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Introduction
• When we talk about quantum many-body physics, we usually 

think of ground states. 
 
 
 
 
 
 

• Magnets, superconductors, topological insulators … 

• Quantum phase transitions between ground states

• Highly-excited states (finite energy density E/V) are typically 
thermalized, described by statistical mechanics.



Introduction
• Eigenstate Thermalization Hypothesis (ETH)

• System serves as its own heat bath

• Density matrix of a subsystem 
 

• Volume-law entanglement entropy 
 
 
In contrast to ground states (area-law) 

• Are highly-excited states always thermalized? - No.

• Localization in disordered system violates ETH

• Lack of energy diffusion → fail to thermalize

Deutsch 91, Srednicki 94
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Introduction
• Single-particle: Anderson localization  
 

• Fock-space: Many-Body Localization (MBL) 
 
 

• Experimental Realizations

H=�
i
-t�ci† ci+1 + h.c.�- ϵi ni random ϵi ∈ [-W, W]

Anderson 1958

H=�
i
-t�ci† ci+1 + h.c.�- ϵi ni - V ni ni+1

Observation of many-body localization of interacting fermions in
a quasi-random optical lattice
Michael Schreiber1,2, Sean S. Hodgman1,2, Pranjal Bordia1,2, Henrik P. Lüschen1,2, Mark H. Fischer3, Ronen
Vosk3, Ehud Altman3, Ulrich Schneider1,2 and Immanuel Bloch1,2

1
Fakultät für Physik, Ludwig-Maximilians-Universität München, Schellingstr. 4, 80799 Munich, Germany

2
Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany

3
Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel

We experimentally observe many-body localization of interacting fermions in a one-dimensional quasi-random optical lattice. We identify the many-
body localization transition through the relaxation dynamics of an initially-prepared charge density wave. For sufficiently weak disorder the time
evolution appears ergodic and thermalizing, erasing all remnants of the initial order. In contrast, above a critical disorder strength a significant portion
of the initial ordering persists, thereby serving as an effective order parameter for localization. The stationary density wave order and the critical
disorder value show a distinctive dependence on the interaction strength, in agreement with numerical simulations. We connect this dependence to the
ubiquitous logarithmic growth of entanglement entropy characterizing the generic many-body localized phase.

Introduction The ergodic hypothesis is one of the central principles
of statistical physics. In ergodic time evolution of a quantum many-body
system, local degrees of freedom become fully entangled with the rest of
the system, leading to an effectively classical hydrodynamic evolution
of the remaining slow observables [1]. Hence, ergodicity is responsible
for the demise of observable quantum correlations in the dynamics of
large many-body systems and forms the basis for the emergence of local
thermodynamic equilibrium in isolated quantum systems [2, 3, 4]. It is
therefore of fundamental interest to investigate how ergodicity breaks
down and search for alternative, genuinely quantum paradigms in the
dynamics, and to understand the long-time stationary states that ensue
in the absence of ergodicity.

One path to breaking ergodicity is provided by the study of inte-
grable models, where thermalization is prevented due to the constraints
imposed on the dynamics by an infinite set of conservation rules. Such
models have been realized and studied in a number of experiments with
ultracold atomic gases [5, 6, 7]. However, integrable models represent
very special and fine-tuned situations, making it difficult to extract gen-

eral underlying principles.

Theoretical studies over the last decade point to many-body lo-
calization (MBL) in a disordered isolated quantum system as a more
generic alternative to thermalization dynamics. In his original pa-
per on single-particle localization, Anderson already speculated that
interacting many-body systems subject to sufficiently strong disorder
would also fail to thermalize [8]. Only recently, however, have con-
vincing theoretical arguments been put forward that Anderson local-
ization remains stable under the addition of moderate interactions,
even in highly excited many-body states [9, 10, 11]. Further theoret-
ical studies have established the many-body localized state as a dis-
tinct dynamical phase of matter that exhibits novel universal behavior
[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. In particular, the relax-
ation of local observables does not follow the conventional paradigm
of thermalization and is expected to show explicit breaking of ergodic-
ity. In many ways, the MBL transition is fundamentally different from
all other known transitions [23, 24]. On one side of the transition er-
godicity prevails and quantum effects decay at long times, whereas on
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Figure 1: Schematics of the many-body system, initial state and phase-diagram. A. Initial state of our system consisting of a charge density wave, where all
atoms occupy even sites (e) only. For an interacting many-body system, the evolution of this state over time depends on whether the system is ergodic or not. B.
Schematic phase diagram for the system: in the ergodic, delocalized phase (white) the initial CDW quickly decays, while it persists for long times in the non-ergodic,
localized phase (yellow). The striped area indicates the dependence of the transition on the doublon fraction, with the black solid line indicating the case of no
doublons. The black dash-dotted line represents the experimentally observed transition for a finite doublon fraction, extracted from the data in Fig. 4. The grey arrows
depict the postulated pattern of renormalization group flows controlling the localization transition. For U = 0, as well as in the limit of infinite U with no doublons
present [36], the transition is controlled by the non-interacting Aubry-André critical point, represented by the unstable grey fixed points. Generically, however, it is
governed by the MBL critical point, shown in red. C. Schematic showing a visual representation of the three terms in the Aubry-André Hamiltonian (Eq. (2)).
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In the lattice, the atoms tunnel between adjacent sites and
two atoms on the same site (in different hyperfine states)
interact through a low-energy s-wave collision, thereby rea-
lizing the Fermi-Hubbard model (FHM) [13,14]. Previous
work with ultracold atoms has explored the Mott insulator
(MI) phase [15,16] and transport properties [17,18] for
the FHM. The equivalent of material parameters, such as
the ratioU=t of Hubbard interaction to tunneling energy, are
precisely known and tunable over orders of magnitude by
adjusting the power of the λ ¼ 782.2 nm lattice laser, which
controls the lattice potential depth s. We access the metallic
phase in the lattice by employing a range of s such that
U < 12t and by adjusting the number of atoms N and the
geometric mean of the harmonic trap frequency ω so that
the characteristic density ~ρ ¼ Nðmω2d2=12tÞ3=2 < 5 [19].
The trap leads to a spatially inhomogeneous density profile,
with approximately 0.3–0.7 particles per site in the center
of the clean lattice for each spin state [20].
By disordering the lattice potential using optical speckle

[25,26], we explore the DFHM with ultracold atoms for
the first time. The optical speckle field is produced by
passing a 532 nm laser beam through a holographic diffuser
and focusing it onto the atoms, as in Refs. [25–27]. The
atoms experience a potential proportional to the optical
speckle intensity, which varies randomly in space. The
strength of this disorder is characterized by the average
disorder potential energy Δ and can be adjusted by varying
the 532 nm laser power. In contrast with experiments on
solids, the disorder is precisely known (via optical micros-
copy) and continuously tunable, from complete absence to
the largest energy scale present.
The disorder causes the “clean” Hubbard model occupa-

tion ϵ, interactionU, and tunneling t energies tovary fromsite
to site in the lattice.Theatoms, therefore, realize a single-band
DFHM described by the Hamiltonian H¼

P
iUin̂i↑n̂i↓−P

hiji;σtijðĉ
†
jσ ĉiσ þ H:c:Þþ

P
i;σðϵiþ mω2r2i =2Þn̂i;σ , where i

indexes the lattice sites, ĉ†iσ is the operator that creates an atom
on site i in spin state σ ¼ ↑, ↓, hiji indicates a sum over
adjacent sites,m is the atomicmass, ri is the distance from the
trap center to site i, and n̂i;σ ¼ ĉ†iσ ĉiσ is the number operator.
We work at sufficiently low temperature, such that the atoms
occupy only the lowest energy band. The statistical distri-
butions of Hubbard parameters are given in Refs. [25] and
[28]; the standard deviation of the ϵi distribution is approx-
imately equal to Δ. Because the speckle beam does not
propagate along a lattice direction, the Hubbard parameters
are fully disordered in three dimensions [28]. We cite the
Hubbard energies and Δ in units of the atomic recoil energy
ER ¼ h2=8md2 ≈ kB · 390 nK, where d ¼ λ=2 is the lattice
spacing, and h and kB are Planck and Boltzmann constants.
To study the influence of interactions and disorder on

transport, we measure the response of the atomic quasimo-
mentum distribution nðqÞ to an applied impulse. We
developed this method to measure disorder-induced locali-
zation for the Bose-Hubbard model in previous experiments

[26] and achieved quantitative agreement with quantum
Monte Carlo simulations [29]. An external force is applied
to the gas by turning on a magnetic field gradient for 2 ms,
which is short compared with the confining trap period [20].
Immediately following the impulse, the lattice is turned
off in 200 μs, and we measure nðqÞ by band mapping
and absorption imaging after 10 ms time of flight [30]. The
center-of-mass (c.m.) velocity vc:m: of nðqÞ is determined by
measuring the displacement of the centroid of the imaged
density profile from the case without an impulse.
In the metallic phase, applying an external force induces

a c.m. velocity, which is manifest as an asymmetry in nðqÞ
and vc:m: ≠ 0 [Fig. 2(a,i)]. We observe that the introduction

FIG. 2 (color online). (a) The c.m. velocity of the atom gas
measured after an applied impulse for s ¼ 4 (blue squares), 5 (red
circles), 6 (green triangles), and 7 ER (orange diamonds). Sample
images used to determine vc:m: are shown in false color for s ¼ 4
ER for Δ ¼ 0 ER (i) and Δ ¼ 1.46 ER (ii). The field of view
for all absorption images used in this work is 0.54 mm. The
projection of the Brillouin zone onto the imaging plane, which is a
hexagon because of the imaging and lattice-beam geometry,
is indicated using solid black lines. The blue dotted line is the
exponential fit used to determine Δc for s ¼ 4 ER; the arrow
indicates Δc for s ¼ 4 ER. The error bars are the standard error
in the mean for the 7–9 experimental runs that are averaged for
each data point. (b) Images taken at s ¼ 4 with Δ ¼ 0 ER (iii) and
Δ ¼ 1.46 ER (iv) without an impulse. The quasimomentum ~q
projected along the vertical axis in the imaging plane is measured
in units of the maximum allowed quasimomentum in the Brilloun
zone qmax. (c) Traces through images (iii) (solid blue line) and (iv)
(blue shaded region) showing the measured optical depth (OD).
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confinement in the experiment results in finite-size, inhomo-
geneous systems and changes the nature of the problem,
transforming the quantum phase transitions into crossovers
and leading to a coexistence of different phases. The 1D
systems are populated from an initially three-dimensional
Bose-Einstein condensate (BEC), which is split into several
quasi-1D tubes by a 2D lattice. About 500 such systems are
initially created at U ≃ 40J, then both U and Δ are slowly
changed using almost isoentropic transformations. The mean
site occupation n depends on U. For Δ ¼ 0, we calculate
n≃ 7 for the smallest U and n≃ 2 for the largest U [24].
A first indication of the nature of the system comes

from a measurement of the momentum distribution PðkÞ,
achieved through absorption imaging after a free flight. The
root-mean-square width Γ of PðkÞ is a measure of the
coherence of the system. The evolution of Γ in the disorder-
interaction plane is reported in Fig. 1(a). It clearly shows a
coherent regime (blue) for small Δ and moderate U,
surrounded by an incoherent regime extending from weak
to strong U (orange), with a smooth change of coherence
between the two regimes. In the superfluid (SF) regime of
moderate U and no disorder, we can compare PðkÞ to
calculations, concluding that our system is consistent with
being in thermal equilibrium at a temperature kBT ≃ 3J
[24]. This temperature is below the 1D degeneracy temper-
ature for our mean tube, kBTD ≃ 8J[31]. Calculating the
temperature dependence of PðkÞ in all the other regimes in
the Δ −U plane is challenging because of the coexistence
of different phases. Therefore, a measurement of temper-
ature or even of the presence of thermal equilibrium is not
possible.
The insulating nature of the incoherent regions is

confirmed by transport measurements. These are performed
by applying a sudden shift to the harmonic confinement,
and detecting the momentum δp accumulated in a fixed
time interval of 0.9 ms. Since the mean force arising from
the shift is constant, δp is a measure for the mobility of
the system. Figure 1(b) shows δpðUÞ for three different
values ofΔ. In the nondisordered case, the motion is almost
ballistic for small U, there is a progressive reduction of the
mobility moving to largerU, and finally, the system reaches
a strongly insulating regime where the mobility is very
small and less dependent from U [32]. For finite disorder,
the mobility at small U is strongly reduced; for increasing
U, however, it increases and finally decreases again. This
behavior confirms the coherence measurement showing the
presence of a disorder-driven insulator at small U and of
another insulating regime at large U dominated by the
interaction. An additional measurement at a larger T,
also shown in Fig. 1(b), indicates that the mobility for
intermediate Δ is essentially T independent in the acces-
sible range of temperatures.
The overall shape of the incoherent regime in Fig. 1(a) is

reminiscent of the Bose glass (BG) found in theory at
T ¼ 0 for homogeneous systems [19,20,22,23]. The

prediction is, indeed, of a weakly interacting BG appearing
for vanishing U and Δ > 2J, which is turned into a SF
when the interaction energy nU becomes comparable to the
disorder strength, although there is not yet consensus on the
exact shape of the transition line in the Δ −U plane
[33–35]. A stronger interaction is, instead, expected to
lead to a new insulating regime approximately when
U > 2nJ, i.e., when the interaction energy becomes larger
than the kinetic energy available in the lattice band.
Here, theory predicts a strongly correlated BG for an

FIG. 1 (color). Coherence and mobility. (a) Measured width of
the momentum distribution. The diagram is built with 94 data
points (crosses), with a standard deviation between 2% and 5%.
T ¼ 0 calculations reveal a MI only on the right of the dashed
line, see text. The dashed-dotted line is calculated as
Δ − 2J¼ nU. Stars (diamonds) refer to the measurements shown
in Fig. 2 (Fig. 3). (b) Momentum acquired after an applied
impulse for varying interaction strength and three disorder
strengths: Δ ¼ 0 (triangles), Δ ¼ 6.2J (squares), and Δ ¼ 8.8J
(circles), also shown by the arrows to the right of (a). The
measured SF temperature is kBT ¼ 3.1ð4ÞJ or kBT ¼ 4.5ð7ÞJ
(empty squares). The lines are a guide to the eye. The un-
certainties are the standard deviation of, typically, five measure-
ments.
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Localization can survive interaction. Both fermion & spin systems.
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Introduction
• Full MBL: all energy eigenstates are localized

• Extensive number of LIOMs 

• Effective Hamiltonian in terms of LIOMs 
 
 
 
 
 
 

• Area-law entanglement entropy (like ground states)

• Quantum many-body physics in highly-excited states

Serbyn, Papic, Abanin 13
Huse, Nandkishore, 
Oganesyan 14;
Chandran, Kim, Vidal, 
Abanin 15

Heff =�
a
ϵa n�a +�

a,b
ϵab n�a n�b +�

a,b,c
ϵabc n�a n�b n�c +…

n�a

stabilizer

Bauer, Nayak 13; Huse, Nandkishore, Oganesyan, Pal, Sondhi 13; Bahri, Vosk, Altman, Vishwanath 13; 
Chandran, Khemani, Laumann, Sondhi 14; Potter, Vishwanath 15; Slagle, Bi, You, Xu 15

[Heff , n�a] = 0

• Bosonic/Spin systems:

Heff =�
a
ϵa τaz +�

a,b
ϵab τaz τbz +�

a,b,c
ϵabc τaz τbz τcz +… (τaz = ±1)

like Landau Fermi liquid  
as RG fixed point

• Fermionic systems



Introduction
• Marginal MBL: quantum phase transition at finite T

• Thermalization transition: emergence of statistical mechanics

• Thermalization of marginal MBL system 
(e.g. thermalization of MBL-SPT boundary)

Quantum

Classical

thermalization  
transition

�
��
��
��
��

���
��
��

δ�

MBL  
(phase A)

MBL  
(phase B)

ETH

tuning parameter

marginal MBL  
(quantum critical)

For eigenstates in a many-body spectrum

Nandkishore, Potter 
1406.0847

You, Ludwig, Xu, 
1602.06964



• Given a disordered many-body Hamiltonian, find  
 

• Finding Heff ~ diagonalization of many-body Hamiltonian

• MBL: Area-law entanglement entropy 
→ matrix/tensor product state (MPS/TPS)  
 
 

• Renormalization Group (RG) approach

• Real Space RG (RSRG-X)

• Spectrum Bifurcation RG (SBRG) 

• DMRG-X

Finding Effective Hamiltonian

Heff =�
a
ϵa τaz +�

a,b
ϵab τaz τbz +�

a,b,c
ϵabc τaz τbz τcz +… (τaz = ±1)

σ�

�σ�

σ�

�σ�

σ�

�σ�… …

Bauer, Nayak 1306.5753

Pekker, Refael, Altman, Demler, Oganesyan 1307.3253
Vasseur, Potter, Parameswaran 1410.6165

Khemani, Pollmann, Sondhi 1509.00483; Yu, Pekker, Clark 1509.01244; 
Lim, Sheng 1510.08145; Kennes, Karrasch 1511.02205

Chandran, Carrasquilla, 
Kim, Abanin, Vidal 
1410.0687; Pekker, Clark 
1410.2224; Pollmann, 
Khemani, Cirac, Sondhi 
1506.07179

�Ψ〉 =�
{σi}

Ψ({σi}) �{σi}〉

Ψ({σi}) = Tr Aσ1 Aσ2 Aσ3 …

You, Qi, Xu 1508.03635



Spectrum Bifurcation RG
• Disordered Quantum Ising Model  
 
 
 
 
  H= -�

i

Ji
4 �ci† ci+1 + ci ci+1 + h.c.�+

Ki
4 ni ni+1 -

hi
2 ni

random Ji , Ki , hi

Or as interacting spinless fermions

• Pick out the leading energy scale term, rotate to its diagonal basis

• Generate effective couplings within high/low-energy subspaces by 
2nd order perturbation

H= -�
i
Ji σi

x σi+1
x + Ki σi

z σi+1
z + hi σi

z

σ� σ���

σ� σ��� σ� σ���
σ���

σ���

σ� σ� σ���
σ� σ� σ���
σ� σ���

σ���

σ� σ� σ��� ��
�� σ� σ���

� �
Clifford Schrieffer-Wolff



Spectrum Bifurcation RG
• Generic Qubit Model (qubits ~ spins/fermions) 
 

• Each RG step contains two unitary transformations R and S: 
 
 
 
 
 
 

• Hilbert-space-preserving (unitary) RG

H=�
[μ]

h[μ] σ[μ], σ[μ] = σμ1 ⊗σμ2 ⊗σμ3 … (μi = 0, 1, 2, 3)

�� �� �� �� �� ��…� ����

U =�
k
Rk Sk : H→ Heff = U† HU =�

a
ϵa τaz +�

a,b
ϵab τaz τbz +…

, in the diagonal block

H⟶R H= H0 + Δ + Σ⟶S H= H0 + Δ -
1
2 Σ H0-1 Σ

H0⟶
R H0 = ϵa τaz , in the off-diagonal block

H0 Δ = Δ H0
H0 Σ = -Σ H0



Quantum Circuit and MPS

• Approx. RG transform by Clifford circuit 
 

• Clifford circuit = Matrix Product Operator (MPO)

… …

direct-product state

MPS representation of MBL eigenstate �
��
��
��
�

δ�

MBL1 MBL2

ETH

marginal

UCl = D ≲ 2lnN

Entanglement entropySA ≤ ln D

U =�
k
Rk Sk ⟶ UCl =�

k
Rk

bound dim.
D = 2

σ� σ� σ�

σ�

�



Trinity of Emergent Qubits
• Emergent qubit 
 
 

• LIOM 
 

• Controls the spectrum branching  
 
 
 
 

• Holographic bulk degrees of freedom

σ� σ� σ�

σ�

�

Original physical qubits

RG emergent qubits

Heff =�
a
ϵa τaz +…

�0〉
low-energy 
subspace

�1〉
high-energy 
subspace



Holographic Mapping
• Emergent qubit

• LIOM

• Controls the  
spectrum branching

• Holographic bulk 
degrees of freedom

EHM: Qi 2013

Original physical qubits

RG emergent qubits

Hilbert-space-preserving RG 
= Holographic mapping

Swingle 09,12; Evenbly, Vidal 11; Leigh et.al. 14; Ryu, Takayanagi et.al. 12,13,14; Lee 13, 15; 
Haegeman et.al. 13; Czech et. al. 15; Pastawki et.al. 15; Bao et.al. 15;  Molina-Vilaplana 15 …

random 
tensor  
network
random 
MERA
G.Vidal 08



Holographic Mapping
• Geometric Interpretations of Entanglement Features

• Entanglement entropy 
 

• Correlation, Mutual Information  
 

• Full-spectrum holographic mapping  
for generic many-body system is  
challenging.

• MBL: "quasi-solvable", allows Hilbert-space-preserving RG 
and a controlled holographic mapping of the entire many-
body Hilbert space.

Ryu, Takayanagi 06SA = �γA �

Ii j = I0 e-dij�ξ
A

minimal surface γA



Entanglement Entropy
• All states have approximately the same entanglement 

entropy, given by the Clifford circuit.

• Roughly: each broken Clifford gate → 1bit entropy 

• Precisely: stabilizer rank (fast algorithm)

�′ = ���� �
��

�′ = �
��� ��

�

�′ = ���� ��
�

� � � � � � � �
���

���

���

���

���

���

���

���� �

� �
[�
��]

�
�
�
�
�
�

Fattal et. al.
quant-ph/0406168

Clifford  
gate

A

minimal surface γA



Entanglement Entropy

• MBL (SG, PM):

• Marginal MBL:

�� [���]

�

�

�
���

SG
PM

�′ = ���� �
��

�′ = �
��� ��

�

�′ = ���� ��
�

� � � � � � � �
���

���

���

���

���

���

���

���� �

� �
[�
��]

�
�
�
�
�
�

H= -�
i
Ji σi

x σi+1
x + Ki σi

z σi+1
z + hi σi

z
�

�
�

�
χ��

χ��

h = 0: two Majorana chainsSE~const.

SE =
c′

3 ln L c′ = c ln 2 Refael, Moore 04
(for Ising/Majorana systems)



• Holographic duality

• Bulk: Emergent qubits

• Boundary: Stabilizers 
 
 
 

Local Integrals of Motion

�

�

�

�

�

-�
��

ϵ �
�

�

�
-�
��

ϵ �
�

σ�
σ�
σ�

marginal MBL  
(quantum critical)

MBL

Heff =�
a
ϵa τaz +…

τ�a = UCl τaz UCl†

��
�

��
�

��
�

��
����

���
���

���

��� ��� ��� ��� ��

�

PM 
(MBL)

SG 
(MBL)

m
arginal



• Stabilizer length

• MBL phases 

• Marginal MBL (Critical) 

• Interaction does not change α

Stabilizer Locality

ξ = ���

ξ =
���

� �� �� �� ��
-��
-��
-�
-�
-�
-�
�

ℓ

��
�
(ℓ)

α = ����±����

α = ����±����

α = ����±����

� � � � �

-��

-��

-�

�

�� ℓ

��
�
(ℓ)

�
�
�
�
�

ℓ

��
�

��
�

��
�

��
����

���
���

���

��� ��� ��� ��� ��

�

�

�

�
�

�

�� ��

P(ℓ)~e-ℓ/ξ

P(ℓ)~ℓ-α (α= 2) Free case: 
D.S.Fisher 95

Pekker et.al. 14;
Vasseur et.al. 15 



• SBRG: good for Ising/Majorana-type models

• 1D XYZ Spin Chain

Application to Other Marginal MBL

Slagle, You, Xu, 1604.04283

H= -�
i
Jx,i σi

x σi+1
x + Jy,i σi

y σi+1
y + Jz,i σi

z σi+1
z

Jx,i , Jy,i , Jz,i independently random

SG-YSG-X

SG-Z

marginal MBL

�� [���]

�

�

�
���

ℤ2 ×ℤ2 (D2 ) symmetry

• Entanglement Entropy 

• Edward-Anderson Correlator 

• Mutual Information

SE =
c′

3 ln L c′ = ln 2

�σi
a σ j

a�2~ �i - j�-ηa

ℐAB~(xAB / l)-κ
�
l

�
l

xAB

ℐAB = SE (A) + SE (B)
-SE (A⋃ B)

Potter, Morimoto, 
Vishwanath,1602.05194



Out-of-Time-Order Correlation
• OTOC 

• Operator growth

• Butterfly effect

• MBL and marginal MBL systems 
 
 

• Operator growth  
 

• OTOC

F(t) = �W†(t) V†(0)W(t) V(0)�β

F(t) = 〈y �x〉; �x〉 =W(t) V �β〉, �y〉 = V W(t) �β〉

U(t) = e-ⅈ t Heff =�
A
e-ⅈ t ϵA TA

��[W(t), V(0)]�2 �β = 2 (1 - F(t))

commuting Pauli operatorsTA =∏a∈A τaz
Heff =�

A
ϵA TA

W(t) =W �
TA∈�W

e-2 ⅈ t ϵA TA

F(t) =W V W V �
TA∈�W⋂�V

e4 ⅈ t ϵA TA
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Out-of-Time-Order Correlation
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• Marginal MBL
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scrambling time tsc

ln tsc ~ �i - j� /ξLogarithmic light-cone

Now we just show the fits.
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Now we show the slope of the fits.
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dynamical scaling l ~ (-ln ϵ)2

Huang, Zhang, Chen 1608.01091,
Fan, Zhang, Shen, Zhai 1608.01914
Swingle, Chowdhury 1608.03280 



Beyond 1D: MBL Topological Order
• Strong disorder toric code model  
 
 
 
 
 

• Long-range Mutual Information
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Av = �
l∈ⅆv

σl
x, Bp = �

l∈∂p
σl
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H=�
v
Jv Av +�

p
Jp Bp +
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l
(he σl

z + hm σl
x)

random Jv,Jp

ℐAB = SA + SB - SA⋃B
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topological degeneracy from long range mutual information (LRMI)
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Picture of subsystems above. Each subsystem is a thick cylinder. The LRMI then measures the number 

of bits encoded in the topological degeneracy on a torus:
degen = 2� [bit]

Thus limL����=L/4(x = L /2) =
2 deconfined phase

0 confined phase

phase diagram:
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Same as the above but along the diagonal te = tm. The fact that this plot is discontinous does NOT mean 

that the transition is first order. I could have (and probably should) made a similar plot for the XYZ model.
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measures long-range  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Jian, Kim, Qi 1508.07006



Holographic Hamiltonian
• Geometry of the holographic bulk 
 
 

• Mapping H to the bulk 
 

• Portion of off-diagonal terms 
 
 

• Deep MBL: fragmented space

• Less disorder, more entangled, 
closer in distance.

Hhol = UCl† HUCl
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dab = -ξ ln Iab
I0

Distance Iab = Sa + Sb - Sab
mutual information

H

Hhol

Tr(Hhol - diagHhol)2
Tr Hhol2

=
δE2

E2

disorder
strongweak



Summary
• Spectrum Bifurcation RG

• Numerical method to study MBL physics

• Entanglement holographic mapping for MBL systems 
 
 
 
 
 
 
 
 

• Goal: understand thermalization, the origin of Stat. Mech.

• A random tensor network & holography based approach?
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MBL  
(phase A)

MBL  
(phase B)

ETH

tuning parameter

Black Hole  
formation

Inhomogeneous 
hyperbolic/AdS space

Fragmented space  
IR region capped off

• Vosk, Huse, Altman 
1412.3117; Potter, Vasseur, 
Parameswaran 1501.03501;

• Chandran, Laumann 
1501.01971;

• Chen,Yu, Cho, Clark, 
Fradkin 1509.03890

Code available on GitHub!


