Emergent Classicallity from

Information Bottleneck Yi-Zhuang You (UCSD) June 2023

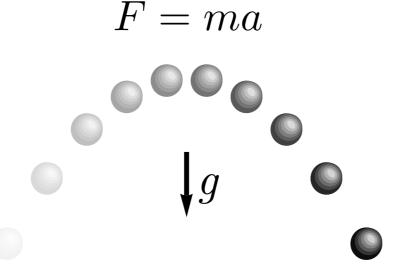
Zhelun Zhang, YZY. arXiv: 2306.14838

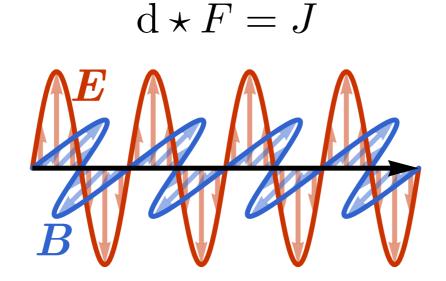
What is Classicality?

 In physics, the word "classical" is used in contrast to "quantum": classical physics refers to physics before quantum mechanics.

Issac Newton

James Maxwell

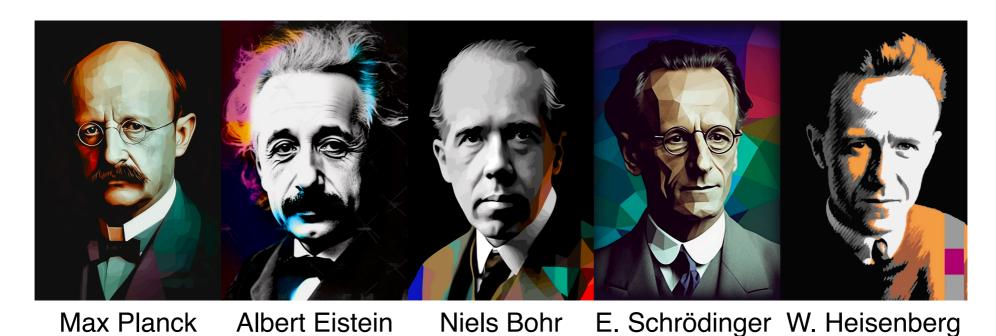




- Classical physics is deterministic.
- It works pretty well in the macroscopic world.

How is Quantum Differed from Classical?

 In the early 20th century, it was realized that classical physics does not quite apply to the microscopic world.

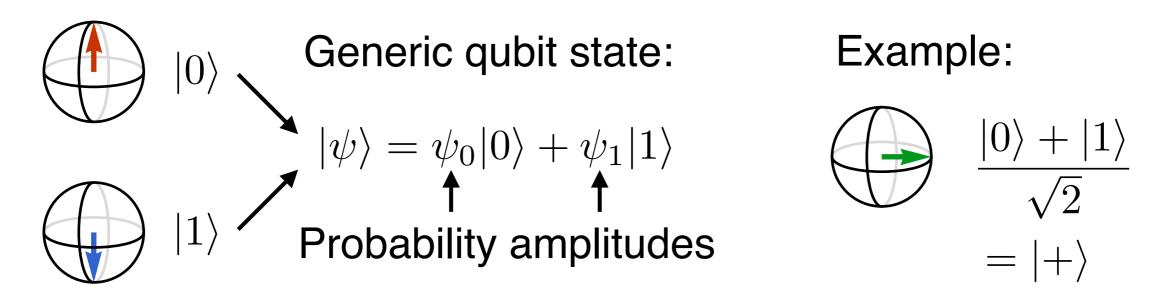


- A new branch of physics quantum mechanics was established. It is intrinsically probabilistic.
- Quantum mechanics is more exotic: it describes the square root of probability — called probability amplitude.

$$\psi(x) \sim \pm \sqrt{p(x)}$$

Quantum Mechanics

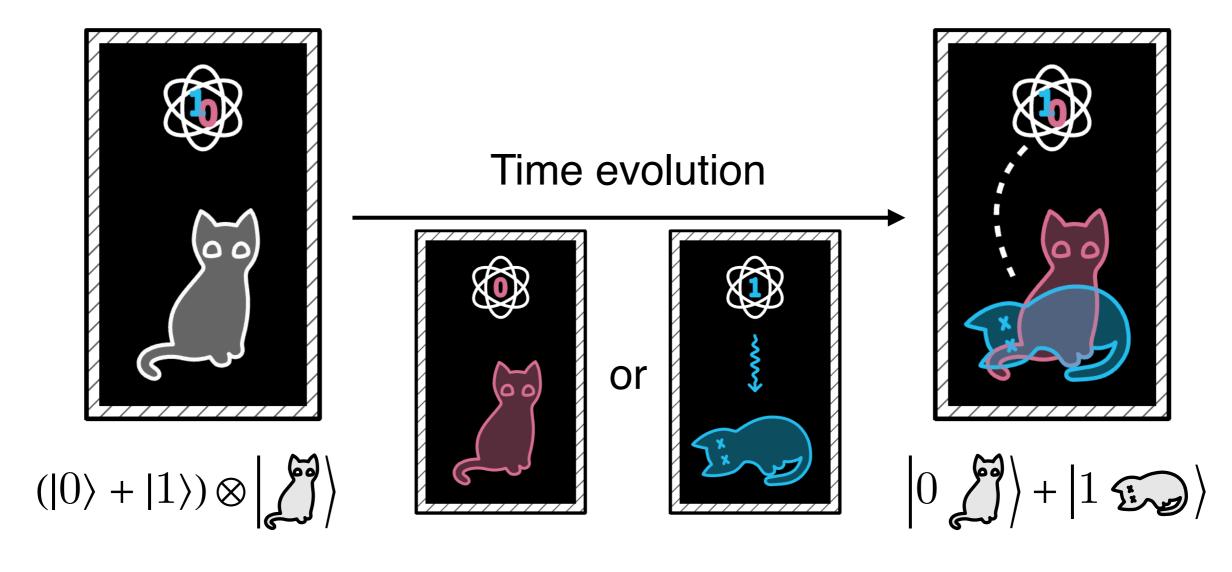
- Quantum superposition
 - In quantum mechanics, (pure) states of a system are described by vectors, and they can be linearly combined.
 - Similar to word vectors in natural language processing.
 - A physical example: qubit quantum bit.



When measured in 0/1 basis, the probability to observe 0/1 is given by: $p(0|\psi) = |\psi_0|^2$ or $p(1|\psi) = |\psi_1|^2$.

Schrödinger's Cat

 Quantum superposition can become weirder when it comes to states of multiple qubits — a famous example is Schrödinger's cat.

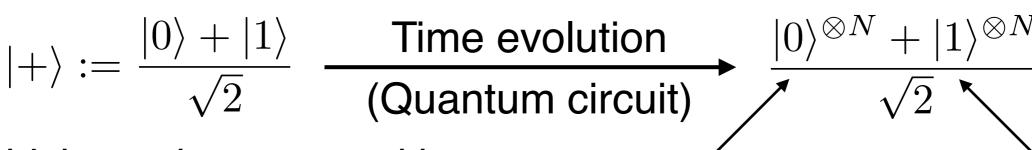


Initial state

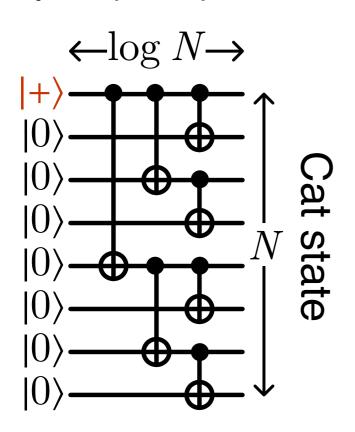
Entangled cat state

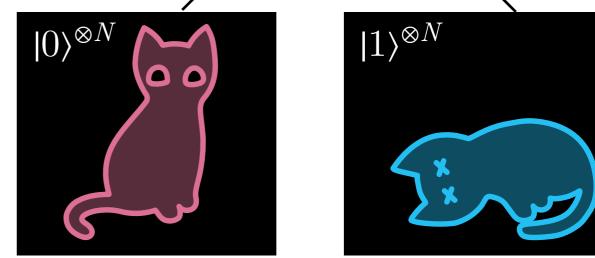
Schrödinger's Cat

The cat state can be modeled by a multi-qubit GHZ state,



which can be prepared by a quantum circuit in log N depth (time).





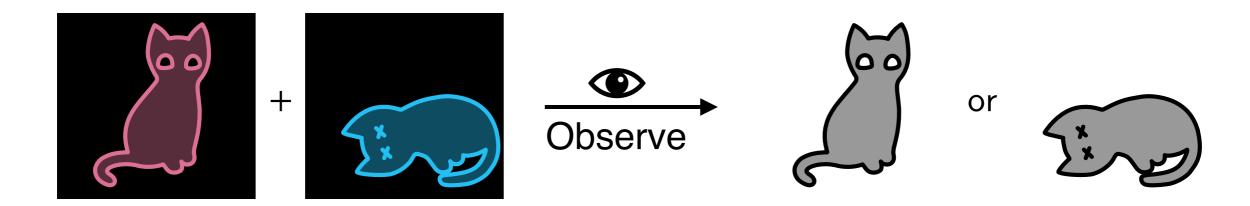
Greenberger, Horne, Zeilinger 1989

CNOT (controlled-NOT) gate

$$\begin{array}{ll} \mathbf{a} & a,b \in \{0,1\} \\ \mathbf{b} & \mathbf{a} \oplus \mathbf{b} & |a\rangle \otimes |b\rangle \to |a\rangle \otimes |a \oplus b\rangle \end{array}$$

Quantum State Collapse

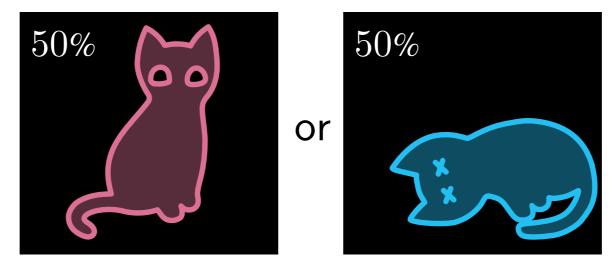
- But we never see a superposition cat in reality. Why?
- Copenhagen Interpretation: Observing the cat would cause the superposition to collapse into one of the two classical realities: cat alive or cat dead.



- What happens during the observation?
- Who qualifies as an observer?
- Should the observer be conscious/intelligent? ...

Quantum State Collapse

- Modern understanding: randomized measurement + classical data processing.
 - Measurement: the system interacts with the environment.

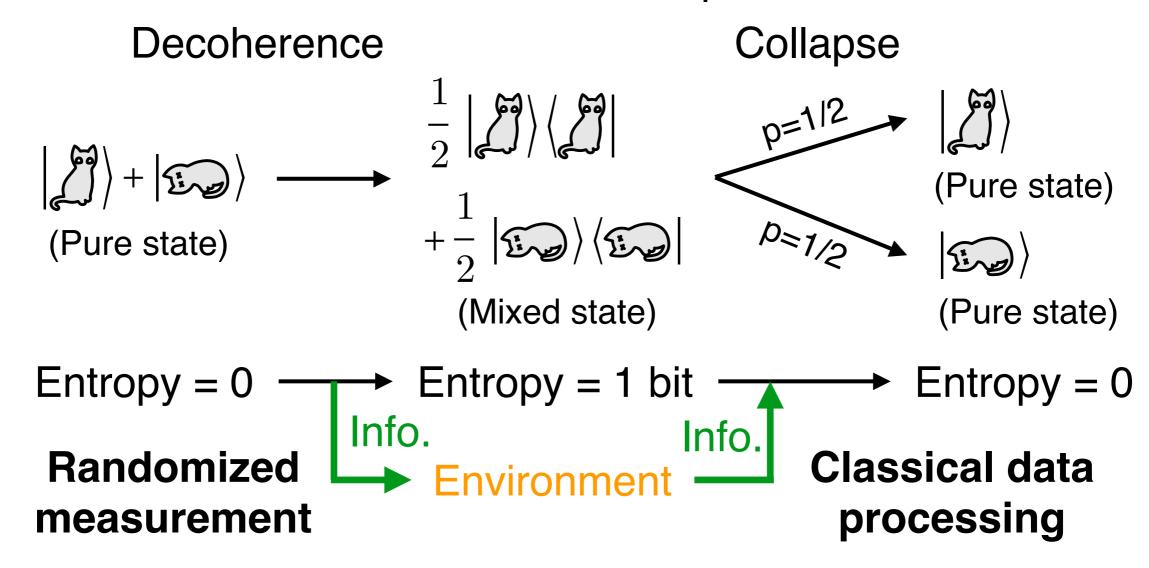


- Interaction → entanglement (information sharing).
- Information loss = entropy increase:
 pure cat state → mixed state ensemble of alive and dead.
- This process is called quantum decoherence. No intelligence is required at this step.

Joos, Zeh 1985; Ghirard, Rimini, Weber 1986, Zurek 2003.

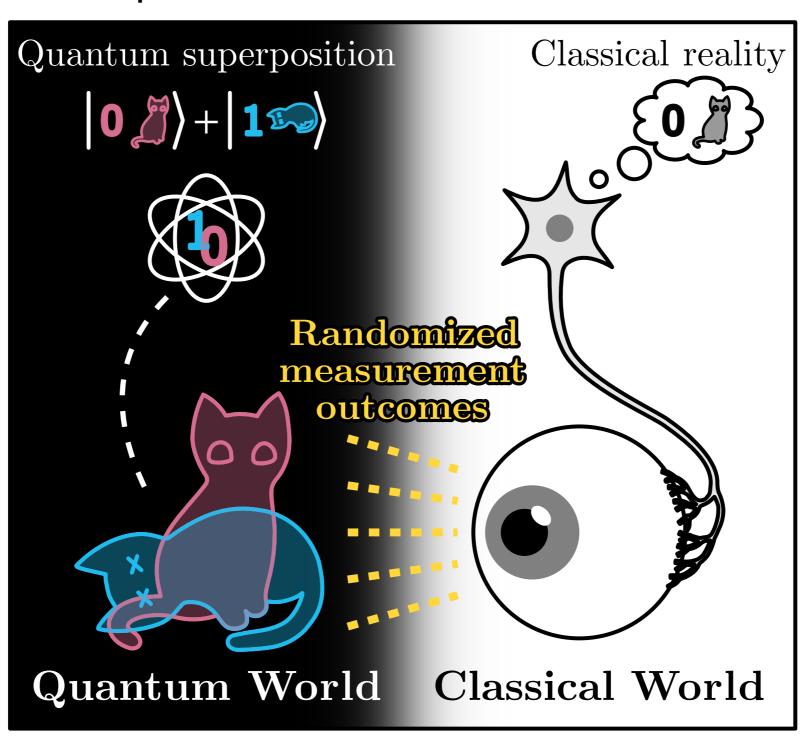
Quantum State Collapse

- Modern understanding: randomized measurement + classical data processing.
 - Emergent classical reality: how to collapse from the mixed state back to one of the alive/dead pure states



General Idea

• Idea: use AI to process randomized measurement data.



- Randomized measurement estimate properties of an unknown quantum state by measuring random observables.
 - Philosophy: measure first, ask questions later.
- Measurement scheme:
 - Prepare an N-qubit GHZ state $|\Psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle^{\otimes N} + |1\rangle^{\otimes N})$
 - Perform random & local measurements:
 - Draw a sequence of Pauli observables uniformly

$$\mathbf{x} = (x_1, x_2, \cdots, x_N), \quad x_i \in \{X, Y, Z\}$$

- Independently measure each qubit i by its corresponding observable x_i
- Collect measurement outcomes as a sequence

$$y = (y_1, y_2, \cdots, y_N), y_i \in \{\pm 1\}$$

Repeat ...

- Randomized measurements collect a large amount of data.
- Data structure: a pair of sequences

$$(\boldsymbol{x}, \boldsymbol{y}) \quad \boldsymbol{x} \in \{X, Y, Z\}^{\times N}, \boldsymbol{y} \in \{\pm 1\}^{\times N}$$

• Data distribution: $p(\boldsymbol{x}, \boldsymbol{y}) = p(\boldsymbol{y}|\boldsymbol{x})p(\boldsymbol{x})$

$$p(\boldsymbol{x}) = 3^{-N}$$
 (Uniform, trivial)

$$p(\boldsymbol{y}|\boldsymbol{x}) = \langle \Psi | \bigotimes_{i} \frac{1 + y_{i}x_{i}}{2} | \Psi \rangle$$

Non-trivial. Encodes all quantum information about the cat state $|\Psi\rangle$

- Randomized measurements collect a large amount of data.
- Data structure: a pair of sequences

$$(\boldsymbol{x}, \boldsymbol{y}) \quad \boldsymbol{x} \in \{X, Y, Z\}^{\times N}, \boldsymbol{y} \in \{\pm 1\}^{\times N}$$

• Data distribution: $p(\boldsymbol{x}, \boldsymbol{y}) = p(\boldsymbol{y}|\boldsymbol{x})p(\boldsymbol{x})$

$$p(\boldsymbol{x}) = 3^{-N}$$
 (Uniform, trivial)

$$p(\boldsymbol{y}|\boldsymbol{x}) = \langle \Psi | \bigotimes_{i} \frac{1 + y_{i}x_{i}}{2} | \Psi \rangle$$

• Classical post-processing: (x, y) are also called classical shadows, from which the quantum state can be recovered.

$$\rho := |\Psi\rangle\langle\Psi| = \mathbb{E}_{(\boldsymbol{x},\boldsymbol{y})} \bigotimes_{i} \frac{1 + 3y_{i}x_{i}}{2}$$

Randomized measurements collect a large amount of data.

$$(\boldsymbol{x}, \boldsymbol{y}) \quad \boldsymbol{x} \in \{X, Y, Z\}^{\times N}, \boldsymbol{y} \in \{\pm 1\}^{\times N}$$

 $(\boldsymbol{x}, \boldsymbol{y}) \sim p(\boldsymbol{x}, \boldsymbol{y}) = p(\boldsymbol{y}|\boldsymbol{x})p(\boldsymbol{x})$

• Examples (N = 4): classical shadows of Schrödinger's cat

Generative Modeling of Classical Shadows

• **Objective**: to model the conditional distribution p(y|x) of measurement outcomes given local observables.

```
x: ZZXY Observables (question)
```

y: ---+ Outcomes (answer)

 This maps to a chat completion task in natural language processing. — We can train a transformer-based generative language model to perform the task.

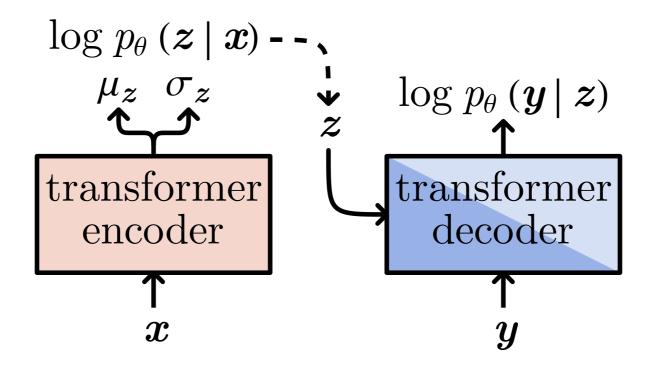
Vaswani et al. 2017; Devlin et al. 2019

 After training, the model can replace the quantum experiment to answer questions about the underlying quantum state (the cat state). — It can "speak" the quantum language.

Generative Modeling of Classical Shadows

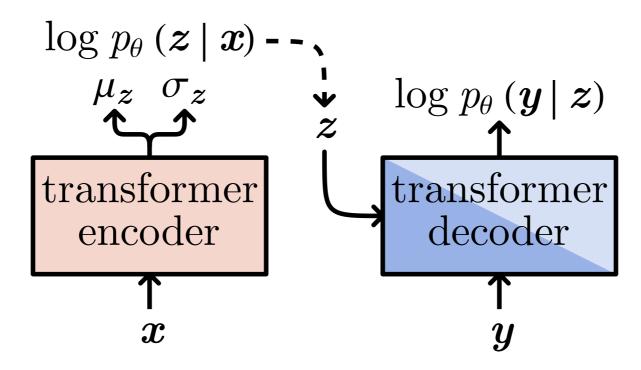
- Objective: to model the conditional distribution p(y|x) of measurement outcomes given local observables.
- Architecture: transformer-based β-VAE

$$p_{\theta}(\boldsymbol{y}|\boldsymbol{x}) = \int_{\boldsymbol{z}} p_{\theta}(\boldsymbol{y}|\boldsymbol{z}) p_{\theta}(\boldsymbol{z}|\boldsymbol{x})$$



Generative Modeling of Classical Shadows

ullet Loss function (ELBO): $\mathcal{L} = \mathop{\mathbb{E}}_{(m{x},m{y})\sim p_{\mathrm{dat}}} \mathcal{L}(m{x},m{y})$



$$egin{aligned} \mathcal{L}(m{x}, m{y}) &= - \mathop{\mathbb{E}}_{m{z} \sim p_{ heta}(m{z} | m{x})} \log p_{ heta}(m{y} | m{z}) & ext{Negative log-likelihood} \ &+ eta ext{KL}[p_{ heta}(m{z} | m{x}) \| p_{\mathcal{N}}(m{z})] & ext{KL regularization} \end{aligned}$$

• Hyperparameter β enables us to impose a variational information bottleneck on the transformer.

Model Evaluation

- Evaluation metric: fidelity a measure of the closeness between quantum states.
 - Original state ($|\Psi\rangle$ the GHZ state):

$$|\Psi\rangle\langle\Psi| = \rho = \mathbb{E}_{(\boldsymbol{x},\boldsymbol{y})\sim p_{\text{dat}}} \bigotimes_{i} \frac{1+3y_{i}x_{i}}{2}$$

Reconstructed state:

$$\tilde{\rho} = \mathbb{E}_{(\boldsymbol{x}, \tilde{\boldsymbol{y}}) \sim p_{\text{mdl}}} \bigotimes_{i} \frac{1 + 3y_{i}x_{i}}{2}$$

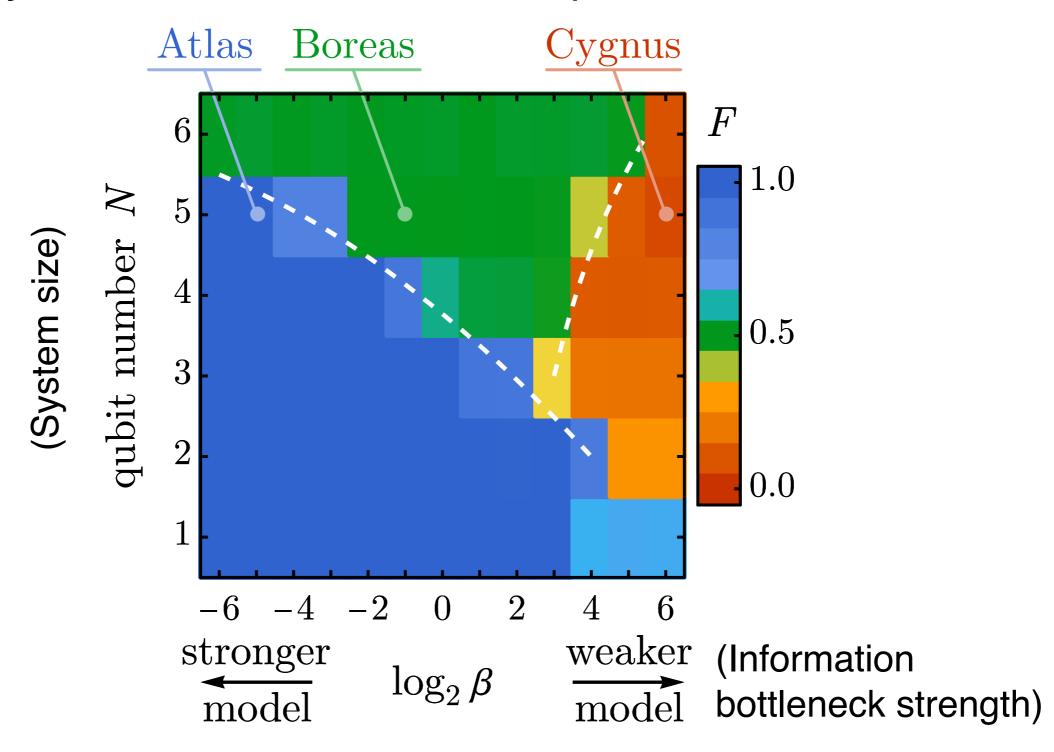
ullet Fidelity (the probability of observing $\tilde{
ho}$ given $|\Psi\rangle$)

$$F(\rho, \tilde{\rho}) := \left(\operatorname{Tr}\sqrt{\sqrt{\rho}\tilde{\rho}\sqrt{\rho}}\right)^2 = \langle \Psi | \tilde{\rho} | \Psi \rangle$$

In general, $0 \le F(\rho, \tilde{\rho}) \le 1$ (the larger the better).

Model Evaluation

Fidelity of the model reconstructed quantum state



- To understand the difference between Atlas, Boreas and Cygnus, let us chat with them!
 - We can ask them for the "one-shot cat classification".

Task: given a one-shot observation of the cat, determine if it is alive or dead.

Prompt:

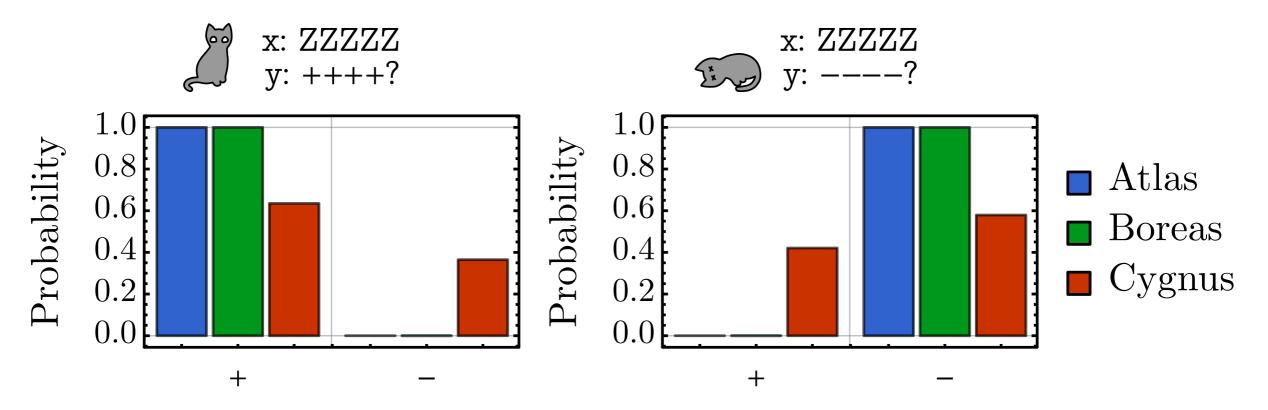
x: ZZZZZ
 x: ZZZZZ

y: ++++?
 y: ----?

Expectation:

x: ZZZZZ

In-distribution classification task



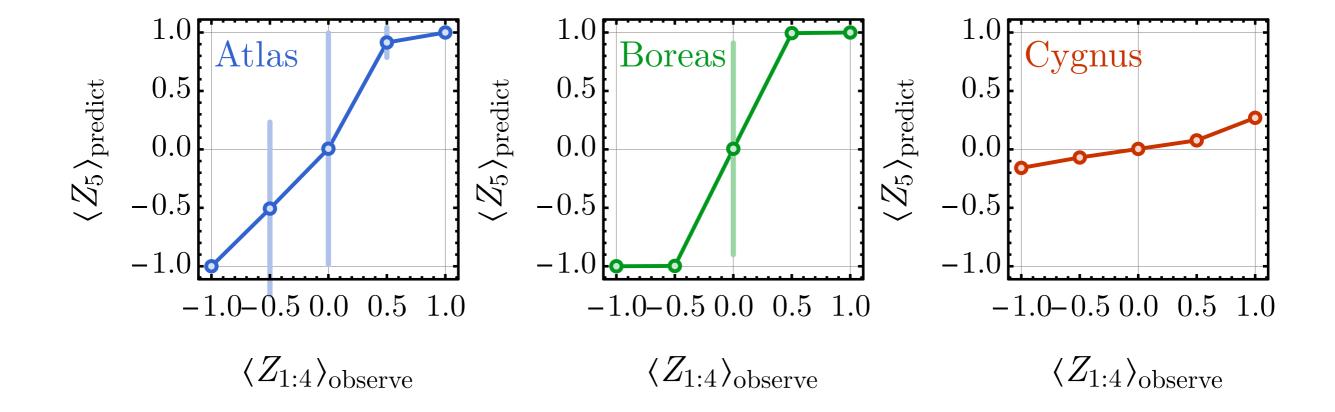
- Atlas and Boreas can perfectly determine the life and death of the cat.
- However, Cygnus is a weaker model and cannot make a clear judgment about the classical reality.

- Out-of-distribution classification task
 - What about the following prompt?

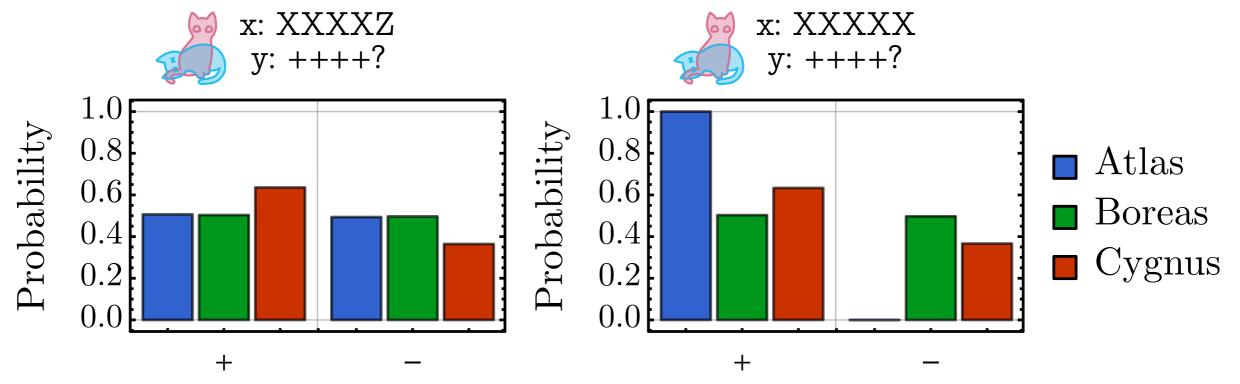
 \mathbf{x} : ZZZZZ

y: -++-? $Z_{1\cdot 4}$ Z_{5}

(This never appears in the classical shadow data of the GHZ state.)



- Local Z-measurements destroy the quantum coherence of the cat state. Can we preserve the coherence?
- Consider local *X*-measurements:



Q: Is the Schrödinger cat alive or dead?

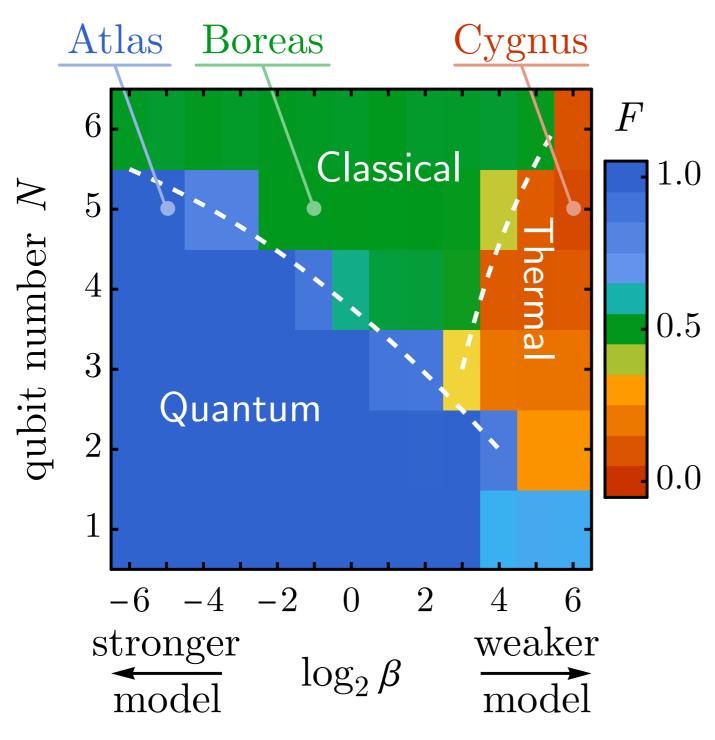
- (+) Alive.
- (-) Dead.

- Q: What is the sign of quantum coherence?
- (+) Positive.
- (-) Negative.

Characterize Representative Models

Model	Atlas	Boreas	Cygnus
$Z_{1:4} \rightarrow Z_5$ accuracy (\(\frac{1}{2}\))	1.000	1.000	0.607
$X_{1:4} \to X_5$ accuracy (\uparrow)	1.000	0.503	0.634
$ ilde{ ho}$	Quantum	Classical	Thermal
$F(ho, ilde{ ho})$ (1)	1.000	0.500	0.063
$S(\tilde{\rho})$ [bit] (\downarrow)	0.206	1.190	4.410

Emergent Classicality



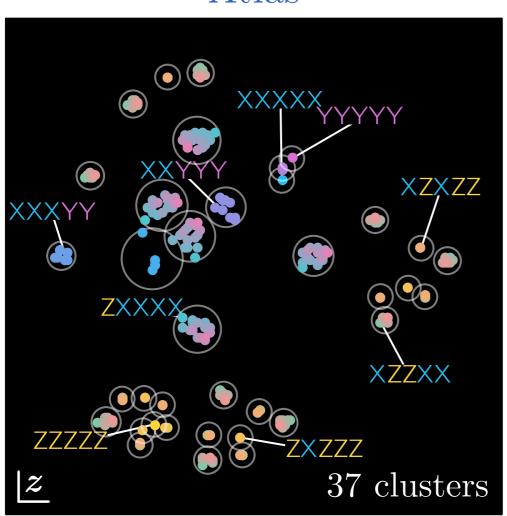
- Classicality emerges
 with increasing
 - Qubit number (system size),
 - Information bottleneck strength.
- Our world appears classical because —
 - It involves too many qubits.
 - We do not have enough classical data processing capability.

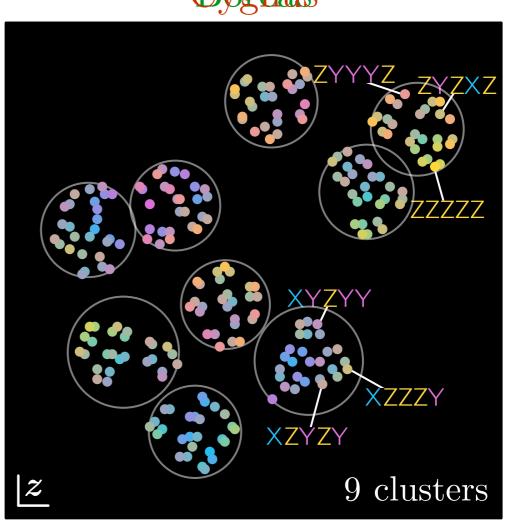
What Does the Latent Space Look Like?

t-SNE visualization of operator embeddings.

Atlas

Bygnass





Each dot represents a sequence of observables.

$$x \in \{X, Y, Z\}^N \xrightarrow{\text{Transformer}} z$$

Summary

- We use a transformer-based language model to process randomized measurement data collected from Schrödinger's cat quantum state.
 - Classical reality emerges in the language model due to the information bottleneck.
 - Implying a fundamental limitation on our ability to understand the full quantum nature of the universe.
 - A new avenue for using unlabeled classical shadow data to train generative models for representation learning of quantum operators
 - a step toward realizing AI quantum physicists.

Thanks!

Transformer-based β-VAE

