operator χ_a
 - Subject to a time-reversal (anti-unitary) symmetry

$$\mathbb{Z}_2^T: \chi_a \to \chi_a, i \to -i$$

and the fermion parity (unitary) symmetry

$$\mathbb{Z}_2^F:\chi_a\to-\chi_a$$

- What could be the Hamiltonian operator H for this quantum system, preserving the $\mathbb{Z}_2^T \times \mathbb{Z}_2^F$ symmetry?
 - \mathbb{Z}_2^T : any terms with imaginary coefficients are forbidden $H=\mathrm{i} u_{ab}\chi_a\chi_b+u_{abcd}\chi_a\chi_b\chi_c\chi_d+\cdots$ $(u...\in\mathbb{R})$
 - Without fermion interaction (at bilinear level): H = 0.

- Without fermion interaction (at bilinear level): H = 0.
 - All states in the many-body Hilbert space are degenerate
 - → fermion "excitations" are gapless (there is no energy separation between odd and even fermion parity states)
 - How many states are there?
 - Every pair of Majorana modes = a complex fermion mode → 2-fold degeneracy

$$n_1 = c_1^{\dagger} c_1 = \frac{1}{2} (1 + i \chi_1 \chi_2) \in \{0, 1\}$$

$$n_2 = c_2^{\dagger} c_2 = \frac{1}{2} (1 + i \chi_3 \chi_4) \in \{0, 1\}$$

- 2n Majorana modes $\rightarrow 2^n$ -dim Hilbert space
- Without interaction, this degeneracy can not be lifted \rightarrow looks like a \mathbb{Z} -classified anomaly (but actually not)

- What can we do with fermion interaction?
 - Consider eight Majorana modes, grouped into four complex fermion modes

$$c_a = \frac{1}{2}(\chi_{2a-1} + i\chi_{2a}) \quad (a = 1, 2, 3, 4)$$

Then it is possible to turn on an interaction

$$H = c_1 c_2 c_3 c_4 + c_4^{\dagger} c_3^{\dagger} c_2^{\dagger} c_1^{\dagger}$$

that hybridizes $|0000\rangle$ and $|1111\rangle$ states (in the Fock state basis $|n_1n_2n_3n_4\rangle$ labeled by fermion occupation numbers)

The ground state is

$$\frac{1}{\sqrt{2}}(|0000\rangle - |1111\rangle)$$

with energy -1 (the other states have energy +1 or 0).

- What can we do with fermion interaction?
 - The ground state is

$$\frac{1}{\sqrt{2}}(|0000\rangle - |1111\rangle)$$

- Unique (non-degenerated)
- Gapped (order-one energy gap from all the remaining 15 states in the Hilbert space)
- No fermion bilinear expectation value

$$\forall a, b : \langle i\chi_a\chi_b \rangle = 0$$

- ullet Symmetric: preserving the $\mathbb{Z}_2^T imes \mathbb{Z}_2^F$ symmetry
- This example shows that it is possible to open an energy gap in fermion systems without any bilinear condensation → Symmetric mass generation (SMG)

- What is special about the number eight?
 - This is required by the anomaly cancellation.
 - (0+1)D fermions with $\mathbb{Z}_2^T \times \mathbb{Z}_2^F$ symmetry (or the Pin^- spacetime-internal symmetry, or the BDI symmetry class), has a non-perturbative global anomaly

$$\nu \in \mathrm{TP}_2(\mathrm{Pin}^-) = \mathbb{Z}_8$$

- The anomaly index ν = the number of Majorana modes.
- With eight Majorana modes, anomaly vanishes → the system can be trivially gapped without breaking symmetry.
- However, the \mathbb{Z}_2^T symmetry is still restrictive enough to forbid any bilinear masses \rightarrow interaction is the only solution, and we have already seen one example of such interaction

- Conclusion: SMG can happen in (0+1)D
 - when there are eight Majorana fermion modes,
 - when appropriate interaction is applied.
- The SMG interaction is not unique, but also not arbitrary
 - Charge-4e interaction (SU(4) symmetric)

$$H = c_1 c_2 c_3 c_4 + \text{h.c.} \rightarrow \frac{1}{\sqrt{2}} (|0000\rangle - |1111\rangle)$$

• Heisenberg interaction ($Spin(4) \times_{\mathbb{Z}_2} SU(2)$ symmetric)

$$H = \mathbf{S}_{\mathrm{I}} \cdot \mathbf{S}_{\mathrm{II}} \rightarrow \frac{1}{\sqrt{2}} (|1001\rangle - |0110\rangle)$$

• They all stabilize a unique ground state with a gap to all excitations, without breaking the $\mathbb{Z}_2^T \times \mathbb{Z}_2^F$ symmetry, without any fermion bilinear expectation i.e. $\langle i\chi_a\chi_b\rangle=0$

- Conclusion: SMG can happen in (0+1)D
 - when there are eight Majorana fermion modes,
 - when appropriate interaction is applied.
- The SMG interaction is not unique, but also not arbitrary
 - However, the following interaction will not work

$$H=\chi_1\chi_2\chi_3\chi_4+\chi_5\chi_6\chi_7\chi_8
ightarrow |0000
angle$$
 Preserves all required $|1100
angle$ But ground states symmetries $|0011
angle$ are still degenerated

 How do we know if an interaction works or not? What is the gapping criterion for a proposed interaction?

- What is the designing principle of the SMG interaction?
 - Kinematics anomaly cancellation:
 the fermion system must be free from any anomaly
 - Dynamics gapping condition: there exist interactions to drive the system to a new RG fixed point with all low-energy freedoms trivially gapped
- In (1+1)D, these two conditions are equivalent to each other

anomally cancellation
$$q_{\alpha}^{\mathsf{T}} K q_{\beta} = 0$$

$$\begin{array}{c} \text{gapping} \\ \text{condition} \\ l_{\alpha}^{\mathsf{T}} K^{-1} l_{\beta} = 0 \end{array}$$
J Wang, 2207.14813

3-4-5-0 chiral fermions in (1+1)D

$$\mathcal{L} = \sum_{a=1}^{4} \psi_a^{\dagger} i(\partial_t - v_a \partial_x) \psi_a + \mathcal{L}_{int}$$

• Four chiral fermion fields with a $U(1) \times U(1)'$ symmetry

• 3-4-5-0 chiral fermions in (1+1)D

$$\mathcal{L} = \sum_{a=1}^{4} \psi_a^{\dagger} i(\partial_t - v_a \partial_x) \psi_a + \mathcal{L}_{int}$$

ullet Four chiral fermion fields with a $\mathrm{U}(1) imes \mathrm{U}(1)'$ symmetry

• The system can be viewed as a (one-sided) boundary of a multi-layer (2+1)D quantum Hall insulator, each layer contributes to Hall conductances by (assuming $e^2/h=1$)

$$\sigma_{H,a} = v_a q_a^2 \quad \sigma'_{H,a} = v_a q_a^{\prime 2} \quad (a = 1, 2, 3, 4)$$

- Why the weird 3-4-5-0 charge assignment? They are designed to enable SMG
 - $U(1) \times U(1)'$ must be anomaly free (no obstruction towards gapping), at least bulk Hall conductances must vanish

$$\sigma_{\rm H} = 3^2 + 4^2 - 5^2 - 0^2 = 0$$
$$\sigma'_{\rm H} = 0^2 + 5^2 - 4^2 - 3^2 = 0$$

More generally, anomaly cancellation requires both selfanomaly and mixed-anomaly free

$$q_{\alpha}^{\mathsf{T}} K q_{\beta} = 0 \quad (\alpha, \beta = 1, 2)$$

$$K = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \qquad q_1 := q = \begin{bmatrix} 3 \\ 4 \\ 5 \\ 0 \end{bmatrix} \qquad q_2 := q' = \begin{bmatrix} 0 \\ 5 \\ 4 \\ 3 \end{bmatrix}$$

- Why the weird 3-4-5-0 charge assignment? They are designed to enable SMG
 - $U(1) \times U(1)'$ must be anomaly free (no obstruction towards gapping)
 - However, $U(1) \times U(1)'$ forbid any backscattering on the free-fermion level (no trivial mass)

Both Dirac masses $\psi_a^\dagger \psi_b$ and Majorana masses $\psi_a \psi_b$ are all charged under $U(1) \times U(1)'$

- → gapping is only possible by interaction effects
- What should be the correct interaction to drive SMG?

 The correct SMG interaction was proposed by Wang and Wen back in 2013 (and was recently verified by numerics)

$$\mathcal{L}_{\mathrm{int}} = g_1(\psi_1\psi_2^{\dagger}\partial_x\psi_2^{\dagger}\psi_3\psi_4\partial_x\psi_4 + \mathrm{h.c.}) \qquad \text{J Wang, XG Wen,} \\ + g_2(\psi_1\partial_x\psi_1\psi_2\psi_3^{\dagger}\partial_x\psi_3^{\dagger}\psi_3\psi_4 + \mathrm{h.c.}) \qquad \text{1307.7480,} \\ + g_2(\psi_1\partial_x\psi_1\psi_2\psi_3^{\dagger}\partial_x\psi_3^{\dagger}\psi_3\psi_4 + \mathrm{h.c.}) \qquad \text{1809.11171}$$

consider $g_1 = g_2 = g$, the phase diagram looks like this:

 The significance of this result is that it demonstrates a new possibility to regularize chiral fermions on the lattice (at least in (1+1)D, hopefully, generalizable to (3+1)D)

• This is known as the mirror/domain wall fermion approach (which dates back to Eichten-Preskill 1986), but the correct gapping interaction was not known until Wang-Wen.

- Why the SMG interaction is so complicated? In fact, Wang-Wen is already the most relevant interaction allowed by the gapping condition (i.e. anything simpler will not work)
- By bosonization $\psi_a \sim e^{i\varphi_a}$ (a=1,2,3,4), the fermion system can be equivalently described by a Littinger liquid theory

$$\mathcal{L} = \frac{1}{4\pi} (\partial_t \varphi^\intercal K \partial_x \varphi - \partial_x \varphi^\intercal V \partial_x \varphi) + \sum_{\alpha = 1, 2} g_\alpha \cos(l_\alpha^\intercal \varphi)$$

with

$$K = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \qquad l_1 = \begin{bmatrix} 1 \\ -2 \\ 1 \\ 2 \end{bmatrix} \qquad l_2 = \begin{bmatrix} 2 \\ 1 \\ -2 \\ 1 \end{bmatrix}$$

Gapping condition: interaction operators must "braid" trivially

$$l_{\alpha}^{\mathsf{T}} K^{-1} l_{\beta} = 0 \quad (\alpha, \beta = 1, 2)$$

- Intuition: view the chiral fermions as the (1+1)D boundary of a (2+1)D $U(1) \times U(1)'$ gauge theory (enforcing symmetry on the boundary by gauging symmetry in bulk)
- A fully gapped boundary can only be consistently achieved by condensing the maximal set of bulk excitations $O_{\alpha} \sim e^{il_{\alpha}^{\mathsf{T}}\varphi}$ that are self-boson and mutual-boson:

$$l_{\alpha}^{\mathsf{T}} K^{-1} l_{\beta} = 0 \quad (\alpha, \beta = 1, 2)$$

• Condensed operators $O_{\alpha} \sim \mathrm{e}^{\mathrm{i} l_{\alpha}^{\mathsf{T}} \varphi}$ must be neutral under the $\mathrm{U}(1) \times \mathrm{U}(1)'$ transformation (such that the interaction does not break the symmetry explicitly)

$$l_{\alpha}^{\mathsf{T}}q_{\beta}=0 \quad (\alpha,\beta=1,2)$$

Up to the freedom of basis choice, the solution is given as

$$l_{\alpha} = Kq_{\alpha}$$

under which the anomaly cancellation, the symmetry requirement, and the gapping condition are all consistent with each other

$$q_{\alpha}^{\mathsf{T}} K q_{\beta} = l_{\alpha}^{\mathsf{T}} q_{\beta} = l_{\alpha}^{\mathsf{T}} K^{-1} l_{\beta} = 0$$

Symmetry assignments dictate SMG interactions

$$q = \begin{bmatrix} 3 & 0 \\ 4 & 5 \\ 5 & 4 \\ 0 & 3 \end{bmatrix} \xrightarrow{l_{\alpha} = Kq_{\alpha}} l = \begin{bmatrix} 3 & 0 \\ 4 & 5 \\ -5 & -4 \\ 0 & -3 \end{bmatrix}$$
 Charge
$$l = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$
 Condensible assignments operator basis

The lattice of condensible operators (condensible algebra)

$$\{O_l \sim e^{\mathrm{i}l^{\mathsf{T}\varphi}} | l \in \mathrm{span}(l_1, l_2) \cap \mathbb{Z}^4\}$$

• Operator scaling dimension $\Delta_l = \frac{1}{2}l^{\mathsf{T}}l$ (at the free-fermion fixed point) \to shorter l vector = more relevant O_l operator

$$O_{[1,-2,1,2]^{\mathsf{T}}} = \psi_1 \psi_2^{\dagger} \partial_x \psi_2^{\dagger} \psi_3 \psi_4 \partial_x \psi_4$$

$$O_{[2,1,-2,1]^{\mathsf{T}}} = \psi_1 \partial_x \psi_1 \psi_2 \psi_3^{\dagger} \partial_x \psi_3^{\dagger} \psi_3 \psi_4$$

 The SMG interaction is designed to drive the condensation of these (maximally) condensible operators

$$\mathcal{L}_{int} = g_1 O_{l_1} + g_2 O_{l_2} + h.c.$$

• Even though $O_{l_{\alpha}}$ have been chosen to be the most relevant operators in the condensible algebra, their scaling dimension at the free-fermion fixed point is still pretty high

$$\Delta_{\mathrm{int}} = \frac{1}{2} l_{\alpha}^{\intercal} l_{\alpha} = 5 > 2$$

- High-energy physics: adding these irrelevant operators makes the field theory unrenormalizable ...
- Condensed matter physics: adding these irrelevant operators opens up new opportunities toward adjacent phases of matters!

- If the interaction is turned on perturbatively, it will flow to 0.
- But there can be non-perturbative effects when the coupling is strong enough

• The interaction renormalizes the Luttinger parameter(s), which in turn reduces its own scaling dimension

- If the interaction is turned on perturbatively, it will flow to 0.
- But there can be non-perturbative effects when the coupling is strong enough

• Transition happens when $\Delta_{\rm int} = 2$ (where the interaction becomes marginal) \rightarrow leading to a BKT transition

- If the interaction is turned on perturbatively, it will flow to 0.
- But there can be non-perturbative effects when the coupling is strong enough
 - Beyond this point (when $g > g_c$), the interaction is relevant and flows strong under RG \rightarrow driving all condensible operators to condense
 - The remaining operators that braid non-trivially with the condensed operators will all be gapped, e.g. the fermion operator → mass (gap) generation for fermions

 At the SMG critical point, the fermion operator must have a higher scaling dimension, as the fermion correlation is decaying faster in the SMG phase compared to the chiral fermion phase.

 The increasing fermion scaling dimension is a precursor of fractionalization (which can happen in higher dimensions).

Time to Break.

- How can we extend our understanding of SMG to higher dimensions?
 - (0+1)D: interacting fermions are exact solvable
 - (1+1)D: interacting fermions can be bosonized
 - (2+1)D and above: the above techniques fail ...
- New idea: Fermion fractionalization
 - A unified framework to understand the SMG critical point in higher dimensions
 - Hypothesis: physical fermions fractionalizes into deconfined partons at and only at the SMG critical point → a fermionic version of the deconfined quantum critical point (fDQCP)

 YZ You, YC He, C Xu, A Vishwanath,

1705.09313; 1711.00863

Bilayer honeycomb model K Slagle, YZ You, C Xu, 1409.7401

$$H = -t \sum_{\langle ij \rangle, l, \sigma} (c_{il\sigma}^{\dagger} c_{jl\sigma} + \text{h.c.}) + J \sum_{i} \mathbf{S}_{i1} \cdot \mathbf{S}_{i2},$$

- Every site: $l = 1, 2; \sigma = \uparrow, \downarrow$
 - $c_{il\sigma}$: electron operator
 - $oldsymbol{S}_{il}=rac{1}{2}c_{il}^{\dagger}oldsymbol{\sigma}c_{il}$: spin operator

• Weak coupling: Dirac semi-metal

Bilayer honeycomb model K Slagle, YZ You, C Xu, 1409.7401

$$H = -t \sum_{\langle ij\rangle, l, \sigma} (c_{il\sigma}^{\dagger} c_{jl\sigma} + \text{h.c.}) + J \sum_{i} S_{i1} \cdot S_{i2},$$

- Every site: $l = 1, 2; \sigma = \uparrow, \downarrow$
 - $c_{il\sigma}$: electron operator
 - $oldsymbol{S}_{il}=rac{1}{2}c_{il}^{\dagger}oldsymbol{\sigma}c_{il}$: spin operator
- Strong coupling: SMG insulator Ground state = product of interlayer spin singlets

$$\bigotimes_{i} \frac{1}{\sqrt{2}} (|\uparrow_1 \downarrow_2\rangle - |\downarrow_1 \uparrow_2\rangle)_i$$

with a gap to all excitations.

Bilayer honeycomb model K Slagle, YZ You, C Xu, 1409.7401

$$H = -t \sum_{\langle ij\rangle, l, \sigma} (c_{il\sigma}^{\dagger} c_{jl\sigma} + \text{h.c.}) + J \sum_{i} S_{i1} \cdot S_{i2},$$

- The model has (at least) an $U(1)_1 \times U(1)_2 \times SU(2) \times \mathbb{Z}_2^S$ internal symmetry and the honeycomb lattice symmetry
 - $U(1)_1 \times U(1)_2$: charge conservation in separate layers

$$\mathrm{U}(1)_l:c_{il}\to\mathrm{e}^{\mathrm{i}\theta_l}c_{il}$$

 \bullet SU(2): spin conservation (across layers)

$$\mathrm{SU}(2): c_{il} \to \mathrm{e}^{\frac{\mathrm{i}}{2}\boldsymbol{\theta}\cdot\boldsymbol{\sigma}}c_{il}$$

 \bullet $\mathbb{Z}_2^{\mathcal{S}}$: sublattice charge conjugation symmetry (anti-unitary)

$$\mathbb{Z}_2^{\mathcal{S}}: c_{il} \to (-1)^i c_{il}^{\dagger}, \mathbf{i} \to -\mathbf{i}$$

• Lattice symmetry: translations, rotations, reflections ...

Bilayer honeycomb model K Slagle, YZ You, C Xu, 1409.7401

$$H = -t \sum_{\langle ij \rangle, l, \sigma} (c_{il\sigma}^{\dagger} c_{jl\sigma} + \text{h.c.}) + J \sum_{i} S_{i1} \cdot S_{i2},$$

- The model has (at least) an $U(1)_1 \times U(1)_2 \times SU(2) \times \mathbb{Z}_2^S$ internal symmetry and the honeycomb lattice symmetry
- With these symmetries, it is impossible to gap out the Dirac fermions by any fermion bilinear terms.
- For example, one may attempt to create a bilinear mass gap by introducing a staggered interlayer hopping term

$$H \to H + H_m$$
 $H_m = \sum_i m_i c_{i1}^\dagger c_{i2} + \text{h.c.}$ (Attempt only!) $m_i = (-1)^i m = \pm m \text{ for } i \in A/B$

Bilayer honeycomb model K Slagle, YZ You, C Xu, 1409.7401

$$H = -t \sum_{\langle ij \rangle, l, \sigma} (c_{il\sigma}^{\dagger} c_{jl\sigma} + \text{h.c.}) + J \sum_{i} S_{i1} \cdot S_{i2},$$

- The model has (at least) an $U(1)_1 \times U(1)_2 \times SU(2) \times \mathbb{Z}_2^S$ internal symmetry and the honeycomb lattice symmetry
- One attempt to open a bilinear gap:

$$H_m = \sum_i m_i c_{i1}^{\dagger} c_{i2} + \mathrm{h.c.}$$
 (Attempt only!)

 \bullet However, this will break the inter-layer $\mathrm{U}(1)_-$ and the $\mathbb{Z}_2^{\mathcal{S}}$ symmetries, since

$$U(1)_{-}: c_{i1} \to e^{i\theta_{-}}c_{i1}, c_{i2} \to e^{-i\theta_{-}}c_{i2}, m_{i} \to e^{2i\theta_{-}}m_{i}$$

$$\mathbb{Z}_{2}^{\mathcal{S}}: c_{il} \to (-1)^{i}c_{il}^{\dagger}, m_{i} \to -m_{i}$$

- What we learn from condensed matter physics: if you can not open a gap for physical fermions, you can try it on fermionic partons (gauged fermions)!
 - Example: quantum spin liquid fail to open a superconducting gap in Mott insulators, open it for fermionic spinons by spin fractionalization.
 - Analogy: SMG fail to open a fermion bilinear gap in SMG insulators, open it for fermionic partons by fermion fractionalization.
- Consider writing the electron operator c_{il} as the product of a boson operator b_{il} and a fermion operator f_{il} on every site and layer (electron spin will be assigned to f_{il})

$$c_{il} = \begin{bmatrix} c_{il\uparrow} \\ c_{il\downarrow} \end{bmatrix} = b_{il} \begin{bmatrix} f_{il\uparrow} \\ f_{il\downarrow} \end{bmatrix} = b_{il} f_{il}$$

• As if the electron c_{il} were not a fundamental particle but a composite particle $c_{il} = b_{il} f_{il}$

made of a bosonic parton b_{il} and a fermionic parton f_{il} .

- This rewriting is called fermion fractionalization.
- It comes with a price (or a gift?): the emergent gauge structure - as the partons are now redundant descriptions of the original physical electron that the following transformation is unphysical (i.e. no physical effect)

$$b_{il} \to e^{-i\theta_{il}} b_{il}$$

 $f_{il} \to e^{i\theta_{il}} f_{il}$

• The emergent gauge group is $\tilde{U}(1)_1 \times \tilde{U}(1)_2$ (add a tilde to avoid confusion with the $U(1)_1 \times U(1)_2$ symmetry)

Charge assignments (on every site)

	$\tilde{\mathrm{U}}(1)_1$	$\tilde{\mathrm{U}}(1)_2$	$U(1)_1$	$U(1)_2$	SU(2)
$\overline{c_{i1}}$	0	0	1	0	2
c_{i2}	0	0	0	1	${f 2}$
m_i	0	0	1	-1	1
$\overline{b_{i1}}$	-1	0	1	0	1
b_{i2}	0	-1	0	1	1
$\overline{f_{i1}}$	1	0	0	0	$\overline{2}$
f_{i2}	0	1	0	0	${f 2}$
M_i	1	-1	0	0	1

 Now the fermionic parton bilinear mass can be condensed without breaking symmetry, but only to drive gauge Higgsing

$$H_M = \sum_{i} M_i f_{i1}^{\dagger} f_{i2} + \text{h.c.}$$

$$\mathcal{L} = \sum_{l=1,2} \left(|(\partial - i(A_l - a_l))b_l|^2 + r|b_l|^2 + u|b_l|^4 + \bar{f}_l \gamma \cdot (\partial - ia_l)f_l \right)$$

- b_l : single-component (per layer) scalar field
- f_l : four-component (per layer) spinor field (Dirac fermion) $f_l = \begin{bmatrix} f_{lK\uparrow} & f_{lK\downarrow} & f_{lK'\uparrow} & f_{lK'\downarrow} \end{bmatrix}^\mathsf{T}$ (2 valleys x 2 spins)
- a_l : dynamical $\tilde{\mathrm{U}}(1)_l$ 1-form gauge field
- A_l : background $U(1)_l$ 1-form gauge field, serving as symmetry probe field
- The SMG tuning parameter is the bosonic parton mass r

$$\mathcal{L} = \sum_{l=1,2} \left(|(\partial - i(A_l - a_l))b_l|^2 + r|b_l|^2 + u|b_l|^4 + \bar{f}_l \gamma \cdot (\partial - ia_l)f_l \right)$$

- ullet The SMG tuning parameter is the bosonic parton mass r
 - r < 0: bosonic partons b_l condense, pinning gauge fields a_l to background fields A_l through the Higgs mechanism, such that fermionic partons f_l regain the $U(1)_1 \times U(1)_2$ symmetry and become physical fermions
 - → Dirac semi-metal phase

$$\mathcal{L} = \sum_{l=1,2} \bar{c}_l \, \gamma \cdot (\partial - iA_l) c_l$$

$$\mathcal{L} = \sum_{l=1,2} \left(|(\partial - i(A_l - a_l))b_l|^2 + r|b_l|^2 + u|b_l|^4 + \bar{f}_l \gamma \cdot (\partial - ia_l)f_l \right)$$

- ullet The SMG tuning parameter is the bosonic parton mass r
 - r>0: bosonic partons b_l gapped and decoupled, fermionic partons f_l spontaneous develop parton-Higgs mass \bar{f}_1f_2 acquiring the gap while Higgsing gauge fields a_l to the diagonal $\tilde{\mathrm{U}}(1)_+$ which confines automatically by monopole proliferation (Polyakov)
 - → SMG insulator phase

$$\mathcal{L} = \sum_{l=1,2} \left(|(\partial - i(A_l - a_l))b_l|^2 + r|b_l|^2 + u|b_l|^4 + \bar{f}_l \gamma \cdot (\partial - ia_l)f_l \right)$$

- The SMG tuning parameter is the bosonic parton mass *r*
 - The SMG transition happens at r=0.
 - This is a deconfined quantum critical point (DQCP) because away from the transition (either r > 0 or r < 0), gauge fields are Higgsed / confined. Partons are deconfined at and only at the SMG critical point.
 - This is a fermionic DQCP in the sense that fermions (other than bosonic order parameters) are fractionalizing here.

At the SMG critical point

$$\mathcal{L} = \sum_{l=1,2} |(\partial - i(A_l - a_l))b_l|^2 + u|b_l|^4 + \bar{f}_l \gamma \cdot (\partial - ia_l)f_l$$

- Two layers are decoupled. Each layer: a QED₃ theory with $N_b=1$ bosons (scalars) and $N_f=4$ fermions (spinors).
- Prediction: Large- N_b, N_f estimation of the scaling dimension for physical fermions $c_l = b_l f_l$ gives

$$\Delta_c \simeq 1.3 > 1$$
 R Kaul, S Sachdev, 0801.0723

i.e. electron two-point correlation should decay faster at the SMG critical point with a larger power compared to the free Dirac fermion. (This has not been tested by numerics yet ...)

- Deep in the SMG phase, the gauge confinement is so strong that it essentially enforces gauge projection on each site → this provides a local picture for SMG
- Starting from the parton-Higgs mass

$$H_M = \sum_{i} M_i f_{i1}^{\dagger} f_{i2} + \text{h.c.}$$

Sites are decoupled. Each site has the ground state

$$|\Psi_{i}\rangle = \prod_{\sigma=\uparrow,\downarrow} \frac{1}{\sqrt{2}} \left(f_{i1\sigma}^{\dagger} - \frac{M_{i}^{*}}{|M_{i}|} f_{i2\sigma}^{\dagger} \right) |\text{vac}\rangle$$

$$\propto - \left(\frac{M_{i}}{|M_{i}|} f_{i1\uparrow}^{\dagger} f_{i1\downarrow}^{\dagger} + \frac{M_{i}^{*}}{|M_{i}|} f_{i2\uparrow}^{\dagger} f_{i2\downarrow}^{\dagger} \right) |\text{vac}\rangle$$

$$+ \left(f_{i1\uparrow}^{\dagger} f_{i2\downarrow}^{\dagger} - f_{i1\downarrow}^{\dagger} f_{i2\uparrow}^{\dagger} \right) |\text{vac}\rangle$$

ullet Because the parton-Higgs mass M_i is not gauge-neutral

$$\tilde{\mathrm{U}}(1)_{-}:M_{i}\to\mathrm{e}^{2\mathrm{i}\tilde{\theta}_{-,i}}M_{i}$$

terms that depend on the phase of M_i can not survive the gauge projection

$$|\Psi_{i}\rangle \propto -\left(\frac{M_{i}}{|M_{i}|}f_{i1\uparrow}^{\dagger}f_{i1\downarrow}^{\dagger} + \frac{M_{i}^{*}}{|M_{i}|}f_{i2\uparrow}^{\dagger}f_{i2\downarrow}^{\dagger}\right)|\mathrm{vac}\rangle$$

$$+\left(f_{i1\uparrow}^{\dagger}f_{i2\downarrow}^{\dagger} - f_{i1\downarrow}^{\dagger}f_{i2\uparrow}^{\dagger}\right)|\mathrm{vac}\rangle$$

$$P_{i}|\Psi_{i}\rangle = \frac{1}{\sqrt{2}}(f_{i1\uparrow}^{\dagger}f_{i2\downarrow}^{\dagger} - f_{i1\downarrow}^{\dagger}f_{i2\uparrow}^{\dagger})|\mathrm{vac}\rangle$$

$$= \frac{1}{2}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

ullet Reproducing the exact ground state in the $J o \infty$ limit.

- What did we learn from the above calculation?
 "Symmetric" mass (in SMG) ~ parton bilinear mass ~ physical bilinear mass disordered by fluctuations
- This has an important implication for the fermion Green's function (two-point correlation)

$$\mathcal{G}(x) := \langle \bar{\psi}(0)\psi(x)\rangle = \frac{1}{Z} \int \mathcal{D}[\psi]\bar{\psi}(0)\psi(x)e^{iS[\psi]}$$

For free-fermions,

$$S[\psi] = \int d^d x \, \bar{\psi} (i\gamma^{\mu} \partial_{\mu} - m) \psi$$

the answer is (in momentum space)

$$\mathcal{G}(k) = \frac{\gamma^{\mu}k_{\mu} + m}{k^{\mu}k_{\mu} - |m|^2}$$

This Green's function has the following features:

$$\mathcal{G}(k) = \frac{\gamma^\mu k_\mu + m}{k^\mu k_\mu - |m|^2} \qquad \begin{array}{l} \text{Poles along } k^\mu k_\mu - |m|^2 = 0 \\ \text{Dispersion: } \epsilon_{\pmb{k}} = \sqrt{\pmb{k}^2 + |m|^2} \end{array}$$

Rest mass: the energy gap to fermion excitations

$$m_{\text{rest}} = \min_{\mathbf{k}} \epsilon_{\mathbf{k}} = |m|$$

Inertial mass: the inverse curvature of fermion dispersion

$$m_{\text{iner}} = \lim_{\mathbf{k} \to 0} (\partial_{\mathbf{k}}^2 \epsilon_{\mathbf{k}})^{-1} = |m|$$

Bilinear mass condensation

$$\langle \bar{\psi}\psi \rangle \sim mf(|m|) \neq 0$$

However, different "masses" may not always be equivalent.

 SMG = Disordering the bilinear mass without tuning off its amplitude

$$\mathcal{G}(k) = \frac{\gamma^{\mu} k_{\mu} + m}{k^{\mu} k_{\mu} - |m|^{2}} \xrightarrow{\overline{m} = 0} \mathcal{G}(k) = \frac{\gamma^{\mu} k_{\mu}}{|m|^{2} \neq 0} \qquad \mathcal{G}(k) = \frac{\gamma^{\mu} k_{\mu}}{k^{\mu} k_{\mu} - |m|^{2}}$$

Free-massive fermion

SMG fermion

Fermion Green's function (deep) in the SMG phase

$$\mathcal{G}(k) = \frac{\gamma^{\mu} k_{\mu}}{k^{\mu} k_{\mu} - |m|^2}$$

• Poles along $k^{\mu}k_{\mu} - |m|^2 = 0$ → quasi-particle excitations are still well-defined above the gap with finite rest mass and inertial mass

$$m_{\rm rest} = m_{\rm iner} = |m|$$

• Zeros along $k^{\mu}k_{\mu}=0$ \rightarrow no bilinear mass condensation

$$\langle \bar{\psi}\psi\rangle = \int \mathrm{d}^d k \, \mathcal{G}(k) = 0$$

as $\mathcal{G}(k)$ is odd in k_{μ} (as required by symmetry)

• $\det \mathcal{G}(\omega = 0) = 0$ is a non-perturbative robust feature of SMG!

• To see that $\det \mathcal{G} = 0$ must happen in the SMG phase:

- Consider gapless fermions on the boundary between trivial and topological insulators
- Apply SMG interaction on the boundary with a gradient in the vertical direction (along the boundary)
- The gapless fermions will end at the SMG transition.

• To see that $\det \mathcal{G} = 0$ must happen in the SMG phase:

 Now we compute the (free-fermion) topological index on both sides in the bulk (where the bulk is non-interacting)

$$n = \int d^d k \operatorname{Tr} \mathcal{B}(\mathcal{G}^{-1} \partial \mathcal{G}) (\mathcal{G}^{-1} \partial \mathcal{G}) \cdots$$

This is a quantized topological invariant of \mathcal{G} that can not change smoothly.

• To see that $\det \mathcal{G} = 0$ must happen in the SMG phase:

- ullet The index n must change abruptly across the boundary
- This can only happen if the integrand becomes singular, i.e. $\det(\mathcal{G}) = 0 \text{ or } \det(\mathcal{G}^{-1}) = 0$

Summary

Symmetric Mass Generation:

a novel mechanism to give fermion a mass without any bilinear condensation, allowing gapping out fermions without breaking symmetry.

• Conditions:

- Kinematics: anomaly cancellation
- Dynamics: gapping condition (less well understood)

• Features:

- Fermionic deconfined quantum criticality (at the SMG transition): a non-trivial CFT with enlarged fermion scaling dimension
- Fermion Green's function zero (in the SMG phase)

Summary

Symmetric Mass Generation:

a novel mechanism to give fermion a mass without any bilinear condensation, allowing gapping out fermions without breaking symmetry.

Applications:

- Lattice regularization of anomaly-free chiral fermions/ gauge theories (e.g. Standard Model or Grand Unified Theories) XG Wen, C Xu, YZ You, BT Yoni, D Tong ...
- New candidate non-SUSY dualities A Karasik, K Onder, D Tong
- (Potentially) New perspectives on strong CP problem J Wang
- Classification/construction of interacting SPT states
- (Potentially) New insights into pseudo-gap physics in high-T_c superconductors

Symmetry Extension

• Key idea: lift the symmetry obstruction by extending the symmetry group G to a larger group \tilde{G} , defined by the short exact sequence

$$1 \to K \to \tilde{G} \to G \to 1$$

such that there exists a subgroup $G'\subseteq \tilde{G}$ that

- 1. is isomorphic to $G' \cong G$
- 2. admits the branching rule

$$\mathbf{r}_{\psi}^{ ilde{G}} imes_{\mathcal{A}} \mathbf{r}_{\psi}^{ ilde{G}}
ightarrow \mathbf{1}^{G'}$$

under $\tilde{G} \to G'$ breaking (still preserving the symmetry group isomorphically).