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Machine Learning Physics

e Emergent phenomenon — a central theme of condensed
matter physics.
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Machine Learning Physics

® Aren't all these physics theories themselves also emergent
phenomena?
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Machine Learning Physics

e (Goal: investigate whether artificial neural networks can be
used to discover physical concepts and laws from

observation data.

e Examples Q_Q_Q_CP

® Machine learning quantum mechanics M\

— recurrent autoencoder
C Wang, H Zhai, Y-Z You. arXiv: 1901.11103

® Machine learning holographic geometry
— deep Boltzmann machine
Y-Z You, Z Yang, X-L Qi. PRB 97, 045153 (2018)

® Machine learning renormalization group
— flow-based deep generative model

H Hu, S-H Li, L Wang, Y-Z You. arXiv: 1903.00804
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Machine Learning
Quantum Mechanics




Potential and Density Data

® Suppose quantum mechanics has not been formulated so far

® Yet, amazingly, we know how to perform cold atom
experiments of Bose-Einstein condensate (BEC)

T — aasN

Potential profile BEC Density profile
(optical speckles, (in-situ measurement)
optical tweezers ...)

e Questions

e Can quantum mechanics (QM) be discovered as the most
natural theory to explain the experiment?

e Will the machine develop alternative form of QM?



Inspiration from Machine Translation

e Motivation: developments in machine translation
® Sequence-to-sequence mapping (RNN, LSTM ...)

Machine Translation

“La nina bebe agua.”

J :

14 . . b nlna
The girl drinks water. boy/
NniNo /Woman
® Representation learning (word2vec ...) man gueen
king - man + woman = queen king/v

T Mikolov, SW Yih, G Zweig. NAACL-HLT-2013



Inspiration from Machine Translation

e Motivation: developments in machine translation
e Train the neural network model to perform a task
® Discover concepts and relations in representation space

“La nina bebe agua.”

wave

\(.déh@ty\gnqji'é)\ function

“The qirl drinks water.”
Q Q Q Qo

(poten -t-ial\pydfi le)

e Task: potential-to-density mapping
e Latent variables: wave function?



Potential-to-Density Translator
e Recurrent neural network (RNN) translator 0

density (output)

1 translation
‘é‘(::)‘é‘é‘[:]‘ = loss LRNN

potential density (target)
Ltrammg data—’

® Discretize the 1D space, collect training data by simulation
e |nput: potential sequence V;

e Update: hidden state h; = W (V;) - h;—1

e Output: density sequence p; = P(h;)

e Minimize translation loss LrNN = ZiEWindOW(pé — ,07;)2
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Performance of the Translator
e Performance of the RNN translator
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Introspective Learning

® |ntrospective Learning

potential knowledge distiller
[EA [D
~ I . . 1y _ reconstruction
[ I [ L [ L [ T [ I :__?T’ loss LRAE
4 : ' :§: = translator
SR e FE TR
' : ' : translation
r loss LRNN
( B NG NP N
potential density (target)

Lt]rainimg data—’

High-level machine
only interface with
the neural activation
of the low-level
machine

Low-level machine
deal with training /
experimental data



Emergent Quantum Mechanics

® |mposing information bottleneck

® Squeezing the latent space dim
e Monitor the reconstruction loss

of the knowledge distiller

® Abrupt increase of loss only when
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latent dim < 2 = two real variables (100 200 300 400

steps

e Quantum wave function and its 1st order derivative

(arbitary unit)
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Update rules
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matching Schrodinger Eq.

0yb(x) = V(z)y(x)



Alternative Forms of Quantum Mechanics

e |f we relax the information bottle neck — alternative forms of
gquantum machines can also emerge, e.q.

p(x)] | O 2 0] [ p(x)
Op | p(x)| = |V(®) 0 1| |p(x)
P@) L0 2 of ),

e Hidden variables: density p(x) = |+)(2)|* and derivatives

e |n spirit of density functional theory
e But requires at least three real variables

e Wave function + Schrodinger equation formulation of QM is
indeed the most parsimonious theory that have emerged Iin
our neural network.



Machine Learning
Holography




Holographic Duality

e Holographic Duality (AdS/CFT) Maldacena 97; Witten 98; Gubser,

Klebanov, Polyakov 98
e Conformal field theory (CFT)
scale-free, critical, gapless

(padB) ~ 145 (power-law)

e Anti-de Sitter (AdS) space
negative curvature, tree network

(CaCp) ~ emdam/Sone o ooy

e Extra dimension: RG scale
e Mass deformation away from CFT
e IR region capped off at zcut ~ Inépgy = —Inm

e Correlation decays exponentially
(CalB) ~ e~ dAB/Eblk o, o~ TAB/Ebdy
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Holographic Duality
o Holographic Dua"ty (AdS/CFT) Maldacena 97; Witten 98; Gubser,
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Entanglement and Geometry

® One prominent feature of holographic duality is the deep
relation between:

® Boundary quantum entanglement structure

® Bulk spatial geometry structure
e Entanglement entropy = minimal cut

1

Ryu, Takayanagi (2006)

e Geometry is encoded in Sg(A) data

e Task: predict Sg(A) over different regions
using a neural network model (that represents the geometry)

e Bulk geometry will emerge as training builds up the network




Entanglement Feature Learning

e Task: predict entang

A
SE (A) — 2.8bit

0

S5 (A) = 3.5bi

D1T

e How to formulate this problem?
® Specify the entanglement region by an Ising configuration

e [reat the entanglement entropy as an energy associated
to the Ising configuration

A— 71| =

%

ement entropy for different regions
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Entanglement Big Data

e How many different choice of region A?
e A system of N sites = 2N choices of |7] = (71,72, - )

-+l i€ A . . .
Ti=\ _1 ;A (like Ising variables)

e Each Ising configuration (entanglement region) is
associated with an entanglement entropy — big data...
® A naive energy-based model (generally non-locall!)
SE(A) — F[T] — SO — Z J@JTZT] — Z JijkilTiTkaTl -+ ..
ij ijkl

e Multi-spin interaction in the Ising model
reflects the non-local structure of
many-body entanglement



Deep Boltzmann Machine

® How do we decode the structure behind this Ising model of
guantum many-body entanglement?

A — [T] — % P[T] X €_F[T] _ €_SE(A)

e Machine learning: how do we represent a complicated joint
probability distribution of pixels in an image dataset?

e We train a generative model ...




Deep Boltzmann Machine

® How do we decode the structure behind this Ising model of
guantum many-body entanglement?

A— 1] = % Plr] o e~ Flr] = ¢=S5(4)

e Machine learning: how do we represent a complicated joint
probability distribution of pixels in an image dataset?

® |n particular, we can train a deep Boltzmann
machine by introducing hidden neurons o;

—F\r| _ —Flo,T
el = 3 e Blo

FElo, 7] = — Z Jij00; — Z ht;0;
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Holographic Duality

® Resolve the non-local entanglement structure on the
boundary by a local Ising model (neural network) in the bulk.

You, Yang, Qi
arXiv:1709.01223
Vasseur, Potter,
You, Ludwig
arXiv: 1807.07082

~
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Volume-law

Area-law

e Holographic network geometry emerges from learning!



Entanglement Feature Learning

® Network design

e Entanglement entropy ~ minimal cut
~ energy cost of Ising domain wall

S (A) ~ F(A)

® |sing model — deep Boltzmann machine
e Model parameter: weights (Ising couplings)
e Objective: clamped free energy ~ entanglement entropy

HE

layer z

1
0.0 0.1 0.2 0.3 0.4 0.5 mass m




Machine Learning
Renormalization Group



Quantum Field Theory as Image Dataset
e Afield: a mapping from spacetime to some target manifold

Scalar fields Vector fields

e A quantum field theory (QFT): a model that assigns an action
(= negative log likelihood) to every field configuration.

action

e Can we train a generative model to represent the QFT?



Renormalization Group as Generative Model

e Renormalization "group" (RG): progressively coarse-graining
the field (like a convolutional neural network)

IR
» RG scale




Renormalization Group as Generative Model

e Renormalization "group" (RG): progressively coarse-graining
the field (like a convolutional neural network)

UV IR

—— » RG scale

Traditional RG is not invertible...



Renormalization Group as Generative Model

e Renormalization "group" (RG): progressively coarse-graining
the field, similar in spirit to a convolutional neural network

UV IR

— » RG scale

@) @)
® |nverse RG: a hierarchical generative model Beny (2013)
IR UV

()

» inverse RG scale

. W - (0) = GlC(. )i
z) C@2) (@ 2) GenTerator

noise source



Generative Models

e Differentiable generative model: generate images from noise
(latent variables) by a non-linear transformation
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Generative
i model L-
Random noise
e Generative model deforms the probability % _
distribution, sample ( to generate ¢ £ i
¢ = G(¢) BG(O ;ﬁ: ) ¢:/<'bm§)
-0y |

%

Optimal mass transport - Lei, Su, Cui, Yau, Gu (2017)



Deep Generative Model

e Generative model deforms noise to QFT Li, Wang (2018), Hu,
Li, Wang, You (2109)
(a)

Posterior Prior Generator

(bourldary) (blilk) | )
OGN\ ! &
Py[6] = PI¢)det (=5 -1
Model % z
| | .E %
IMinimize KL divergence EIE
3|
Target (QFT) @ . C qu
— S O g dnodadna@o
e )z S0 0c0- 000000
¢ (r) boundary
e How to choose the prior? MERA network - Vidal (2006)

Our choice: independent Gaussian P|(| e ¢ (Why?)



Information Theoretic Goal of RG

e Renormalization Group = Deep Learning? wehta, Schwab (2014)
B Deep Architecture

-
JY/ T (1) J J(I\
| | BOKX O O (e o
J

0 i»nunu

Layer

400

e Maximal Real-Space Mutual Information (maxRMI) principle

Koch-Janusz, Ringel (2017)

max [ (H, E)
7]
Coarse-grained
freedom

(A)

Environment



Information Theoretic Goal of RG
e Minimal Bulk Mutual Information (minBMI) principle

' o maxRMI: maxI(¢)y: ¢p)

e MiNBMI: min ({4 : (B)

A , , LB~ Two objectives are equivalent
d' ¢p

R
){ I(6) : 65) + 1(Ca : Ca)
——

V = I(¢4,ppB) = const.
$ A % yv Hu, Li, Wang, You (2109)

® The objectives are two-folded
e Generate the QFT on the boundary

® Disentangle the QFT in the bulk
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Machine Learning Holography
® Training a generative model establishes a holographic duality

min KL(P(¢] det(3cG[¢]) e~ 5)

CFT (boundary) AdS (bulk)
Z = Ty e Ol —> 7 = T P|(] det((SgG[C])_l

Field theory in flat space (Classical) gravity + matter
e massless field ¢(z) e massive matter ¢(z, 2)
® on background G|-; w)|

Features in dataset Deep generative model
® image ¢(x) e latent representation ((z, z)
e neural network G|-; w|



Probing Holographic Bulk Geometry

e What can we learn from the bulk? stage 1  stage 11
e Pushing the QFT into the bulk, fix train
bulk field will have residual correlation P[{] P[]

® Pessimist: insufficient model capacity

and training loss ... § =
e Optimist: bulk field correlation - =
contains important information T =
about bulk geometry! = -
® Probing geometry by rzattér X-L Qi (2013) S0 -Sia
I(Gi )~ e ““T@')/ : S[¢] given by QFT
residual mutual geodesic

iInformation distance



Probing Holographic Bulk Geometry
e Apply to Luttinger liquid CFT, measure the bulk distance

d(w,y,zlx +r,y,2) ~Inr  d(x,y,2|z,y,2+7) ~ 71

A0~ 6'.-(5)' """"""""" ;’
3.5 (@) | 5

3.0
2.5
2.0
1.5
1 T e

-0.50.0 0.5 1.0 1.5 2.0 2.5 1 2 3 4

angular dist
radius dist
B A

In r r

e Result matches hyperbolic geometry ~ AdS

1
ds* = — (dz? + dy* + dz?)

2




Summary

e We demonstrated several examples of machine learning
physics. The common theme:

® Train the machine on a task (but we don’t use it!)
® Open up the neural network for emergent physics

Task Emergent physics
ML Quantum Potential-density =~ Wave function +
Mechanics mapping Schrodinger eq.
arXiv: 1901.11103
ML many-body Entanglement Holographic bulk
entanglement entropy prediction geometry

arXiv:1709.01223

ML holographic Quantum field RG scheme, bulk

mapping generation effective theory
arXiv:1903.00804



Acknowledgment
¢ ML Quantum Mechanics ¢ Quantum Entanglement

CeWang  Hui Zhai Zhao Yang Xiao-Liang Qi
(Tsinghua University) (Stanford University)

e Neural-RG and Holography

Hong-Ye Hu Shuo-HuiLi  Le Wang
(UCSD) (IOP, CAS)



